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Abstract
The aim of this paper isto introduce and study a new

class ¢ (S, |I.,.|), & u) of sequences with values in 2-
Banach space as a generalization of the familiar sequence
space ¢, We explore some of the preliminary results that
characterize the linear topological structure of the class

(S, |l , ), & u) when topologized it with suitable
natural paranorm.
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1. Introduction

@iii) Jlos, t ||=|a]]ls, t |, where aeK and s, t
e S;and
(V) lisitsatlI<|Isy,t[[+]st | forallsy,s
and t e S.

The pair (S, ||. , .||) is called a 2-normed space. Thus the

notion of 2-normed space is just a two- dimensional
analogue of a normed space.

Recall that (S, ||. , .||) is a 2-Banach space if every Cauchy
sequence < s, > in S is convergent to some Sy in S.
Geometrically, a 2-norm function represents the area of the
usual parallelogram spanned by the two associated vectors.
Example 2.2. Consider S = R? being equipped with

IS, T | =]sits—Sots|, whereS =(sy, sp) and T = (ty, t,).

Then (S, ||. , .||) forms a 2-normed space and || S, t ||
represents the area of the parallelogram spanned by the two

So far, a good number of research works have been done on various

types of 2-normed space

associated vectors S and t.

valued sequence spaces. The notion of 2-normed space was initially Definition 2.3. A sequence S =<s, > in a linear 2-normed

introduced by S. GAahler [17]

lim
as an interesting linear generalization of a normed linear space, whichSRase S is convergent if there isan s, e Ssuchthat | |

subsequently studied by

Sp— S, t]|=0, foreach t e S.Itis said to be a Cauchy if

Iseki [9], White and Cho [5], Freese et al. [15] , Freese and Cho [14] ﬂfé}e aretand win S such thatt and w are |inear|y

many others. Recently a

lot of activities have been started by many researchers to study this

concept in different

independent and
lim

lim
H—>00 ”Sm Snat” 0 and ||Sm Sn,W”_

m,n—0

directions, for instances, Savas [2] ,Gunawan and Mashadi [3], Srlvastflp{g notion of convergence was introduced by White and

and Pahari ([7], [8]),
Acikgdz [10], and others.

2. Preliminaries

We recall some basic facts and definitions that are used in
this paper.
Definition 2.1. Let S be a linear space of dimension > 1
over K, the field of real or complex numbers. A 2 - norm
on S is areal valued function ||, .|| on S x S satisfying the
following conditions:
(M |Is,t ||>0and|ls,t ||=0ifandonlyifsandt
are linearly dependent;

(i) |Is,t|=|lt,s] foralls, t €S;

Cho [5].A linear 2-normed space

(S, |I-, -] is called 2—Banach space if every Cauchy
sequence < s, > in 'S is convergent to some se S.

Definition 2.4. Let (S, ||., .|| ) be the 2- Normed space over
the field C of complex numbers and

0=(0, 0, 0,..) denotes the zero element of S. Let o(S)
denotes the linear space of all sequences

s =<g> withs, € S,k >1 with usual coordinate wise
operations i.e., for each

S=<§>,wW=<w>e n(S)and ye C,

S +W =<s§+ w> andys =<ys>
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We shall denote ® (C) by ®. Any linear subspace of ®
is then called a sequence space.

Further, if Y=<y, >e® and s € ®(S) we shall write

YS =<WS>.

The concept of paranorm is closely related to linear metric
space (see, Wilansky [1]) and its studies on sequence spaces
were initiated by Maddox [4] and many others.

Definition 2.5: A paranormed space (S, @ ) is a linear space
S with zero element 6 together with a function @ :S —R"
(called a paranorm on S) which satisfies the following
axioms:

PN1: @ () =0;
PN2: ® (s)= @ (-s), foralls € S;

PN3: D (5;+5)< D(s))+ D(sy), forallsy, s, €S;
and

PN4: Scalar multiplication is continuous i.e., if <y, >
is a sequence of scalars with y, — y as

n—ooand <s,> isa sequence of vectors with @
(Sy—5) — 0 asn — oo, then

D (y,8,—7S) —0asn— oo.

Note that the continuity of scalar multiplication is
equivalent to
(i) if &(s,)—>0and y,—>yas n— oo, then @
(ynSn) > 0as n— o0; and
(i) ify,—>0asn—>oand s beanyelementin S, then
D (y,8) = 0, see Wilansky [1].
A paranorm is called total if ® (s)=0 = s=0, see
Wilansky [1].

The studies of paranorm on sequence spaces were initiated
by Maddox [4] and many others. Basariv and Altundag [11],
Pahari [12] , Tiwari and Srivastava [13], Parasar and
Choudhary [16], Khan [18],Bhardwaj and Bala [19], and
many others further studied various types of paranormed
sequence spaces and function spaces.

Definition 2.6. A sequence space S is said to be solid if

S = <s> eSandy =<y > asequence of scalars
with |y < 1, forall k> 1, then

¥S =<y S>> €S
3. TheClass £((S,|., ), € u) of 2-Normed
Space Valued Vector Sequences
LetU=<uy> and Vv =<v,> be any sequences of strictly

positive real numbersand £=<¢§, > and p=<p> be
the sequences of non zero complex numbers.
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We now introduce  the following classes of 2-normed
space S—valued vector sequences

UGS, I D, & U) ={5 = <s¢> € ofS) satisfying él Il &

u
S, T k<oo,foreacht eS}

In fact, this class is a generalization of the familiar
sequence spaces, studied in Srivastava and Pahari ([6], [7],
[8]) , Pahari [12], using 2-norm .

4. Main Results

In this section, we shall investigate some results that
characterize the linear topological structure of the class ¢

(S I, -, & ) of 2-normed space S- valued sequences by
endowing it with suitable natural paranorm. Throughout
the work, we denote

o0 0 u
S ofor Y, Y for Y, 7= & k,supuk =M and for
(k,1) k=1 (kn) k=n

scalar a, A [a] = max (1, o).
But when the sequences < u, > and < v, > occur, then to
distinguish M we use the notations M(u) and M(v)
respectively.

Theorem 4.1. ¢((S,]., .[), & T) forms a linear space over
the field of complex numbers C if
< ug > is bounded above.

Proof. Assume that sup Uy <ooand s =<s > , W=<w

> e (S, |, .|, & U) .So that for each
t €S, we have

Uy Uk
2 &S t]l "< and X [|gcw, t]] T <o
(k,1) (k,1)

Let 0<uy < supcuy =M, D=max (1, 2"*
2D max (1, |o/) < 1and 2 Dmax (1, |p/*) < 1 and using
u u u
la+b| < D{la| “+|b| “}forall a,beC.

Then we have

Uk Uk Uk
> lec(ask+Bwo, t]l - < 2 [Dlof " [l&sk tl
(k1) (k1)

) and setting

Uy Uy
+D Bl " ll&wi, t 7]

<> [D Allod"] llgese t
kD)

4D AIBM llgewi tl g
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1 U 1
<= st <+
7 5 lasotl™ + 3

Uk
2 llekwi, t © <o,
(k1)

foreacht €S and therefore os + pw e 2 ((S, ||, .|)), & U
).
This implies that 2 ((S, ||, .|l), & U) forms a linear space
over C.
Theorem 4.2 . If 7((S, ||, .|)), & T ) forms a linear space
over C then < uy > is bounded above.

Proof.

Suppose that 2 ((S, |I., .|), & ) forms a linear space

over C but supg Uy = c. Then there exists a sequence <
k(n) > of positive integers satisfying 1 < k(n) <k(n+ 1), n
> 1 for which
Umy > N ,foreachn>1
4.1)
Now, corresponding to so € S and s, = 0, we define the
sequence s =< s, > by

_ {gk(n)'l n?m sy, ifk = k(n) , n>1and

Sy = (4.2)

0, otherwise.

Then for k = k(n), n> 1, we have
Y _ <21

2 leksetll = X (IO s, t || m) = >

(k1) (1) (1)
lIs, So || "

n
< Aot M

and  I€csi, t] *=0, for k= k(n),n>1,

showing that S 2 ((S, ||, .|), & U). But on
the other hand, let us choose t; e S such that ||
So, to || = 1. Then for such ty and scalar a = 4, for
k =k(n), n>1,inview of (4.1) and (4.2), we
have

Uk
> llo&se to |l = 2 |l &k & Skn) » To
(k1) )
“ Uk(n)

= 3 40?0
(n1)
4 ()
S, to || = (zi) nZ Il So, to ||
n,
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This shows that as ¢ £((S, |, .l).&T) ,a
contradiction. This completes the proof.

The following result is an immediate consequence of
Theorems 4.1 and 4.2.

Theorem 4.3 . ¢((S, ||, .|), & U) is a linear space over C
if and only if supy u, < oo.

Theorem 4.4 . The space (S, |, D), & ) forms a

solid.

Proof. Lets=<s> e ¢((S, |, .|, & U) . So that for each
t €S,

Uy
2 llesi, tl T <o
(k1)

Let <y, > be a sequence of scalars satisfying |y < 1 for all
k > 1.Then we have

Uy Uy Uk
2 &y st =2 d &St
(2) (1)

<> lEsest

(k1)

u,
| <o

for eacht e S. This shows that <y, s> € £((S, |I.,.ID, & T)

and hence £((S, |I., -II), & U) is normal.

Let U =<u> suchthat supy Uy <o and §=<sg

> e ((S, |, ) & U ). We define a real valued
function

u
D, (§):{(%) I &cse, t || )™ foreach t €S} (

4.3)
Throughout the work, @ will denote ®.,and U =<u,>,
V =<V, > such that supy Uy < oo and
supx Vi < oo. We prove below that 2 ((S, ||., .|)), & U) with
respect to @ forms a paranormed space.

Theorem 4.5. ¢((S, ||. , .|, € , U ) forms a total paranormed -
space with respectto @,

ProofLetae Cand S=<s > ,Ww=<w> € £(S, |,

D, &, U).Then we can easily verify
that @ satisfy the following properties of paranorm.

PN;. @ (S)>0,and ® (5) =0 ifand only if S =6;
PNy, @ (S+W)<D(S)+ D (W);

PN;. @ (aS) <A (o) ©(5);
PN4. Finally for continuity of scalar multiplication, it is
sufficient to show that
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(@ © (™) >0 andy, > v imply @ (v, 5™) > 0;
and

(b) vy, — 0 implies @ (y,S) > 0 foreachs € 2((S,
I, & ).

Now to prove (a) suppose |y,| < L for all n > 1, then
in view of (4.3) , we have

@ (vn §(n))

L M &set )
k1)

1M
,foreach t € S}

IA

U, M
supelyal © (X Il &
(k1)

Uy 1M
s,t|| ) ,foreacht eS}

<A(L) o™,
whence (a) follows.
NextifSe ¢(6S, |, .|), & U), then for & > 0 there
exists an integer K such that
M

u
(kZ) l&s,t ] << (%) ,foreacht eS.
K

Further if y, — 0, we can find N such that for n > N,

then for eacht e S,we have
M

U €
(kg"l) IYnluk | &es, t]l = < (_2) and |y, < 1.

Thus foreacht e S,

UM
_ Kl U
CD(YnS)S(Z Il vn & Sk, t| j +

1M

U
(z I Eese. t ) <e,
k.K)

foralln>N , and hence (b) follows.

Theorem 4.6. If S is a Banach space, then (¢((S, ||. , I, &,
u), @) is complete.
Proof. We prove the completeness of ¢ ((S, ||. , .I), & U)
with respect to the metric d(s, T) = @ (5 -T1).
Let < 5™ > be a Cauchy sequence in 2 ((S, |, .I), €, U).

Then for 0 < ¢ < 1, there exists N such that for all n, m > N
and foreacht e S, we have

u, 1M
o G"-5M=(3 & s s MM <

(4.4)
and so foralln,m>Nand k> 1 and foreacht e S, we have

n m -1 M/le -1
s s Mt <ga e Y <Rl e
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(n)
k

This shows that for each k, < s * > is a Cauchy sequence

(n)

. n
in S and because of completeness of S, S > S € S (say)

for each k. Being a Cauchy sequence < sﬁn)> is bounded,

ie @ (slgn)) < L for some L > 0 and for all n > 1. Thus for
everynandr,

UM

(X Mas-a ™ <L

First taking n — oo and then r — oo, then for eacht e S,
u, 1M
(X lleese,t ™) <L
k1)

which impliesthats=<s,> e £((S, ||, .I),. €. U).
Now for any r, by (4.4) we have

r 1M
(X as M g™, "9 <z forn,m> N,
k=1

and so letting m — oo first and then r — oo, we get

u /M
q)@(n)_g):(%) i< sﬁ”)—iksk,t 1)

<g foralln>Nand foreacht S
ie. 5™ 5sin (S, |, .I), E,U),as n — co. This proves

the completeness of ¢((S, |, .l), &, U).

Theorem 4.7. Forany = <u>, (S, ., ), &u)c/

(S D, u) if
liminf, Z > 0.

Proof. Assume that lim inf,z, >0andS=<s.> < ¢ ((S, |,
|, &€, T). Then there exist m >0 and

U, u
a positive integer K such that m || < |Ex ¥ for all k > K and
foreacht €S,

Uy
2 &kt " <o
(kK)

Thus for each t €S, we have

U |‘t:k|uk Uy
> o lmsetl < ¥ T llsat]
(kK) (k,K)
1
=_Z K
m &, g

Uk
S, t ” <00,
This clearly impliesthat 5 e 7 ((S, ||, -|I), i, U) and hence
(S D & T) < 2SN ) B ).

This completes the proof.
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Theorem 4.8 . For any é = <§>,if ug < v forall but
finitely many values of k, then

SN, & Ty < UG- & V).
Proof. Suppose 0 < ux < v <o for all but finitely many
values of k. Let S=<g; >
e /G, Il I, & U) .Then we have

u
Y |ESe t] ¢ <oo,foreacht eS.
(kD)

This shows that there exists K> 1 such that [|& s, t || < 1
forallk>Kand foreachte S.

u
Thus [l&ksc, t [ < |lEcsk, t I “for all k> K and for each t
€ S and consequently

V| U
Yo lesotl € < Y fl&s tl < <o foreacht
(k,K) (kK)

eS

and hence Se 4((S, ||. , .|), % v).This completes the proof
of the theorem.

The following result is an immediate consequence of
Theorems 4.7 and 4.8.

Theorem 4.9. If liminfyz, > 0; and u, < v, ,for all but

finitely many values of k, then

L(CH () A0 R (G R )8
wV).
In the following example, we conclude that ¢((S, ||. ,

D, c:; u) may strictly be contained in

(S, I, ), w, v) inspite of the satisfaction of both
conditions of Theorem 4.9.

Example 4.10.
Let (S, |.,.]) be a2-normed space and consider a
sequence S =<s,> defined by
sc=k s, if k=1,2,3,....wheres e Sand s = 0.
Further, let u, = k %, if k is odd integer, u, = k 2, if k is
even integer, vy = k 1 for all values of k,
& = 3% = 2 for all values of k.

ug 1/k
% :g or (—g) according as k is odd or
k

even integers and hence lim inf, z, > 0.

Then, zx =

v ey . v e
Further, U_i =1, if k is odd integers, U_i =k, if k is even

integers. Therefore 0 < u, < v, <o for all k.
Hence both conditions of Theorem 4.9 are satisfied.
Now foreacht e S, we have

314

Vg _ .
>olwsetl = X [k s t™ = ¥ 2k ? |
(k,1) (k,1) (k,1)

s,t Y

S2A[lIs,t ] X k
()

’2<oo,

This shows that s € ¢((S, ||., .[), w Vv ). But on the other
hand, let us choose t e S such that
I's, t|| = 1. Then for each even integer k, we have

U _ ok, 2k k2
lEks, tll = = 137k "y, t]|
1k

3 21
= (f2) Isu >3

This implies that s¢ ¢((S, ||., .J), & U) and hence the
containment of ¢((S, ||.,.[), & T) in
(S oDy p, V) s strict.
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