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Abstract 

The aim of   this   paper  is to   introduce   and study  a new  

class    ((S, ||. , .||),  
–

, u– ) of  sequences with values in  2- 

Banach space as a generalization of  the familiar sequence 

space p. We   explore  some of the preliminary results that 

characterize the linear  topological  structure  of  the class    

 ((S, ||. , .||),  
–

, u– )  when topologized it with suitable 

natural  paranorm.  
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1. Introduction  

So  far,  a  good  number  of  research  works  have  been  done  on  various 

types of 2-normed space  

valued   sequence spaces. The notion of 2–normed space was initially 

introduced by S. GÄahler [17]   

as an interesting linear generalization of a normed linear space, which was 

subsequently studied by  

 Iseki [9], White and Cho [5], Freese et al. [15] , Freese and Cho [14] and 

many others. Recently a  

lot of activities have been  started  by many researchers to study this 

concept   in    different     

directions, for instances, Savas [2] ,Gunawan and  Mashadi [3] , Srivastava 

and Pahari ([7], [8]), 

 Açikgöz [10], and others.  

2.  Preliminaries 

We recall some basic facts and definitions that are used in 

this paper. 

Definition 2.1. Let S  be a linear space of dimension  > 1 

over K, the  field of real or complex numbers. A  2 - norm 

on S  is a real valued function  ||. , .|| on  S × S satisfying the 

following conditions: 

(i)    || s, t  || ≥ 0 and || s, t  || = 0 if and only if s and t  

are linearly dependent; 

(ii)    || s, t  || = || t , s ||, for all s, t  S; 

(iii)   || s, t  || = | | || s¸ t  ||, where K and s, t  

S;and 

(iv)   || s1 + s2, t  ||  || s1, t  || + || s2, t  || ,for all s1 , s2 

and  t S. 

The pair (S, ||. , .||) is called a 2–normed space. Thus the 

notion of 2–normed space is just a two- dimensional 

analogue of a normed space. 

 Recall that (S, ||. , .||) is a 2-Banach space if every Cauchy 

sequence  < sn >  in S is convergent  to some s0 in S. 

Geometrically, a 2-norm function represents the area of the 

usual   parallelogram spanned by the two associated vectors.  

Example 2.2. Consider   S  =  R
2
, being equipped with 

|| s– , t
–

 || = | s1t2 – s2t1|,  where s–  = (s1, s2) and  t
–

 = (t1 , t2). 

Then (S, ||. , .||) forms  a 2–normed space and  || s– , t
–

 ||  

represents the area of the parallelogram spanned by the  two 

associated vectors  s–  and t
–

.    

Definition 2.3.  A sequence  s–= < sn > in a linear 2–normed 

space S is convergent  if there is an s0 S such that  
 lim

n
  || 

sn –  s, t || = 0, for each t S .It is said to be  a Cauchy if 

there are t and w in S such that t  and w are linearly 

independent and   

  lim

m‚n
  ||sm – sn‚ t || = 0  and  

  lim

m‚n
  ||sm – sn‚ w || = 0. 

  The notion of convergence was introduced by White and 

Cho [5].A linear 2–normed space 

 (S, ||. , .||) is called 2–Banach space if every Cauchy 

sequence < sn >  in S  is convergent to some sS.  

Definition 2.4. Let  ( S, |||| ) be the 2- Normed space over 

the field C  of complex numbers and  

   
–

 = (, ,  ,... ) denotes the zero element of S.  Let(S) 

denotes the linear space of all sequences  

 s
–

 = < sk >  with sk   S , k   1  with usual coordinate wise 

operations  i.e., for each  

  s
–

 = < sk > , w
–

= < wk >   (S) and   C, 

s
–

 + w
–

 = < sk + wk >  and  s
–

  = < sk > . 
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We shall denote  (C) by  . Any linear subspace   of  

is then called a sequence space. 

 Further, if  
–

 = < k  >    and   s
–

   (S ) we shall write   


–

 s
–

 = < k sk > . 

 

The concept of paranorm is closely related to linear metric 

space (see, Wilansky [1]) and its studies on sequence spaces 

were initiated by Maddox  [4] and many others. 

  

Definition 2.5: A paranormed space (S,  ) is a linear space 

S  with zero element together with a function    : S  R
+ 

 

(called  a paranorm on S) which satisfies the following 

axioms: 

        PN1:   () = 0; 

        PN2:  (s) =   (–s) , for all s  S; 

        PN3:  (s1 + s2 )     (s1) +   (s2 ) , for all s1 , s2  S; 

and 

         PN4: Scalar multiplication is continuous  i.e., if  < n >  

is a sequence of scalars with  n →  as  

               n → ∞ and  < sn >  is a sequence of vectors with   

(sn − s ) → 0  as n → ∞, then  

 ( n  sn − s) → 0 as n → ∞.

                Note that the continuity of scalar multiplication is 

equivalent to   

          (i)   if    (sn) → 0  and   n  as     n → ∞, then    

(n sn)  0 as  n → ∞; and 

         (ii)   if n  0 as n  and  s  be any element in S, then    

 (n s)  0, see Wilansky [1]. 

                A paranorm is called total if    (s) = 0  s =  see  

Wilansky [1].

  The studies of paranorm  on sequence spaces were initiated 

by Maddox [4] and many others. Basariv and Altundag [11], 

Pahari [12] , Tiwari and Srivastava  [13] , Parasar and 

Choudhary [16], Khan [18],Bhardwaj and Bala  [19], and 

many others further studied various types of  paranormed 

sequence spaces  and function spaces.     

Definition 2.6.  A sequence space S is said to be solid if  

s
–

 =  < sk >  S and 
–

  = < k >  a sequence of scalars 

with |k| ≤ 1,  for all k  1, then   


–

 s
–

    = < k sk >  S.  

3. The Class   ( (S, ||. , .|| ),  
–
, u– ) of 2-Normed 

Space Valued Vector Sequences 

Let u– = < uk >  and   v
–

 = < vk >  be any sequences of strictly 

positive real numbers and  
–

 = < k  >    and   
–

 = < k >   be 

the  sequences of non zero complex numbers.  

We now introduce   the following classes of 2-normed   

space S–valued  vector sequences  

((S, ||. , .|| ), 
–

, u– ) ={ s– = < sk > S ) satisfying 
k = 1



.   || k 

sk‚ t || 
u
k
 <  ,for each t  S }.  

In fact, this  class  is a generalization of the  familiar  

sequence spaces, studied in  Srivastava and Pahari ([6], [7], 

[8]) , Pahari [12], using 2-norm .  

 

        4.  Main Results 

 

In this section, we shall investigate some results that 

characterize the linear topological structure of the class  

((S, ||. , .||), 
–

, u– )  of 2-normed space S- valued sequences by 

endowing  it  with suitable natural paranorm. Throughout 

the work, we denote  


(k,1)

 
.  for 

k = 1



. , 
(k,n)

 
. for 

k = n



. ,  zk = |kk
-1

|
 
u

k
 , sup uk   = M   and for 

scalar , A [] = max (1, ||).  

But when the sequences < uk >  and < vk >  occur, then to 

distinguish M  we use the notations  M(u) and M(v) 

respectively.  

Theorem 4.1 .   ((S, ||. , .||), 
–

, u– )  forms a linear space over 

the field of complex numbers C  if  

                        < uk > is bounded above.

Proof. Assume that supk uk  < and  s
–

 = < sk  >  ,  w–  = < wk 

>   (S, ||. , .||, 
–

, u– ) .So that for each  

 t  S, we have  


(k,1)

.   ||k sk‚ t ||
 u

k
 <   and  

(k,1)

.  ||k wk‚ t ||
 
u
k
 < . 

Let  0 < uk   supk uk  = M ,  D = max (1, 2
M-1

) and setting 

2 D max (1, ||
M 

)  1 and  2 D max (1, ||
M 

)  1  and using 

| a + b |
 u

k
 D {| a |

 
u
k
 + | b |

 
u
k
 } for all  a, b  C. 

Then  we have 

     
(k,1)

.   ||k (sk + wk)‚ t ||
 
u

k
  

(k,1)

.   [ D ||
 
u
k
 ||k sk‚ t ||

 
u
k
 

+ D  ||
 u

k
 ||k wk‚ t ||

 
u
k
  
] 

 

                                       
(k,1)

.    [ D  A [||
M 

] ||k sk‚ t ||
 

u
k
 + D  A [||

M 
] ||k wk‚ t ||

 
u
k
 ] 
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1

 2
 
(k,1)

.    ||k sk‚ t ||
 
u

k
  + 

1

 2
 


(k,1)

.   ||k wk‚ t ||
 
u
k
 < ,                  

  for each t  S  and  therefore s– + w–    ((S, ||. , .||), 
–

, u– 

). 

This implies that     ((S, ||. , .||), 
–

, u– )  forms  a linear space 

over C.  

Theorem 4.2 . If   ((S, ||. , .||), 
–

, u– )  forms a linear space 

over C  then < uk > is bounded above.

Proof.  

 Suppose that     ((S, ||. , .||), 
–

, u– )    forms a linear space 

over C  but  supk uk = .  Then there  exists a sequence < 

k(n) >   of positive integers  satisfying  1  k(n)  k(n + 1), n 

 1 for which     

                     uk(n)      n  , for each n  1                               

(4.1) 

    Now, corresponding to s0S and s0   , we define the 

sequence s– = < sk > by 

sk = 


k(n)

-1
 n

-2/uk(n) s0‚ if k = k(n) ‚  n 1 and

‚ otherwise.
     (4.2) 

Then for k = k(n),  n  1, we have 


(k,1)

.   ||k sk‚ t || 
u

k
   =  

(n,1)

.   ||n
-2/uk(n) s0‚ t  || 

uk(n))    
(n,1)

.   

||s‚ s0 || 
uk(n)

 n
2   

                                                           A [ || s0, t  || 
M(u)

 

]   
(n,1)

.  
1

 n
2  < ∞, 

   and     ||k sk‚ t ||
 u

k
 = 0, for k  k(n) , n  1, 

showing that  s–   ((S, ||. , .||), 
–

, u– ). But on 

the other hand, let us choose t0 S such that  || 

s0, t0 || = 1. Then for such t0 and  scalar  = 4, for 

k  = k(n),  n  1, in view of (4.1) and (4.2), we 

have 

                                         
(k,1)

.    ||  k sk‚ t0  || 
u

k
      

=
   

(n,1)

. || k(n)  sk(n ) ‚ t0  

||
 uk(n) 

                                                                                                                           =  
(n,1)

.   || 4  n
–2/ uk(n)  

s0 ‚ t0  ||
 uk(n)   =  

(n,1)

.   
4

 uk(n)

 n
2   || s0, t0 || 

                                                                                     
(n,1)

.    
4

 n

 n
2  >   1 . 

                            This shows that  s
–

      ((S, ||. , .||), 
–

, u– )  , a 

contradiction. This completes the proof. 

The following result is an immediate consequence of 

Theorems 4.1 and 4.2. 

Theorem 4.3 .   ((S, ||. , .||), 
–

, u– )  is a linear space over C  

if and only if  supk uk  <. 

Theorem 4.4 . The space      ((S, ||. , .||),  
–

, u– ) forms a  

solid.  

Proof.  Let s– = < sk >    ((S, ||. , .||), 
–

, u– ) . So that for each 

t  S, 


(k,1)

.   ||k sk ‚ t ||
 u

k
  <  

Let < k >  be a sequence of scalars satisfying |k|   1 for all 

k  1Then we have  


(k,1)

.    ||k k  sk‚ t ||
 u

k
     = 

(k,1)

.      |k|
 u

k
 || k sk‚ t  ||

 u
k
 

                                                                           
(k,1)

.   ||k sk ‚ t 

||
 u

k
 < , 

 for each t  S. This shows that < k sk >    ((S, ||. , .||), 
–

, u– ) 

and hence  ((S, ||. , .||), 
–

, u– )  is  normal. 

 

Let  u–  = < uk >  such that supk  uk  <   and s– = < sk  

>    ((S, ||. , .||), 
–

, u– ). We define a real valued  

function 

,u (s–) = { (
(k,1)

 
.   || k sk ‚ t  || 

u
k 
) 

1/M
  , for each  t   S }.     ( 

4.3)  

Throughout   the work,   will denote ,u and  u–  = < uk > , 

v
–

  = < vk >  such that supk  uk  <  and 

 supk  vk  < . We prove below that    ((S, ||. , .||), 
–

, u– ) with 

respect to   forms  a paranormed space. 

Theorem 4.5. ((S, ||. , .||), 
–

 , u– ) forms a total paranormed -

space with respect to   

Proof.Let  C and s– = < sk  >  , w–  = < wk >    ((S, ||. , 

.||), 
–

, u– ).Then we can easily verify 

 that   satisfy the following properties of paranorm.  

PN1.  (s–)  0, and  (s–)  0 if and only if  s– = 
–

; 

PN2.  (s– + w–)   (s–) +  (w–); 

PN3.  (s–)  A () (s–);                                           

PN4. Finally for continuity of scalar multiplication, it is 

sufficient to show that 
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             (a)   (s–
(n)

)  0  and n   imply  (n s
–(n)

)  0; 

and 

             (b)  n  0 implies  (n s
–)  0 for each s–    ((S, 

||. , .||), 
–

, u– ). 

 Now to prove (a) suppose |n|  L for all n  1, then  

in view of (4.3) , we have 

                                  (n s
–(n)

)   =  { (
(k,1)

.   || nk sk ‚ t  || 
u
k 
)

 

1/M

 , for each  t   S } 

                                                     supk |n|
 u

k  
/M

 { (
(k,1)

.   ||k 

sk ‚ t  || 
u

k 
)

 1/M

, for each  t   S } 

                                                     A(L) (s–
(n)

) , 

        whence (a) follows.  

          Next if s–    ((S, ||. , .||), 
–

, u– ) , then for  > 0 there 

exists an integer K such that 


(k,K )

.     || k sk ‚ t  || 
u
k
  <  







 
 

M

 , for each t  S. 

          Further  if n , we can find N such that for  n  N, 

then for each t  S,we have 


(k,K-1 )

 
.      |n|

u
k  || k sk ‚ t || 

u
k
  <   







 
 

M

  and |n|  1. 

Thus for each t  S, 

 (n s
–)  









 
k = 1

K-1

.    || n k sk ‚ t ||
 u

k
 

1/M

 + 







  

(k,K )

.   || k sk ‚ t || 
u

k 

1/M

 < , 

for all n  N  , and hence (b) follows. 

   

Theorem 4.6.  If  S is a Banach space, then (((S, ||. , .||), 
–

, 

u– ) ,  ) is complete. 

Proof. We prove the completeness of   ((S, ||. , .||), 
–

, u– )  

with respect to the metric d(s–, t–) =  (s– – t–). 

Let < s–
(n)

 >  be a Cauchy sequence in  ((S, ||. , .||), 
–

 , u– ) . 

Then for 0 <  < 1 , there exists N such that for all n, m  N 

and for each t  S, we have 

 (s–
(n)

 – s–
(m)

) = (
(k,1)

 
.   || k s

(n)

k
 – k s 

(m)

k
, t  || 

u
k
 )

 1/M

 < .            

(4.4) 

and so for all n, m  N and k  1 and for each t  S, we have 

|| s
(n)

k
 – s 

(m)

k
‚ t  ||  < |k|

 -1

 
 M/ u

k
   < |k|

 -1

 . 

This shows that for each k, <  s
(n)

k
 >  is a Cauchy sequence 

in S and because of completeness of S, s
(n)

k
  sk  S (say) 

for each k. Being a Cauchy sequence < s
(n)

k
>  is bounded, 

i.e.  (s
(n)

k
)  L for some L > 0 and for all n  1. Thus for 

every n and r, 

(
k =1

r

.  || k s 
(n)

k
 – k‚ t  ||

 u
k 
)

 1/M

  L.  

First taking n   and then r  , then for each t  S, 

(
(k,1)

.   ||k sk ‚ t  ||
 u

k 
)

1/M

  L  

which implies that s– = < sk >    ((S, ||. , .||), 
–

 , u– ) .  

Now for any r, by (4.4) we have 

(
k =1

r

. || k s 
(n)

k
 – k s

(m)

k
‚ t  ||

 u
k 
)

 1/M

 < , for n, m  N, 

and so letting m   first and then r  , we get 

 (s–
(n)

 – s–) = (
(k,1)

.  ||k s
(n)

k
 – k sk‚ t  ||

 u
k  

)
 1/M

  

  for all n  N and for each t  S 

i.e. s–
(n)

 s– in  ((S, ||. , .||), 
–

 , u– ) , as n  . This proves 

the completeness of   ((S, ||. , .||), 
–

 , u– ). 

 

Theorem 4.7. For any  u– =  < uk > ,   ((S, ||. , .||),  
–

, u– )  

((S, ||. , .||), – , u– )  if  

lim infk  zk > 0. 

Proof. Assume that lim infk zk  > 0 and s– = < sk >    ((S, ||. , 

.||), 
–

, u–).  Then there exist m > 0  and  

a  positive integer K such that  m |k|
 
u
k
  < |k|

 u
k  

 for all k  K and 

for each t  S, 


(k,K )

.  ||k sk‚ t ||
 u

k
 <  

  Thus for each t S, we have 


(k,K )

.     || k sk‚ t  || 
u
k
     

(k,K )

.   
|k|

 uk

 m
   || sk‚ t  || 

u
k
 

                                                                               
1

 m
 
(k,K )

.  ||k  

sk‚ t || 
u
k
 <  . 

  This clearly implies that   s–   ((S, ||. , .||), –, u–) and hence  

 ((S, ||. , .||),  
–

, u– )   ((S, ||. , .||), –, u– ). 

 This completes the proof. 
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Theorem 4.8 . For any 
–

 =  < k > , if   uk    vk  for all  but 

finitely many   values of  k, then 

                                ((S, ||. , .||), 
–

, u–)  ((S, ||. , .||), 
–

, v
–

). 

Proof.  Suppose 0   uk     vk  < ∞ for all but finitely many 

values of kLet  s– = < sk >   

((S, ||. , .||), 
–

, u– ) .Thenwe have  


(k,1)

.    ||k sk‚ t ||
 u

k
  < for each t S. 

 This shows that there exists  K 1 such that ||k  sk, t ||  

for all k K and for each t S . 

Thus  ||k sk , t  ||
vk  ||k sk , t  ||

 u
k
  for all k K and for each t  

S and consequently  


(k,K )

 
.  ||k sk‚ t ||

 v
k
     

(k,K )

 
.  ||k sk‚ t ||

 u
k
  <  ,for each t  

S  

and hence  s– ((S, ||. , .||), 
–

, v
–

).This completes the proof 

of the theorem. 

 

The following result is an immediate consequence of 

Theorems 4.7 and 4.8. 

Theorem 4.9.  If    lim infk zk   > 0; and uk vk  ,for all but 

finitely many values of k, then   

                                 ((S, ||. , .||), 
–

, u–)    ((S, ||. , .||), 


–

, v
–

 ) . 

          In the following example, we conclude that ((S, ||. , 

.||), 
–

, u–) may strictly be contained in   

 ((S, ||. , .||), 
–

, v
–

)   inspite of  the satisfaction of both 

conditions  of Theorem 4.9. 

Example 4.10.  

 Let ( S, ||. , .|| )  be  a 2- normed  space and consider a 

sequence    s– = < sk >  defined by  

sk  = k 
–2k

 s, if  k = 1, 2, 3,…,where s  S and s  . 

Further, let uk = k 
–1 

, if k is odd integer, uk = k 
–2 

, if k is 

even integer, vk = k 
–1

  for all values of k,  

                   k = 3
k
, k = 2

k
 for all values of k. 

Then, zk  =  




k

k
 

uk

 = 
3

2
  or   





 3

 
 

1/k

according as k is odd or  

even integers and hence  lim infk  zk  > 0. 

Further, 
vk

uk
 = 1, if k is odd integers,  

vk

uk
 = k, if k is even 

integers. Therefore 0  uk  vk < ∞ for all k. 

 Hence  both conditions  of Theorem 4.9 are satisfied.  

 Now for each t  S, we have 


(k,1)

.    || k sk‚ t  ||
 
v
k
  =   

(k,1)

.  ||2
k
 k

 –2k
 s, t ||

 1/k
    

(k,1)

.  2 k 
–2

     || 

s ,t ||
 1/k

 

                                                 2A [ || s ‚ t  || ] 
(k,1)

. k 

–2
  <    

This shows that s–  ((S, ||. , .||),  
–

, v
–

 ). But on the other 

hand, let us choose t  S such that  

 || s, t || = 1. Then for each even integer k, we have  

                                    ||k sk‚ t ||
 u

k
  =  ||3

k
 k 

–2k
 y ‚ t ||

 1/k2
  

                                                      =  



 3

 k 
2 

1/k

 ||  s, t ||
 1/k2   

> 
1

 2
 

.  

This implies that   s– ((S, ||. , .||),  
–

, u– )  and hence the 

containment of   ((S, ||. , .||),  
–

, u– )  in   

 ((S, ||. , .||),  
–

, v
–

 )  is strict. 
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