# Uniqueness Of Meromorphic Functions Sharing One Value And Having A Same A-Point 

Subhas.S.Bhoosnurmath, K.S.L.N.Prasad
Professor(Retd),
Department of Mathematics, Karnatak University, Dharwad-580003-INDIA

Associate professor,
Department of Mathematics,Karnatak Arts College, Dharwad-580001-INDIA


#### Abstract

In this paper we prove a uniqueness theorem for a meromorp function which is sharing one value and a small meromorphic function with its derivative.


Definition: If two meromorphic functions $f$ and $g$ have the same a-point with the same multiplicities, we denote it by $\mathrm{E}(\mathrm{a}, \mathrm{f})=\mathrm{E}(\mathrm{a}, \mathrm{g})$

Our main result is the following.

Theorem: Let f be a non constant meromorphic function with $\mathrm{E}(\infty, \mathrm{f})=\mathrm{E}\left(\infty, \mathrm{f}^{\prime}\right), \mathrm{E}\left(\mathrm{a}, \mathrm{f}^{\prime}\right)=\mathrm{E}\left(\mathrm{b}, \mathrm{f}^{\prime \prime}\right)$ and satisfying the differential equation $k f^{\prime \prime}-f^{\prime}+(a-k b)=0$,
where $\mathrm{a}, \mathrm{b}$ and k are non zero constants.

If $N(r, f)+N\left(r, \frac{1}{f}\right)=S(r, f)$, then $\quad b f^{\prime}=a f "$. Further, if there exist complex numbers $c, d$ such that $\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}-\mathrm{c}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}^{\prime}-\mathrm{d}}\right)+\overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})=\mathrm{S}(\mathrm{r}, \mathrm{f})$,
then,

$$
\frac{\mathrm{f}-\mathrm{c}}{\mathrm{a}}=\frac{\mathrm{f}^{\prime}-\mathrm{d}}{\mathrm{~b}}
$$

To prove the above result, we require the following Lemmas.

Lemma 1 [2] Let $f_{1}, f_{2}$ be non constant meromorphic functions such that $\mathrm{af}_{1}+\mathrm{bf}_{2} \equiv 1$ where a , b are non zero constants.

Then, $\quad \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{1}\right)<\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}_{1}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}_{2}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \mathrm{f}_{1}\right)+\mathrm{S}\left(\mathrm{r}, \mathrm{f}_{1}\right)$.

Lemma 2[1]: Let f be a non constant meromorphic function.

Then, for $\mathrm{n} \geq 1$,

$$
\mathrm{N}\left(\mathrm{r}, \frac{1}{\mathrm{f}^{(\mathrm{n})}}\right) \leq 2^{\mathrm{n-1}}\left[\overline{\mathrm{~N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+\overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})\right]+\mathrm{N}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+\mathrm{S}(\mathrm{r}, \mathrm{f}) .
$$

Lemma 3: Let f be a non constant meromorphic function.

$$
\text { Then, } \mathrm{N}\left(\mathrm{r}, \frac{1}{\mathrm{f}^{\prime}}\right)+\mathrm{N}\left(\mathrm{r}, \frac{1}{\mathrm{f}^{\prime \prime}}\right) \leq 3 \overline{\mathrm{~N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+3 \overline{\mathrm{~N}}(\mathrm{r}, \mathrm{f})+2 \mathrm{~N}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)
$$

The proof is omitted as it directly follows from Lemma 2.

## Proof of the Theorem

From (1), we have $\mathrm{kf}^{\prime \prime}-\mathrm{f}^{\prime}+(\mathrm{a}-\mathrm{kb})=0$

Therefore $\frac{f^{\prime}-a}{f^{\prime \prime}-b}=k$
where $\mathrm{a}, \mathrm{b}$ and k are non zero constants .

$$
\text { If } k \neq \frac{a}{b}, \quad \text { then } \frac{f^{\prime}}{a-b k}-\frac{k f^{\prime \prime}}{a-b k} \equiv 1
$$

Then, by Lemma 1,

$$
\mathrm{T}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)<\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}^{\prime}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}^{\prime \prime}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)+\mathrm{S}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)
$$

Using Lemma 3 and noting that $\mathrm{S}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)=\mathrm{o}\left\{\mathrm{T}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)\right\}$

$$
=\mathrm{o}\{\mathrm{~T}(\mathrm{r}, \mathrm{f})\}
$$

$$
=S(r, f)
$$

we get, $\quad T\left(r, f^{\prime}\right) \leq 3 \bar{N}\left(r, \frac{1}{f}\right)+3 \bar{N}(r, f)+2 N\left(r, \frac{1}{f}\right)+N(r, f)+\bar{N}(r, f)+S(r, f)$
Thus, $\quad T\left(r, f^{\prime}\right) \leq 5 N\left(r, \frac{1}{f}\right)+5 N(r, f)+S(r, f)$
Therefore, $\quad T\left(r, f^{\prime}\right) \leq 5\left[N(r, f)+N\left(r, \frac{1}{f}\right)\right]+S(r, f)$
Or , $\quad T\left(r, f^{\prime}\right) \leq S(r, f)$, using hypothesis.

Hence, $1 \leq \frac{\mathrm{S}(\mathrm{r}, \mathrm{f})}{\mathrm{T}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)}=\frac{\mathrm{S}(\mathrm{r}, \mathrm{f})}{\mathrm{O}\{\mathrm{T}(\mathrm{r}, \mathrm{f})\}} \rightarrow 0 \quad$ as $\quad \mathrm{r} \rightarrow \infty$
which is a contradiction.

This contradiction proves that $\mathrm{k}=\frac{\mathrm{a}}{\mathrm{b}}$
If $k=\frac{a}{b}$,
(2) becomes $\frac{f^{\prime}-a}{f^{\prime \prime}-b}=\frac{a}{b}$

Therefore, $\mathrm{bf}^{\prime}-\mathrm{ab}=\mathrm{af}{ }^{\prime \prime}-\mathrm{ab}$

Or, $\mathrm{bf}^{\prime}=\mathrm{af}{ }^{\prime \prime}$

Further, integrating, we get

$$
\mathrm{f}=\frac{\mathrm{a}}{\mathrm{~b}} \mathrm{f}^{\prime}+\mathrm{x} \text { where } \mathrm{x} \text { is a constant. }
$$

Therefore, $\mathrm{f}-\mathrm{c}=\frac{\mathrm{a}}{\mathrm{b}}\left(\mathrm{f}^{\prime}-\mathrm{d}\right)+(\mathrm{x}-\mathrm{c})+\frac{\mathrm{a}}{\mathrm{b}} \mathrm{d}$

Therefore, $f-c=\frac{a}{b}\left(f^{\prime}-d\right)+x_{1}$ where $x_{1}=x-c+\frac{a}{b} d$

If $x_{1}=x-c+\frac{a}{b} d \neq 0$, then by the Second Fundamental Theorem, we have

$$
\mathrm{T}(\mathrm{r}, \mathrm{f}) \leq \mathrm{T}(\mathrm{r}, \mathrm{f}-\mathrm{c})+\mathrm{O}(1)
$$

$$
\leq \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}-\mathrm{c}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}-\mathrm{c}-\mathrm{t}_{1}}\right)+\mathrm{S}(\mathrm{r}, \mathrm{f}) .
$$

Therefore, $\quad T(r, f) \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-c}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}-d}\right)+S(r, f)$
$<\mathrm{S}(\mathrm{r}, \mathrm{f})$, using hypothesis,
which is a contradiction.

This contradiction proves that $\mathrm{x}_{1}=0$

Therefore, $\mathrm{f}-\mathrm{c}=\frac{\mathrm{a}}{\mathrm{b}}\left(\mathrm{f}^{\prime}-\mathrm{d}\right)$

Therefore, $\frac{f-c}{a}=\frac{f^{\prime}-d}{b}$,

Hence the result.

## REFERENCES

(1) HAYMAN W. K. (1964) : Meromorphic functions, Oxford Univ. Press, London.
(2) INDRAJIT LAHIRI (1998) : 'Uniqueness of meromorphic functions sharing the same 1-points'. Bull. Korean Math. Soc. 35, No. 2, pp. 375-385.

