[Volume 2 issue 1 Jan 2013] Page No.310-315 ISSN :2320-7167

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER RESEARCH

On Certain Topological Structures of Two - Banach Space Valued Paranormed

Sequence Space ℓ ((S, ||., .||), $\overline{\xi}, \overline{u}$)

Narayan Prasad Pahari

Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal Email : nppahari @ gmail.com

Abstract

The aim of this paper is to introduce and study a new

class ℓ ((S, ||., .||), $\overline{\xi}$, \overline{u}) of sequences with values in 2-Banach space as a generalization of the familiar sequence space ℓ_p We explore some of the preliminary results that characterize the linear topological structure of the class

 ℓ ((S, ||., .||), $\overline{\xi}$, \overline{u}) when topologized it with suitable natural paranorm.

Keywords and Phrases: 2- normed space, sequence space, paranormed space, solid space.

2010 Mathematics Subject Classification: 46A45, 46B15

1. Introduction

types of 2-normed space

many others. Recently a

(iii) $|| \alpha s, t || = |\alpha| || s, t ||$, where $\alpha \in \mathbf{K}$ and s, t $\in S$;and

(iv) $|| s_1 + s_2, t || \le || s_1, t || + || s_2, t ||$, for all s_1, s_2 and $t \in S$.

The pair $(S, \parallel, ., .\parallel)$ is called a 2-normed space. Thus the notion of 2-normed space is just a two- dimensional analogue of a normed space.

Recall that $(S, \parallel, ., \parallel)$ is a 2-Banach space if every Cauchy sequence $\langle s_n \rangle$ in S is convergent to some s_0 in S. Geometrically, a 2-norm function represents the area of the usual parallelogram spanned by the two associated vectors. **Example 2.2.** Consider $S = \mathbf{R}^2$, being equipped with

 $\|\overline{s}, \overline{t}\| = |s_1t_2 - s_2t_1|$, where $\overline{s} = (s_1, s_2)$ and $\overline{t} = (t_1, t_2)$.

Then $(S, \parallel, ., .\parallel)$ forms a 2-normed space and $\parallel \overline{S}, \overline{t} \parallel$

represents the area of the parallelogram spanned by the two So far, a good number of research works have been done on various. associated vectors \overline{s} and \overline{t} .

valued sequence spaces. The notion of 2-normed space was initially **Definition 2.3.** A sequence $\overline{s} = \langle s_n \rangle$ in a linear 2-normed introduced by S. GÄahler [17] Introduced by S. GAahler [17] as an interesting linear generalization of a normed linear space, which space S is *convergent* if there is an $s_0 \in S$ such that $\lim_{n \to \infty} \|$

subsequently studied by $s_n - s, t \parallel = 0$, for each $t \in S$. It is said to be a *Cauchy* if

Iseki [9], White and Cho [5], Freese et al. [15], Freese and Cho [14] and t are t and w in S such that t and w are linearly independent and

lot of activities have been started by many researchers to study this concept in different

 $\lim_{m,n\to\infty} \|s_m-s_n, t\| = 0 \text{ and } \lim_{m,n\to\infty} \|s_m-s_n, w\| = 0.$ directions, for instances, Savas [2], Gunawan and Mashadi [3], Srivastava The notion of convergence was introduced by White and and Pahari ([7], [8]), Cho [5].A linear 2-normed space

Açikgöz [10], and others.

2. Preliminaries

We recall some basic facts and definitions that are used in this paper.

Definition 2.1. Let S be a linear space of dimension > 1over K, the field of real or complex numbers. A 2 - norm on S is a real valued function $\|., .\|$ on $S \times S$ satisfying the following conditions:

> (i) $||s, t|| \ge 0$ and ||s, t|| = 0 if and only if s and t are linearly dependent;

(ii) || s, t || = || t, s ||, for all $s, t \in S$;

(S, ||., .||) is called 2–Banach space if every Cauchy sequence $\langle s_n \rangle$ in *S* is convergent to some $s \in S$.

Definition 2.4. Let (S, ||., .||) be the 2- Normed space over the field C of complex numbers and

 $\overline{\theta} = (\theta, \theta, \theta, \dots)$ denotes the zero element of S. Let $\omega(S)$ denotes the linear space of all sequences

 $\overline{s} = \langle s_k \rangle$ with $s_k \in S$, $k \ge 1$ with usual coordinate wise operations i.e., for each

 $\overline{s} = \langle s_k \rangle, \ \overline{w} = \langle w_k \rangle \in \omega(S) \text{ and } \gamma \in C,$ $\overline{s} + \overline{w} = \langle s_k + w_k \rangle$ and $\gamma \overline{s} = \langle \gamma s_k \rangle$.

IJMCR www.ijmcr.in| 2:1 |Jan|2014|310-315 || ||

We shall denote ω (*C*) by ω . Any linear subspace of ω is then called a *sequence space*.

Further, if $\overline{\gamma} = \langle \gamma_k \rangle \in \omega$ and $\overline{s} \in \omega(S)$ we shall write $\overline{\gamma} \ \overline{s} = \langle \gamma_k s_k \rangle$.

The concept of paranorm is closely related to linear metric space (see, Wilansky [1]) and its studies on sequence spaces were initiated by Maddox [4] and many others.

Definition 2.5: A paranormed space (S, Φ) is a linear space *S* with zero element θ together with a function $\Phi: S \to \mathbf{R}^+$ (called a paranorm on *S*) which satisfies the following axioms:

$$PN1: \Phi(\theta) = 0;$$

*PN*2:
$$\Phi$$
 (*s*) = Φ (–*s*), for all *s* \in *S*;

 $PN3 \colon \Phi \; (s_1 + s_2 \;) \leq \; \Phi \; (s_1) + \; \Phi \; (s_2 \;) \;, \; \text{for all} \; s_1 \;, \; s_2 \in S;$ and

*PN*4: Scalar multiplication is continuous i.e., if $\langle \gamma_n \rangle$ is a sequence of scalars with $\gamma_n \rightarrow \gamma$ as

 $n \to \infty$ and $\langle s_n \rangle$ is a sequence of vectors with Φ $(s_n - s) \to 0$ as $n \to \infty$, then

 $\Phi(\gamma_n s_n - \gamma s) \rightarrow 0 \text{ as } n \rightarrow \infty.$

Note that the continuity of scalar multiplication is equivalent to

(i) if $\Phi(s_n) \to 0$ and $\gamma_n \to \gamma$ as $n \to \infty$, then $\Phi(\gamma_n s_n) \to 0$ as $n \to \infty$; and

(ii) if $\gamma_n \to 0$ as $n \to \infty$ and *s* be any element in *S*, then $\Phi(\gamma_n s) \to 0$, see Wilansky [1].

A paranorm is called total if $\Phi(s) = 0 \implies s = \theta$, see Wilansky [1].

The studies of paranorm on sequence spaces were initiated by Maddox [4] and many others. Basariv and Altundag [11], Pahari [12], Tiwari and Srivastava [13], Parasar and Choudhary [16], Khan [18],Bhardwaj and Bala [19], and many others further studied various types of paranormed sequence spaces and function spaces.

Definition 2.6. A sequence space S is said to be *solid* if

 $\overline{s} = \langle s_k \rangle \in S$ and $\overline{\gamma} = \langle \gamma_k \rangle$ a sequence of scalars with $|\gamma_k| \le 1$, for all $k \ge 1$, then

$$\overline{\gamma} \ \overline{s} = \langle \gamma_k \ s_k \rangle \in S.$$

3. The Class ℓ ((*S*, ||., .||), $\overline{\xi}$, \overline{u}) of 2-Normed Space Valued Vector Sequences

Let $\overline{u} = \langle u_k \rangle$ and $\overline{v} = \langle v_k \rangle$ be any sequences of strictly positive real numbers and $\overline{\xi} = \langle \xi_k \rangle$ and $\overline{\mu} = \langle \mu_k \rangle$ be the sequences of non zero complex numbers.

We now introduce the following classes of 2-normed space *S*-valued vector sequences

$$\ell((S, \parallel, ., \parallel), \overline{\xi}, \overline{u}) = \{ \overline{s} = \langle s_k \rangle \in \omega(S) \text{ satisfying } \sum_{k=1}^{\infty} \| \xi_k \|$$
$$s_k, t \|^{u_k} \langle \infty, \text{for each } t \in S \}.$$

In fact, this class is a generalization of the familiar sequence spaces, studied in Srivastava and Pahari ([6], [7], [8]), Pahari [12], using 2-norm.

4. Main Results

In this section, we shall investigate some results that characterize the linear topological structure of the class ℓ

 $((S, ||., .||), \overline{\xi}, \overline{u})$ of 2-normed space *S*- valued sequences by endowing it with suitable natural paranorm. Throughout the work, we denote

$$\sum_{k,1} \text{ for } \sum_{k=1}^{\infty} \text{ , } \sum_{(k,n)} \text{ for } \sum_{k=n}^{\infty} \text{ , } z_k = \left| \xi_k \mu_k^{-1} \right|^{u_k} \text{ , sup } u_k = M \text{ and for } L_k$$

scalar α , $A [\alpha] = \max (1, |\alpha|)$.

But when the sequences $\langle u_k \rangle$ and $\langle v_k \rangle$ occur, then to distinguish M we use the notations M(u) and M(v) respectively.

Theorem 4.1. $\ell((S, ||., .||), \overline{\xi}, \overline{u})$ forms a linear space over the field of complex numbers *C* if

 $\langle u_k \rangle$ is bounded above.

Proof. Assume that $sup_k u_k < \infty$ and $\overline{s} = \langle s_k \rangle$, $\overline{w} = \langle w_k \rangle$

 $> \in \ell(S, ||., .||, \overline{\xi}, \overline{u})$.So that for each

$$\sum_{(k,1)} ||\xi_k s_k, t||^{u_k} < \infty \text{ and } \sum_{(k,1)} ||\xi_k w_k, t||^{u_k} < \infty.$$

Let $0 < u_k \le \sup_k u_k = M$, $D = \max(1, 2^{M-1})$ and setting $2 D \max(1, |\alpha|^M) \le 1$ and $2 D \max(1, |\beta|^M) \le 1$ and using $u_k = u_k = u_k = u_k$.

$$|a+b| \leq D \{|a| + |b| \}$$
 for all $a, b \in \mathbb{C}$.

Then we have

 $t \in S$, we have

$$\sum_{(k,1)} \|\xi_{k}(\alpha s_{k} + \beta w_{k}), t \|^{u_{k}} \leq \sum_{(k,1)} [D |\alpha|^{u_{k}} \|\xi_{k} s_{k}, t \|^{u_{k}} + D |\beta|^{u_{k}} \|\xi_{k} w_{k}, t \|^{u_{k}}]$$

$$\leq \sum_{(k,1)} [D A [|\alpha|^{M}] \|\xi_{k} s_{k}, t \|^{u_{k}} + D A [|\beta|^{M}] \|\xi_{k} w_{k}, t \|^{u_{k}}]$$

$$\leq \frac{1}{2} \sum_{(k,1)} \|\xi_k s_k, t\|^{u_k} + \frac{1}{2}$$
$$\sum_{(k,1)} \|\xi_k w_k, t\|^{u_k} < \infty,$$

for each $t \in S$ and therefore $\alpha \overline{s} + \beta \overline{w} \in \ell((S, \|., .\|), \overline{\xi}, \overline{u})$.

This implies that $\ell((S, ||., .||), \overline{\xi}, \overline{u})$ forms a linear space over C.

Theorem 4.2. If $\ell((S, ||., .||), \overline{\xi}, \overline{u})$ forms a linear space over C then $\langle u_k \rangle$ is bounded above. Proof.

Suppose that $\ell((S, ||., .||), \overline{\xi}, \overline{u})$ forms a linear space over *C* but $sup_k u_k = \infty$. Then there exists a sequence $\langle k(n) \rangle$ of positive integers satisfying $1 \leq k(n) \langle k(n+1), n \rangle \geq 1$ for which

$$u_{k(n)} > n$$
, for each $n \ge 1$
(4.1)

Now, corresponding to $s_0 \in S$ and $s_0 \neq \theta$, we define the sequence $\overline{s} = \langle s_k \rangle$ by

$$s_{k} = \begin{cases} \xi_{k(n)}^{-1} n^{-2/u_{k(n)}} s_{0}, \text{ if } k = k(n) , n \ge 1 \text{ and} \\ \theta, \text{ otherwise.} \end{cases}$$
(4.2)

Then for k = k(n), $n \ge 1$, we have

$$\sum_{(k,1)} \|\xi_k s_k, t\|^{u_k} = \sum_{(n,1)} \|n^{-2/u_k(n)} s_0, t\|^{u_k(n)} = \sum_{(n,1)} \frac{\|s, s_0\|^{u_k(n)}}{n^2} \le A [\|s_0, t\|]^{M(u)}$$

 $] \sum_{(n,1)} \frac{1}{n^2} < \infty,$

and $\|\xi_k s_k, t\|^{u_k} = 0$, for $k \neq k(n)$, $n \ge 1$,

showing that $\overline{s} \in \ell((S, ||., .||), \overline{\xi}, \overline{u})$. But on the other hand, let us choose $t_0 \in S$ such that || $s_0, t_0 || = 1$. Then for such t_0 and scalar $\alpha = 4$, for $k = k(n), n \ge 1$, in view of (4.1) and (4.2), we have

$$\sum_{(k,1)} \| \alpha \xi_k s_k, t_0 \|^{u_k} = \sum_{(n,1)} \| \xi_{k(n)} \alpha s_{k(n)}, t_0 \|^{u_k(n)}$$

$$= \sum_{(n,1)} \|4 n^{-2/u_{k(n)}}\|$$

$$s_{0}, t_{0} \|^{u_{k(n)}} = \sum_{(n,1)} \frac{4^{u_{k(n)}}}{n^{2}} \|s_{0}, t_{0}\|$$

$$\ge \sum_{(n,1)} \frac{4^{n}}{n^{2}} > 1$$

This shows that $\alpha \ \overline{s} \notin \ell((S, \|., .\|), \overline{\xi}, \overline{u})$, a

contradiction. This completes the proof.

The following result is an immediate consequence of Theorems 4.1 and 4.2.

Theorem 4.3. $\ell((S, ||., .||), \overline{\xi}, \overline{u})$ is a linear space over C if and only if $\sup_k u_k < \infty$.

Theorem 4.4. The space ℓ ((S, ||., .||), $\overline{\xi}$, \overline{u}) forms a solid.

Proof. Let $\overline{s} = \langle s_k \rangle \in \ell((S, ||., .||), \overline{\xi}, \overline{u})$. So that for each $t \in S$,

$$\sum_{(k,1)} \|\xi_k s_k, t\|^{u_k} < \infty.$$

Let $\langle \gamma_k \rangle$ be a sequence of scalars satisfying $|\gamma_k| \leq 1$ for all $k \geq 1$. Then we have

$$\sum_{(k,1)} \|\xi_k \gamma_k s_k, t\|^{u_k} = \sum_{(k,1)} |\gamma_k|^{u_k} \|\xi_k s_k, t\|^{u_k}$$
$$\leq \sum_{(k,1)} \|\xi_k s_k, t\|$$

 $\|^{u_k} < \infty,$

for each $t \in S$. This shows that $\langle \gamma_k s_k \rangle \in \ell((S, ||., .||), \overline{\xi}, \overline{u})$ and hence $\ell((S, ||., .||), \overline{\xi}, \overline{u})$ is normal.

Let $\overline{u} = \langle u_k \rangle$ such that $\sup_k u_k \langle \infty$ and $\overline{s} = \langle s_k \rangle$ $\geq \ell ((S, ||., .||), \overline{\xi}, \overline{u})$. We define a real valued function

$$\Phi_{\xi,u}(\overline{s}) = \{ \left(\sum_{(k,1)} \| \xi_k s_k, t \|^{u_k} \right)^{1/M} \text{, for each } t \in S \}.$$
(4.3)

Throughout the work, Φ will denote $\Phi_{\xi,u}$ and $\overline{u} = \langle u_k \rangle$, $\overline{v} = \langle v_k \rangle$ such that $\sup_k u_k < \infty$ and

 $\sup_k v_k < \infty$. We prove below that $\ell((S, ||., .||), \overline{\xi}, \overline{u})$ with respect to Φ forms a paranormed space.

Theorem 4.5. $\ell((S, ||., .||), \overline{\xi}, \overline{u})$ forms a total paranormed space with respect to $\Phi_{\underline{i}}$

Proof.Let $\alpha \in C$ and $\overline{s} = \langle s_k \rangle$, $\overline{w} = \langle w_k \rangle \in \ell((S, ||.,$

.||), $\overline{\xi}$, \overline{u}).Then we can easily verify

that Φ satisfy the following properties of paranorm.

 PN_1 . $\Phi(\overline{s}) \ge 0$, and $\Phi(\overline{s}) = 0$ if and only if $\overline{s} = \overline{\theta}$;

 PN_{2} . $\Phi(\overline{s} + \overline{w}) \leq \Phi(\overline{s}) + \Phi(\overline{w});$

 PN_{3} , $\Phi(\alpha \overline{s}) \leq A(\alpha) \Phi(\overline{s});$

*PN*₄. Finally for continuity of scalar multiplication, it is sufficient to show that

(a) $\Phi(\overline{s}^{(n)}) \to 0$ and $\gamma_n \to \gamma$ imply $\Phi(\gamma_n \overline{s}^{(n)}) \to 0$; and

(b) $\gamma_n \to 0$ implies $\Phi(\gamma_n \overline{s}) \to 0$ for each $\overline{s} \in \ell((S, ||., .||), \overline{\xi}, \overline{u})$.

Now to prove (a) suppose $|\gamma_n| \le L$ for all $n \ge 1$, then in view of (4.3), we have

 $\Phi (\gamma_n \overline{s}^{(n)}) = \{ (\sum_{(k,1)} \| \gamma_n \xi_k s_k, t \|^{u_k}) \}$

, for each $t \in S$

$$\leq \sup_{k} |\gamma_{n}|^{u_{k}/M} \left\{ \left(\sum_{(k,1)} || \xi_{k} \right)^{1/M} \right\}$$

s_k, t || ^{u_{k}}) ^{1/M}, for each t \in S
$$\leq A(L) \Phi(\overline{s}^{(n)}),$$

whence (a) follows.

Next if $\overline{s} \in \ell((S, \|., \|), \overline{\xi}, \overline{u})$, then for $\varepsilon > 0$ there exists an integer *K* such that

$$\sum_{(k,K)} \|\xi_k s_k, t\|^{u_k} < \left(\frac{\varepsilon}{2}\right)^M, \text{ for each } t \in S.$$

Further if $\gamma_n \rightarrow 0$, we can find *N* such that for $n \ge N$, then for each $t \in S$, we have

$$\sum_{(k,K-1)} |\gamma_n|^{u_k} \| \xi_k s_k, t \|^{u_k} < \left(\frac{\varepsilon}{2}\right)^{M} \text{ and } |\gamma_n| \leq 1.$$

Thus for each $t \in S$,

$$\Phi\left(\gamma_{n} \overline{s}\right) \leq \left(\sum_{k=1}^{K-1} \|\gamma_{n} \xi_{k} s_{k}, t\|^{u_{k}}\right)^{1/M} + \left(\sum_{(k,K)} \|\xi_{k} s_{k}, t\|^{u_{k}}\right)^{1/M} < \varepsilon,$$

for all $n \ge N$, and hence (b) follows.

Theorem 4.6. If S is a Banach space, then $(\ell((S, ||., .||), \overline{\xi}, \overline{u}), \Phi)$ is complete.

Proof. We prove the completeness of ℓ ((*S*, ||., .||), $\overline{\xi}$, \overline{u}) with respect to the metric $d(\overline{s}, \overline{t}) = \Phi(\overline{s} - \overline{t})$.

Let $\langle \overline{s}^{(n)} \rangle$ be a Cauchy sequence in ℓ ((*S*, ||., .||), $\overline{\xi}$, \overline{u}). Then for $0 < \varepsilon < 1$, there exists *N* such that for all $n, m \ge N$ and for each $t \in S$, we have

$$\Phi(\overline{s}^{(n)} - \overline{s}^{(m)}) = (\sum_{(k,1)} || \xi_k s_k^{(n)} - \xi_k s_k^{(m)}, t ||^{u_k})^{1/M} < \varepsilon.$$

(4.4) and so for all $n, m \ge N$ and $k \ge 1$ and for each $t \in S$, we have $|| s_k^{(n)} - s_k^{(m)}, t || < |\xi_k|^{-1} \varepsilon^{M/u_k} < |\xi_k|^{-1} \varepsilon.$ This shows that for each $k, < s_k^{(n)} >$ is a Cauchy sequence in *S* and because of completeness of *S*, $s_k^{(n)} \rightarrow s_k \in S$ (say) for each *k*. Being a Cauchy sequence $< s_k^{(n)} >$ is bounded, i.e. $\Phi(s_k^{(n)}) \leq L$ for some L > 0 and for all $n \geq 1$. Thus for every *n* and *r*,

$$(\sum_{k=1}^{r} \| \xi_k s_k^{(n)} - \xi_k, t \|^{u_k})^{1/M} \le L.$$

First taking $n \to \infty$ and then $r \to \infty$, then for each $t \in S$, $\left(\sum_{(k,1)} \|\xi_k s_k, t\|^{u_k}\right)^{1/M} \le L$

which implies that $\overline{s} = \langle s_k \rangle \in \ell((S, ||., .||), \overline{\xi}, \overline{u})$. Now for any *r*, by (4.4) we have

$$\left(\sum_{k=1}^{r} \| \xi_{k} s_{k}^{(n)} - \xi_{k} s_{k}^{(m)}, t \|^{u_{k}}\right)^{1/M} < \varepsilon, \text{ for } n, m \ge N,$$

and so letting $m \to \infty$ first and then $r \to \infty$, we get

$$\Phi(\overline{s}^{(n)} - \overline{s}) = (\sum_{(k,1)} \|\xi_k s_k^{(n)} - \xi_k s_k, t\|^{u_k})^{1/M}$$

 $\leq \varepsilon$, for all $n \geq N$ and for each $t \in S$

i.e. $\overline{s}^{(n)} \to \overline{s}$ in $\ell((S, \parallel, , .\parallel), \overline{\xi}, \overline{u})$, as $n \to \infty$. This proves the completeness of $\ell((S, \parallel, , .\parallel), \overline{\xi}, \overline{u})$.

Theorem 4.7. For any $\overline{u} = \langle u_k \rangle$, $\ell ((S, ||., .||), \overline{\xi}, \overline{u}) \subset \ell$ $((S, ||., .||), \overline{\mu}, \overline{u})$ if $lim inf_k \ z_k > 0.$

Proof. Assume that $\liminf_k z_k > 0$ and $\overline{s} = \langle s_k \rangle \in \ell$ ((*S*, ||.,

.||), $\overline{\xi}$, \overline{u}). Then there exist m > 0 and

a positive integer K such that $m |\mu_k|^{u_k} < |\xi_k|^{u_k}$ for all $k \ge K$ and for each $t \in S$,

$$\sum_{(k,K)} \|\xi_k s_k, t\|^{u_k} < \infty.$$

Thus for each $t \in S$, we have

$$\sum_{(k,K)} \|\mu_k s_k, t\|^{u_k} \leq \sum_{(k,K)} \frac{|\xi_k|^{u_k}}{m} \|s_k, t\|^{u_k}$$
$$= \frac{1}{m} \sum_{(k,K)} \|\xi_k\|$$

 $s_k, t \parallel^{u_k} < \infty$.

This clearly implies that $\overline{s} \in \ell$ ((*S*, ||., .||), $\overline{\mu}$, \overline{u}) and hence

$$\ell((S, \|., .\|), \overline{\xi}, \overline{u}) \subset \ell((S, \|., .\|), \overline{\mu}, \overline{u}).$$

This completes the proof.

Theorem 4.8. For any $\xi = \langle \xi_k \rangle$, if $u_k \leq v_k$ for all but finitely many values of k, then

$$\ell((S, \|., .\|), \xi, \overline{u}) \subset \ell((S, \|., .\|), \xi, \overline{v}).$$

Proof. Suppose $0 < u_k \le v_k < \infty$ for all but finitely many values of *k*. Let $\overline{s} = \langle s_k \rangle$

 $\in \ell((S, ||., .||), \xi, \overline{u})$. Then we have

$$\sum_{(k,1)} \quad \|\xi_k s_k, t\|^{u_k} < \infty, \text{for each } t \in S.$$

This shows that there exists $K \ge 1$ such that $||\xi_k s_k, t|| < 1$ for all $k \ge K$ and for each $t \in S$.

Thus $\|\xi_k s_k, t\|^{\nu_k} \le \|\xi_k s_k, t\|^{u_k}$ for all $k \ge K$ and for each $t \in S$ and consequently

$$\sum_{(k,K)} \|\xi_k s_k, t\|^{\nu_k} \leq \sum_{(k,K)} \|\xi_k s_k, t\|^{\mu_k} < \infty \text{,for each } t \in S$$

and hence $\overline{s} \in \ell((S, \|., .\|), \overline{\xi}, \overline{v})$. This completes the proof of the theorem.

The following result is an immediate consequence of Theorems 4.7 and 4.8.

Theorem 4.9. If $\lim \inf_k z_k > 0$; and $u_k \le v_k$, for all but finitely many values of k, then

$$\ell((S, \|., .\|), \xi, \overline{u}) \subset \ell((S, \|., .\|),$$

 $\overline{\mu}, \overline{v}$).

In the following example, we conclude that $\ell((S, \|., .\|), \bar{\xi}, \bar{u})$ may strictly be contained in

 $\ell((S, ||., ||), \overline{\mu}, \overline{\nu})$ inspite of the satisfaction of both conditions of Theorem 4.9.

Example 4.10.

Let (S, ||., .||) be a 2- normed space and consider a sequence $\overline{s} = \langle s_k \rangle$ defined by

 $s_k = k^{-2k} s$, if $k = 1, 2, 3, \dots$, where $s \in S$ and $s \neq 0$. Further, let $u_k = k^{-1}$, if k is odd integer, $u_k = k^{-2}$, if k is even integer, $v_k = k^{-1}$ for all values of k,

 $\xi_k = 3^k$, $\mu_k = 2^k$ for all values of *k*.

Then, $z_k = \left| \frac{\xi_k}{\mu_k} \right|^{u_k} = \frac{3}{2}$ or $\left(\frac{3}{2} \right)^{1/k}$ according as k is odd or even integers and hence $\liminf_k z_k > 0$.

Further, $\frac{v_k}{u_k} = 1$, if k is odd integers, $\frac{v_k}{u_k} = k$, if k is even

integers. Therefore $0 < u_k \le v_k < \infty$ for all *k*.

Hence both conditions of Theorem 4.9 are satisfied.

Now for each $t \in S$, we have

$$\sum_{(k,1)} \| \mu_k s_k, t \|^{\nu_k} = \sum_{(k,1)} \| 2^k k^{-2k} s, t \|^{1/k} = \sum_{(k,1)} 2 k^{-2} \|$$

$$s, t \|^{1/k} \leq 2A [\| s, t \|] \sum_{(k,1)} k$$

$$^{-2} < \infty.$$

This shows that $\overline{s} \in \ell((S, \|., .\|), \overline{\mu}, \overline{\nu})$. But on the other hand, let us choose $t \in S$ such that

|| s, t || = 1. Then for each even integer *k*, we have

$$\begin{aligned} \left\| \xi_k \, s_k, \, t \, \right\|^{u_k} &= \, \left\| 3^k \, k^{-2k} \, y \, , \, t \, \right\|^{1/k^2} \\ &= \left(\frac{3}{k^2} \right)^{1/k} \, \left\| s, t \, \right\|^{1/k^2} > \frac{1}{2} \end{aligned}$$

This implies that $\overline{s} \notin \ell((S, \|., .\|), \overline{\xi}, \overline{u})$ and hence the

containment of $\ell((S, \|., .\|), \overline{\xi}, \overline{u})$ in

 $\ell((S, ||., .||), \overline{\mu}, \overline{\nu})$ is strict.

References

[1] A. Wilansky, *Modern methods in topological vector spaces*, Mc Graw_Hill Book

Co.Inc.New York (1978).

[2] E. Savas, On some new sequence spaces in 2normed spaces using ideal convergence and an Orlicz function, *Hindawi Pub. Corp., Journal of Inequality and Application*, Vol. 2010,10.1155, (2010).

[3] H. Gunawan and H. Mashadi, On finite dimensional 2normed spaces, *Soochow J*.

Math., 27 (2001), 321–329.

[4] I.J. Maddox, Some properties of paranormed sequence spaces, London. J. Math. Soc.

, **2(1)** (1969), 316–322.

- [5] J.A. White and Y.J. Cho, Linear mappings on linear 2– normed spaces, Bull. Korean Math. Soc., 21(1) (1984), 1–6.
- [6] J.K. Srivastava and N.P. Pahari , On Banach space valued sequence space $l_M(X, \overline{\lambda}, \overline{p}, L)$ defined by Orlicz function, *South East Asian J.Math. & Math.Sc.*, **10(1)**(2011), 39 49.

[7] J.K. Srivastava and N.P. Pahari, On 2- normed space valued sequence space l_M(X, ||., .||, λ̄, p̄) defined by Orlicz function, *Proc. of Indian Soc. of Math. and Math. Sc.*, 6(2011), 243-251.

[8] J.K. Srivastava and N.P. Pahari, On 2- Banach space valued paranormed sequence space $c_0(X, M, \parallel, ..., \overline{\lambda}, \overline{p})$ defined by Orlicz function, Jour. of Rajasthan Academy of Physical Sciences, **12(3)** (2013), 317-336.

- [9] K. Iseki, *Mathematics on two normed spaces*, Bull. Korean Math. Soc., 13(2), (1976).
- [10] M. Açikgöz, A review on 2 normed structures, Int. Journal of Math. Analysis, 1(4) (2007),187 – 191.
- [11] M. Basariv and S. Altundag, On generalized paranormed statistically convergent sequence
- spaces defined by Orlicz function, *Handawi. Pub. Cor.,* J. of Inequality and Applications (2009).
- [12] N.P. Pahari, On Banach space valued sequence space
 - $l_{\infty}(X,M,\overline{\lambda},\overline{p},L)$ defined by Orlicz function, *Nepal Jour. of Science and Tech.*, **12** (2011), 252-259.
- [13] R. K. Tiwari and J. K. Srivastava, On certain Banach space valued function spaces- II,
 - Math. Forum, **22**(2010), 1-14.
- [14] R.W. Freese and Y.J. Cho, Geometry of linear 2-
- normed spaces, Nova Science Publishers, Inc. New York (2001).
- [15] R.W. Freese, Y.J. Cho and S.S. Kim, Strictly 2–convex linear 2–normed spaces; *J. Korean Math. Soc.*, 29(2) (1992), 391 400.
- [16] S.D. Parasar and B. Choudhary, Sequence spaces defined by Orlicz functions, *Indian*
 - *J. Pure Appl. Maths.*, **25**(**4**) (1994), 419–428.
- [17] S. GÄahler, 2 -metrische RÄaume und ihre
- topologische struktur, *Math. Nachr.*,**6**(1963), 115-148.
- [18] V.A. Khan, On a new sequence space defined by
- Orlicz functions, Common. Fac. Sci.

Univ. Ank-series, 57(2) (2008), 25–33.

- [19] V.N. Bhardwaj and I. Bala, Banach space valued
- sequence space $\ell_M(X, p)$, Int. J. of Pure and *Appl. Maths.*, **41(5)** (2007), 617–626.