On Certain Topological Structures of Two - Banach Space Valued Paranormed

Sequence Space $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$

Narayan Prasad Pahari
Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
Email:nppahari @ gmail.com

Abstract

The aim of this paper is to introduce and study a new class $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ of sequences with values in 2 Banach space as a generalization of the familiar sequence space ℓ_{p}. We explore some of the preliminary results that characterize the linear topological structure of the class $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ when topologized it with suitable natural paranorm.

Keywords and Phrases: 2- normed space, sequence space, paranormed space, solid space.
2010 Mathematics Subject Classification: 46A45, 46B15

1. Introduction

So far, a good number of research works have been done on types of 2-normed space
valued sequence spaces. The notion of 2 -normed space was initially Definition 2.3. A sequence $\bar{s}=\left\langle s_{n}\right\rangle$ in a linear 2-normed introduced by S. GÄahler [17]
as an interesting linear generalization of a normed linear space, which skaçe S is convergent if there is an $s_{0} \in S$ such that $\lim _{n \rightarrow \infty} \|$ subsequently studied by
Iseki [9], White and Cho [5], Freese et al. [15], Freese and Cho [14] meqe are t and w in S such that t and w are linearly many others. Recently a
lot of activities have been started by many researchers to study this concept in different
directions, for instances, Savas [2] ,Gunawan and Mashadi [3] , Srivas and Pahari ([7], [8]),
Açikgöz [10], and others.

2. Preliminaries

We recall some basic facts and definitions that are used in this paper.
Definition 2.1. Let S be a linear space of dimension >1 over \boldsymbol{K}, the field of real or complex numbers. A 2 - norm on S is a real valued function $\|.,$.$\| on S \times S$ satisfying the following conditions:
(i) $\|s, t\| \geq 0$ and $\|s, t\|=0$ if and only if s and t are linearly dependent;
(ii) $\|s, t\|=\|t, s\|$, for all $s, t \in S$;
$s_{n}-s, t \|=0$, for each $t \in S$.It is said to be a Cauchy if independent and t
(iii) $\|\alpha s, t\|=|\alpha|\|s, t\|$, where $\alpha \in \boldsymbol{K}$ and s, t $\in S$;and
(iv) $\left\|s_{1}+s_{2}, t\right\| \leq\left\|s_{1}, t\right\|+\left\|s_{2}, t\right\|$, for all s_{1}, s_{2} and $t \in S$.

The pair ($S,\|.,$.$\|) is called a 2$-normed space. Thus the notion of 2 -normed space is just a two- dimensional analogue of a normed space.
Recall that $(S,\|.,\|$.$) is a 2-Banach space if every Cauchy$ sequence $\left\langle s_{n}\right\rangle$ in S is convergent to some s_{0} in S. Geometrically, a 2-norm function represents the area of the usual parallelogram spanned by the two associated vectors. Example 2.2. Consider $S=\boldsymbol{R}^{2}$, being equipped with

$$
\|\bar{S}, \bar{t}\|=\left|s_{1} t_{2}-s_{2} t_{1}\right|, \text { where } \bar{s}=\left(s_{1}, s_{2}\right) \text { and } \bar{t}=\left(t_{1}, t_{2}\right) \text {. }
$$

Then $(S,\|.,\|$.$) forms a 2$-normed space and $\|\bar{s}, \bar{t}\|$ represents the area of the parallelogram spanned by the two various.
associated vectors \bar{s} and \bar{t}.
$\lim _{m, n \rightarrow \infty}\left\|s_{m}-s_{n}, t\right\|=0$ and $\lim _{m, n \rightarrow \infty}\left\|s_{m}-s_{n}, w\right\|=0$.
tava notion of convergence was introduced by White and Cho [5].A linear 2-normed space
$(S,\|.,\|$.$) is called 2-$ Banach space if every Cauchy sequence $\left\langle s_{n}\right\rangle$ in S is convergent to some $s \in S$.

Definition 2.4. Let ($S,\|.,$.$\|) be the 2- Normed space over$ the field \boldsymbol{C} of complex numbers and
$\bar{\theta}=(\theta, \theta, \theta, \ldots)$ denotes the zero element of S. Let $\omega(S)$ denotes the linear space of all sequences
$\bar{s}=\left\langle s_{k}\right\rangle$ with $s_{k} \in S, k \geq 1$ with usual coordinate wise operations i.e., for each

$$
\bar{s}=\left\langle s_{k}\right\rangle, \bar{w}=\left\langle w_{k}\right\rangle \in \omega(S) \text { and } \gamma \in \boldsymbol{C},
$$

$$
\bar{s}+\bar{w}=\left\langle s_{k}+w_{k}\right\rangle \text { and } \gamma \bar{s}=\left\langle\gamma s_{k}\right\rangle .
$$

We shall denote $\omega(\boldsymbol{C})$ by ω. Any linear subspace of ω is then called a sequence space.
Further, if $\bar{\gamma}=\left\langle\gamma_{k}\right\rangle \in \omega$ and $\bar{s} \in \omega(S)$ we shall write

$$
\bar{\gamma} \bar{s}=\left\langle\gamma_{k} s_{k}\right\rangle
$$

The concept of paranorm is closely related to linear metric space (see, Wilansky [1]) and its studies on sequence spaces were initiated by Maddox [4] and many others.

Definition 2.5: A paranormed space (S, Φ) is a linear space S with zero element θ together with a function $\Phi: S \rightarrow \boldsymbol{R}^{+}$ (called a paranorm on S) which satisfies the following axioms:

PN1: $\Phi(\theta)=0$;
PN2: $\Phi(s)=\Phi(-s)$, for all $s \in S ;$
PN3: $\Phi\left(s_{1}+s_{2}\right) \leq \Phi\left(s_{1}\right)+\Phi\left(s_{2}\right)$, for all $s_{1}, s_{2} \in S ;$ and

PN4: Scalar multiplication is continuous i.e., if $\left\langle\gamma_{n}\right\rangle$ is a sequence of scalars with $\gamma_{n} \rightarrow \gamma$ as
$n \rightarrow \infty$ and $\left\langle s_{n}\right\rangle$ is a sequence of vectors with Φ $\left(s_{n}-s\right) \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\Phi\left(\gamma_{n} s_{n}-\gamma s\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Note that the continuity of scalar multiplication is equivalent to
(i) if $\Phi\left(s_{n}\right) \rightarrow 0$ and $\gamma_{n} \rightarrow \gamma$ as $n \rightarrow \infty$, then Φ $\left(\gamma_{n} s_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$; and
(ii) if $\gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$ and s be any element in S, then $\Phi\left(\gamma_{n} s\right) \rightarrow 0$, see Wilansky [1].

A paranorm is called total if $\Phi(s)=0 \Rightarrow s=\theta$, see Wilansky [1].

The studies of paranorm on sequence spaces were initiated by Maddox [4] and many others. Basariv and Altundag [11], Pahari [12], Tiwari and Srivastava [13], Parasar and Choudhary [16], Khan [18],Bhardwaj and Bala [19], and many others further studied various types of paranormed sequence spaces and function spaces.

Definition 2.6. A sequence space S is said to be solid if $\bar{s}=\left\langle s_{k}\right\rangle \in S$ and $\bar{\gamma}=\left\langle\gamma_{k}\right\rangle$ a sequence of scalars with $\left|\gamma_{k}\right| \leq 1$, for all $k \geq 1$, then

$$
\bar{\gamma} \bar{s}=\left\langle\gamma_{k} s_{k}\right\rangle \in S .
$$

3. The Class $\ell((S,\|\cdot, \cdot\|), \bar{\xi}, \bar{u})$ of 2-Normed Space Valued Vector Sequences

Let $\bar{u}=\left\langle u_{k}\right\rangle$ and $\bar{v}=\left\langle v_{k}\right\rangle$ be any sequences of strictly positive real numbers and $\xi=\left\langle\xi_{k}\right\rangle$ and $\bar{\mu}=\left\langle\mu_{k}\right\rangle$ be the sequences of non zero complex numbers.

We now introduce the following classes of 2-normed space S-valued vector sequences

$$
\ell((S,\|., \cdot\|), \bar{\xi}, \bar{u})=\left\{\bar{s}=\left\langle s_{k}\right\rangle \in \omega(S) \text { satisfying } \sum_{k=1}^{\infty} \| \xi_{k}\right.
$$

$$
\left.s_{k}, t \|^{u_{k}}<\infty \text {,for each } t \in S\right\} .
$$

In fact, this class is a generalization of the familiar sequence spaces, studied in Srivastava and Pahari ([6], [7], [8]) , Pahari [12], using 2-norm .

4. Main Results

In this section, we shall investigate some results that characterize the linear topological structure of the class ℓ
$((S,\|.,\|),. \bar{\xi}, \bar{u})$ of 2 -normed space S - valued sequences by endowing it with suitable natural paranorm. Throughout the work, we denote
$\sum_{(k, 1)}$ for $\sum_{k=1}^{\infty}, \sum_{(k, n)}$ for $\sum_{k=n}^{\infty}, z_{k}=\left|\xi_{k} \mu_{k}^{-1}\right|^{u_{k}}, \sup u_{k}=M$ and for

$$
\text { scalar } \alpha, A[\alpha]=\max (1,|\alpha|)
$$

But when the sequences $\left\langle u_{k}\right\rangle$ and $\left\langle v_{k}\right\rangle$ occur, then to distinguish M we use the notations $M(u)$ and $M(v)$ respectively.

Theorem 4.1. $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ forms a linear space over the field of complex numbers \boldsymbol{C} if
$\left.<u_{k}\right\rangle$ is bounded above.
Proof. Assume that $\sup _{k} u_{k}<\infty$ and $\bar{s}=\left\langle s_{k}\right\rangle, \bar{w}=\left\langle w_{k}\right.$ $>\in \ell(S,\|.,\|,. \bar{\xi}, \bar{u})$.So that for each
$t \in S$, we have

$$
\sum_{(k, 1)}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}<\infty \text { and } \sum_{(k, 1)}\left\|\xi_{k} w_{k}, t\right\|^{u_{k}}<\infty
$$

Let $0<u_{k} \leq \sup _{k} u_{k}=M, D=\max \left(1,2^{M-1}\right)$ and setting
$2 D \max \left(1,|\alpha|^{M}\right) \leq 1$ and $2 D \max \left(1,|\beta|^{M}\right) \leq 1$ and using

$$
|a+b|^{u_{k}} \leq D\left\{|a|^{u_{k}}+|b|^{u_{k}}\right\} \text { for all } a, b \in \mathbf{C} .
$$

Then we have

$$
\begin{aligned}
\sum_{(k, 1)}\left\|\xi_{k}\left(\alpha s_{k}+\beta w_{k}\right), t\right\|^{u_{k}} & \leq \sum_{(k, 1)}\left[D|\alpha|^{u_{k}}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}\right. \\
\left.+D|\beta|^{u_{k}}\left\|\xi_{k} w_{k}, t\right\|^{u_{k}}\right] & \leq \sum_{(k, 1)}\left[D A\left[|\alpha|^{M}\right]\left\|\xi_{k} s_{k}, t\right\|\right. \\
& \left.{ }^{u_{k}}+D A\left[|\beta|^{M}\right]\left\|\xi_{k} w_{k}, t\right\|^{u_{k}}\right]
\end{aligned}
$$

$$
\leq \frac{1}{2} \sum_{(k, 1)}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}+\frac{1}{2}
$$

$$
\sum_{(k, 1)}\left\|\xi_{k} w_{k}, t\right\|^{u_{k}}<\infty
$$

for each $t \in S$ and therefore $\alpha \bar{s}+\beta \bar{w} \in \ell((S,\|.\|),, \bar{\xi}, \bar{u}$).

This implies that $\quad \ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ forms a linear space over \boldsymbol{C}.

Theorem 4.2. If $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ forms a linear space over \boldsymbol{C} then $\left\langle u_{k}\right\rangle$ is bounded above.
Proof.
Suppose that $\quad \ell((S,\|.,\|),. \bar{\xi}, \bar{u}) \quad$ forms a linear space over \boldsymbol{C} but $\sup _{k} u_{k}=\infty$. Then there exists a sequence < $k(n)>$ of positive integers satisfying $1 \leq k(n)<k(n+1), n$ ≥ 1 for which

$$
\begin{equation*}
u_{k(n)}>n, \text { for each } n \geq 1 \tag{4.1}
\end{equation*}
$$

Now, corresponding to $s_{0} \in S$ and $s_{0} \neq \theta$, we define the sequence $\bar{s}=\left\langle s_{k}\right\rangle$ by

$$
s_{k}=\left\{\begin{array}{l}
\xi_{k(n)}{ }^{-1} n^{-2 / u_{k(n)}} s_{0}, \text { if } k=k(n), n \geq 1 \text { and } \tag{4.2}\\
\theta, \text { otherwise. }
\end{array}\right.
$$

Then for $k=k(n), n \geq 1$, we have

$$
\begin{aligned}
\sum_{(k, 1)}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}= & \sum_{(n, 1)}\left\|^{-2 / u_{k(n)}} s_{0}, t\right\|^{\left.u_{k(n)}\right)}=\sum_{(n, 1)} \\
& \frac{\left\|s, s_{0}\right\|^{u_{k(n)}}}{n^{2}} \\
& \leq A\left[\left\|s_{0}, t\right\|^{M(u)}\right. \\
\text {] } \sum_{(n, 1)} \frac{1}{n^{2}}<\infty, &
\end{aligned}
$$

$$
\text { and } \quad\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}=0, \text { for } k \neq k(n), n \geq 1,
$$

showing that $\bar{s} \in \quad \ell((S,\|.\|),, \bar{\xi}, \bar{u})$. But on the other hand, let us choose $t_{0} \in S$ such that \| $s_{0}, t_{0} \|=1$. Then for such t_{0} and scalar $\alpha=4$, for $k=k(n), \quad n \geq 1$, in view of (4.1) and (4.2), we have

$$
\begin{aligned}
& \sum_{(k, 1)}\left\|\alpha \xi_{k} s_{k}, t_{0}\right\|^{u_{k}}=\sum_{(n, 1)} \| \xi_{k(n)} \alpha s_{k(n)}, t_{0} \\
& \|^{u_{k(n)}}=\sum_{(n, 1)} \| 4 n^{-2 / u_{k(n)}} \\
& s_{0}, t_{0}\left\|^{u_{k(n)}}=\sum_{(n, 1)} \frac{4^{u_{k(n)}}}{n^{2}}\right\| s_{0}, t_{0} \| \\
& \geq \sum_{(n, 1)} \frac{4^{n}}{n^{2}}>1 .
\end{aligned}
$$

This shows that $\alpha \bar{s} \notin \quad \ell((S,\|.,\|),. \bar{\xi}, \bar{u}), \mathrm{a}$ contradiction. This completes the proof.
The following result is an immediate consequence of Theorems 4.1 and 4.2.

Theorem 4.3. $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ is a linear space over \boldsymbol{C} if and only if $\sup _{k} u_{k}<\infty$.
Theorem 4.4. The space $\quad \ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ forms a solid.

Proof. Let $\bar{s}=\left\langle s_{k}\right\rangle \in \ell((S,\|.\|),, \bar{\xi}, \bar{u})$. So that for each $t \in S$,

$$
\sum_{(k, 1)}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}<\infty
$$

Let $\left\langle\gamma_{k}\right\rangle$ be a sequence of scalars satisfying $\left|\gamma_{k}\right| \leq 1$ for all $k \geq 1$.Then we have

$$
\sum_{(k, 1)}\left\|\xi_{k} \gamma_{k} s_{k}, t\right\|^{u_{k}}=\sum_{(k, 1)} \quad\left|\gamma_{k}\right|^{u_{k}}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}
$$

$$
\leq \sum_{(k, 1)} \| \xi_{k} s_{k}, t
$$

$$
\|^{u_{k}}<\infty,
$$

for each $t \in S$. This shows that $\left\langle\gamma_{k} s_{k}\right\rangle \in \ell((S,\|.\|),, \bar{\xi}, \bar{u})$ and hence $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ is normal.

Let $\bar{u}=\left\langle u_{k}\right\rangle$ such that $\sup _{k} u_{k}<\infty$ and $\bar{s}=<s_{k}$ $>\in \ell((S,\|.,\|),. \bar{\xi}, \bar{u})$. We define a real valued function
$\Phi_{\xi, u}(\bar{s})=\left\{\left(\sum_{(k, 1)}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}\right)^{1 / M}\right.$, for each $\left.t \in S\right\}$. $\quad($

Throughout the work, Φ will denote $\Phi_{\xi, u}$ and $\bar{u}=\left\langle u_{k}\right\rangle$, $\bar{v}=\left\langle v_{k}\right\rangle$ such that $\sup _{k} u_{k}\langle\infty$ and $\sup _{k} v_{k}<\infty$. We prove below that $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ with respect to Φ forms a paranormed space.
Theorem 4.5. $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ forms a total paranormed space with respect to Φ.
Proof.Let $\alpha \in C$ and $\bar{s}=\left\langle s_{k}\right\rangle, \bar{w}=\left\langle w_{k}\right\rangle \in \ell((S, \|$., $. \|), \bar{\xi}, \bar{u})$.Then we can easily verify that Φ satisfy the following properties of paranorm.
$P N_{1} . \quad \Phi(\bar{s}) \geq 0$, and $\Phi(\bar{s})=0$ if and only if $\bar{s}=\bar{\theta}$;
$P N_{2} . \quad \Phi(\bar{s}+\bar{w}) \leq \Phi(\bar{s})+\Phi(\bar{w}) ;$
$P N_{3}$. $\Phi(\alpha \bar{s}) \leq A(\alpha) \Phi(\bar{s}) ;$
$P N_{4}$. Finally for continuity of scalar multiplication, it is sufficient to show that
(a) $\Phi\left(\bar{s}^{(n)}\right) \rightarrow 0$ and $\gamma_{n} \rightarrow \gamma$ imply $\Phi\left(\gamma_{n} \bar{s}^{(n)}\right) \rightarrow 0$; and
(b) $\gamma_{n} \rightarrow 0$ implies $\Phi\left(\gamma_{n} \bar{s}\right) \rightarrow 0$ for each $\bar{s} \in \ell((S$, $\|.,\|.), \bar{\xi}, \bar{u})$.
Now to prove (a) suppose $\left|\gamma_{n}\right| \leq L$ for all $n \geq 1$, then in view of (4.3), we have

$$
\Phi\left(\gamma_{n} \bar{s}^{(n)}\right)=\left\{\left(\sum_{(k, 1)}\left\|\gamma_{n} \xi_{k} s_{k}, t\right\|^{u_{k}}\right)\right.
$$

${ }^{1 / M}$, for each $\left.t \in S\right\}$

$$
\leq \sup _{k}\left|\gamma_{n}\right|^{u_{k} / M}\left\{\left(\sum_{(k, 1)} \| \xi_{k}\right.\right.
$$

$\left.s_{k}, t \|^{u_{k}}\right)^{1 / M}$, for each $\left.t \in S\right\}$

$$
\leq A(L) \Phi\left(\bar{s}^{(n)}\right),
$$

whence (a) follows.
Next if $\bar{s} \in \ell((S,\|.,\|),. \bar{\xi}, \bar{u})$, then for $\varepsilon>0$ there exists an integer K such that

$$
\sum_{(k, K)}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}<\left(\frac{\varepsilon}{2}\right)^{M}, \text { for each } t \in S
$$

Further if $\gamma_{n} \rightarrow 0$, we can find N such that for $n \geq N$, then for each $t \in S$, we have

$$
\sum_{(k, K-1)}\left|\gamma_{n}\right|^{u_{k}}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}<\left(\frac{\varepsilon}{2}\right)^{M} \text { and }\left|\gamma_{n}\right| \leq 1 .
$$

Thus for each $t \in S$,

$$
\begin{gathered}
\Phi\left(\gamma_{n} \bar{s}\right) \leq\left(\sum_{k=1}^{K-1}\left\|\gamma_{n} \xi_{k} s_{k}, t\right\|^{u_{k}}\right)^{1 / M}+ \\
\left(\sum_{(k, K)}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}\right)^{1 / M}<\varepsilon,
\end{gathered}
$$

for all $n \geq N$, and hence (b) follows.

Theorem 4.6. If S is a Banach space, then $(\ell((S,\|.,\|),. \bar{\xi}$, $\bar{u}), \Phi)$ is complete.

Proof. We prove the completeness of $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ with respect to the metric $d(\bar{s}, \bar{t})=\Phi(\bar{s}-\bar{t})$.
Let $\left\langle\bar{s}^{(n)}\right\rangle$ be a Cauchy sequence in $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$. Then for $0<\varepsilon<1$, there exists N such that for all $n, m \geq N$ and for each $t \in S$, we have

$$
\begin{equation*}
\Phi\left(\bar{s}^{(n)}-\bar{s}^{(m)}\right)=\left(\sum_{(k, 1)}\left\|\xi_{k} s_{k}^{(n)}-\xi_{k} s_{k}^{(m)}, t\right\|^{u_{k}}\right)^{1 / M}<\varepsilon . \tag{4.4}
\end{equation*}
$$

and so for all $n, m \geq N$ and $k \geq 1$ and for each $t \in S$, we have

$$
\left\|s_{k}^{(n)}-s_{k}^{(m)}, t\right\|<\left|\xi_{k}\right|^{-1} \varepsilon \varepsilon^{M / u_{k}}<\left|\xi_{k}\right|^{-1} \varepsilon .
$$

This shows that for each $k,\left\langle s_{k}^{(n)}\right\rangle$ is a Cauchy sequence in S and because of completeness of $S, s_{k}^{(n)} \rightarrow s_{k} \in S$ (say) for each k. Being a Cauchy sequence $\left\langle s_{k}^{(n)}\right\rangle$ is bounded, i.e. $\Phi\left(s_{k}^{(n)}\right) \leq L$ for some $L>0$ and for all $n \geq 1$. Thus for every n and r,

$$
\left(\sum_{k=1}^{r}\left\|\xi_{k} s_{k}^{(n)}-\xi_{k}, t\right\|^{u_{k}}\right)^{1 / M} \leq L .
$$

First taking $n \rightarrow \infty$ and then $r \rightarrow \infty$, then for each $t \in S$,

$$
\left(\sum_{(k, 1)}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}\right)^{1 / M} \leq L
$$

which implies that $\bar{s}=\left\langle s_{k}\right\rangle \in \ell((S,\|.,\|),. \bar{\xi}, \bar{u})$.
Now for any r, by (4.4) we have

$$
\left(\sum_{k=1}^{r}\left\|\xi_{k} s_{k}^{(n)}-\xi_{k} s_{k}^{(m)}, t\right\|^{u_{k}}\right)^{1 / M}<\varepsilon, \text { for } n, m \geq N
$$

and so letting $m \rightarrow \infty$ first and then $r \rightarrow \infty$, we get

$$
\Phi\left(\bar{s}^{(n)}-\bar{s}\right)=\left(\sum_{(k, 1)}\left\|\xi_{k} s_{k}^{(n)}-\xi_{k} s_{k}, t\right\|^{u_{k}}\right)^{1 / M}
$$

$\leq \varepsilon$, for all $n \geq N$ and for each $t \in S$
i.e. $\bar{s}^{(n)} \rightarrow \bar{s}$ in $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$, as $n \rightarrow \infty$. This proves the completeness of $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$.

Theorem 4.7. For any $\bar{u}=\left\langle u_{k}\right\rangle, \ell((S,\|.\|),, \bar{\xi}, \bar{u}) \subset \ell$ $((S,\|.\|),, \bar{\mu}, \bar{u})$ if

$$
\lim \inf _{k} z_{k}>0
$$

Proof. Assume that $\lim \inf _{k} z_{k}>0$ and $\bar{s}=\left\langle s_{k}\right\rangle \in \ell((S, \|$., $. \|), \bar{\xi}, \bar{u})$. Then there exist $m>0$ and a positive integer K such that $m\left|\mu_{k}\right|^{u_{k}}<\left|\xi_{k}\right|^{u_{k}}$ for all $k \geq K$ and for each $t \in S$,

$$
\sum_{(k, K)}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}<\infty
$$

Thus for each $t \in S$, we have

$$
\begin{aligned}
& \sum_{(k, K)}\left\|\mu_{k} s_{k}, t\right\|^{u_{k}} \leq \sum_{(k, K)} \frac{\left|\xi_{k}\right|^{u_{k}}}{m}\left\|s_{k}, t\right\|^{u_{k}} \\
&=\frac{1}{m} \sum_{(k, K)} \| \xi_{k}
\end{aligned}
$$

$s_{k}, t \|^{u_{k}}<\infty$.
This clearly implies that $\bar{s} \in \ell((S,\|.,\|),. \bar{\mu}, \bar{u})$ and hence

$$
\ell((S,\|\cdot, .\|), \bar{\xi}, \bar{u}) \subset \ell((S,\|\cdot, .\|), \bar{\mu}, \bar{u})
$$

This completes the proof.

Theorem 4.8. For any $\bar{\xi}=\left\langle\xi_{k}\right\rangle$, if $u_{k} \leq v_{k}$ for all but finitely many values of k, then

$$
\ell((S,\|., .\|), \bar{\xi}, \bar{u}) \subset \ell((S,\|\cdot, .\|), \bar{\xi}, \bar{v}) .
$$

Proof. Suppose $0<u_{k} \leq v_{k}<\infty$ for all but finitely many values of k. Let $\bar{s}=\left\langle s_{k}\right\rangle$
$\in \ell((S,\|.,\|),. \xi, \bar{u})$. Then we have

$$
\sum_{(k, 1)}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}<\infty, \text { for each } t \in S .
$$

This shows that there exists $K \geq 1$ such that $\left\|\xi_{k} s_{k}, t\right\|<1$ for all $k \geq K$ and for each $t \in S$.
Thus $\left\|\xi_{k} s_{k}, t\right\|^{v_{k}} \leq\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}$ for all $k \geq K$ and for each t $\in S$ and consequently

$$
\begin{aligned}
& \sum_{(k, K)}\left\|\xi_{k} s_{k}, t\right\|^{v_{k}} \leq \sum_{(k, K)}\left\|\xi_{k} s_{k}, t\right\|^{u_{k}}<\infty, \text { for each } t \\
& \in S
\end{aligned}
$$

and hence $\bar{s} \in \ell((S,\|.,\|),. \bar{\xi}, \bar{v})$.This completes the proof of the theorem.

The following result is an immediate consequence of Theorems 4.7 and 4.8.

Theorem 4.9. If $\lim \inf f_{k} z_{k}>0$; and $u_{k} \leq v_{k}$,for all but finitely many values of k, then

$$
\bar{\mu}, \bar{v}) . \quad \ell((S,\|., .\|), \bar{\xi}, \bar{u}) \subset \ell((S,\|., .\|),
$$

In the following example, we conclude that $\ell((S, \|$., .||), ξ, \bar{u}) may strictly be contained in
$\ell((S,\|.\|),, \bar{\mu}, \bar{v}) \quad$ inspite of the satisfaction of both conditions of Theorem 4.9.

Example 4.10.

Let ($S,\|.,$.$\|) be a 2$ - normed space and consider a sequence $\quad \bar{s}=\left\langle s_{k}\right\rangle$ defined by

$$
s_{k}=k^{-2 k} s \text {, if } k=1,2,3, \ldots, \text { where } s \in S \text { and } s \neq \theta
$$

Further, let $u_{k}=k^{-1}$, if k is odd integer, $u_{k}=k^{-2}$, if k is even integer, $v_{k}=k^{-1}$ for all values of k,

$$
\xi_{k}=3^{k}, \mu_{k}=2^{k} \text { for all values of } k
$$

Then, $z_{k}=\left|\frac{\xi_{k}}{\mu_{k}}\right|^{u_{k}}=\frac{3}{2}$ or $\left(\frac{3}{2}\right)^{1 / k}$ according as k is odd or even integers and hence $\lim \inf _{k} z_{k}>0$.
Further, $\frac{v_{k}}{u_{k}}=1$, if k is odd integers, $\frac{v_{k}}{u_{k}}=k$, if k is even integers. Therefore $0<u_{k} \leq v_{k}<\infty$ for all k.
Hence both conditions of Theorem 4.9 are satisfied.
Now for each $t \in S$, we have

$$
\begin{gathered}
\sum_{(k, 1)}\left\|\mu_{k} s_{k}, t\right\|^{v_{k}}=\sum_{(k, 1)}\left\|2^{k} k^{-2 k} s, t\right\|^{1 / k}=\sum_{(k, 1)} 2 k^{-2} \| \\
s, t \|^{1 / k} \\
\leq 2 A[\|s, t\|] \sum_{(k, 1)} k \\
-2<\infty .
\end{gathered}
$$

This shows that $\bar{s} \in \ell((S,\|.,\|),. \bar{\mu}, \bar{v})$. But on the other hand, let us choose $t \in S$ such that
$\|s, t\|=1$. Then for each even integer k, we have

$$
\begin{aligned}
\left\|\xi_{k} s_{k}, t\right\|^{u_{k}} & =\left\|3^{k} k^{-2 k} y, t\right\|^{1 / k^{2}} \\
& =\left(\frac{3}{k^{2}}\right)^{1 / k}\|s, t\|^{1 / k^{2}}>\frac{1}{2}
\end{aligned}
$$

This implies that $\bar{s} \notin \ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ and hence the containment of $\ell((S,\|.,\|),. \bar{\xi}, \bar{u})$ in
$\ell((S,\|.\|),, \bar{\mu}, \bar{v})$ is strict.

References

[1] A. Wilansky, Modern methods in topological vector spaces , Mc Graw_Hill Book

Co.Inc.New York (1978).
[2] E. Savas, On some new sequence spaces in 2normed spaces using ideal convergence and an Orlicz function, Hindawi Pub. Corp., Journal of Inequality and Application, Vol. 2010,10.1155, (2010).
[3] H. Gunawan and H. Mashadi, On finite dimensional 2normed spaces, Soochow J.

$$
\text { Math., } 27 \text { (2001), 321-329. }
$$

[4] I.J. Maddox, Some properties of paranormed sequence spaces, London. J. Math. Soc. , 2(1) (1969), 316-322.
[5] J.A. White and Y.J. Cho , Linear mappings on linear 2normed spaces, Bull. Korean Math. Soc., 21(1) (1984), 1-6.
[6] J.K. Srivastava and N.P. Pahari, On Banach space valued sequence space $l_{M}(X, \bar{\lambda}, \bar{p}, L)$ defined by Orlicz function, South East Asian J.Math. \& Math.Sc., 10(1)(2011), $39-49$.
[7] J.K. Srivastava and N.P. Pahari, On 2- normed space valued sequence space $l_{M}(X,\|.,\|,. \bar{\lambda}, \bar{p})$ defined by Orlicz function, Proc. of Indian Soc. of Math. and Math. Sc., 6(2011), 243-251.
[8] J.K. Srivastava and N.P. Pahari, On 2- Banach space valued paranormed sequence space
$c_{0}(X, M,\|.,\|,. \bar{\lambda}, \bar{p})$ defined by Orlicz function, Jour. of Rajasthan Academy of Physical Sciences, 12(3) (2013) , 317-336.
[9] K. Iseki, Mathematics on two normed spaces, Bull. Korean Math. Soc., 13(2), (1976).
[10] M. Açikgöz, A review on 2 - normed structures, Int. Journal of Math. Analysis, 1(4) (2007), 187-191.
[11] M. Basariv and S. Altundag , On generalized paranormed statistically convergent sequence
spaces defined by Orlicz function, Handawi. Pub. Cor., J. of Inequality and Applications (2009).
[12] N.P. Pahari, On Banach space valued sequence space $l_{\infty}(X, M, \bar{\lambda}, \bar{p}, L)$ defined by Orlicz
function, Nepal Jour. of Science and Tech., 12 (2011), 252-259.
[13] R. K. Tiwari and J. K. Srivastava, On certain Banach space valued function spaces- II,

Math. Forum, 22(2010), 1-14.
[14] R.W. Freese and Y.J. Cho, Geometry of linear 2normed spaces, Nova Science Publishers, Inc. New York (2001).
[15] R.W. Freese, Y.J. Cho and S.S. Kim, Strictly 2-convex linear 2-normed spaces; J. Korean Math. Soc., 29(2) (1992), $391-400$.
[16] S.D. Parasar and B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Maths., 25(4) (1994), 419-428.
[17] S. GÄahler, 2 -metrische RÄaume und ihre topologische struktur, Math. Nachr.,6(1963), 115-148.
[18] V.A. Khan, On a new sequence space defined by Orlicz functions, Common. Fac. Sci.

Univ. Ank-series, 57(2) (2008), 25-33.
[19] V.N. Bhardwaj and I. Bala, Banach space valued sequence space $\ell_{M}(X, p)$, Int. J. of Pure and

Appl. Maths., 41(5) (2007), 617-626.

