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ABSTRACT 

 

Robust, accurate and efficient numerical simulation of groundwater flow in the unsaturated zone remains computationally expensive, particularly 

for problems that involved sharp fronts in both space and time. Numerical solution of these problems along with standard approaches that use of 

uniform spatial and temporal discretizations leads to inefficient and expensive simulations. Accurate solution of pressure head form of Richards' 

equation is very difficult using standard time integration techniques because in the time integration process the mass balance errors grows unless 

very small time steps are used. Richards' equation may be solved for many problems more economically and robustly with variable time step 

size instead of constant time step size. We solve Richards' equation using the method of lines with a standard finite difference technique. We 

show how a differential algebraic equation implementation of the method of lines can give solutions to Richards' equation that are accurate, have 

good mass balance properties, and are more economical for a wide range of solution accuracy. We implement the method of lines using four 

higher order time integration MATLAB ODE solvers ode15s, ode23s, ode23t and ode23tb to (i) assure robustness for difficult nonlinear 

problems and computational efficiency;            (ii) develop higher order adaptive methods for the time; (iii) investigate the advantage of using 

higher-order methods in time; and (iv) compare the computational performance of the ODE solvers. The numerical results demonstrate that the 

proposed method provides a robust and efficient alternative to standard approaches for simulating variably saturated flow in one spatial 

dimension.  
 
Keywords: Variably saturated flow; Finite difference; Numerical solution; Richards' equation; Method of lines 

 

TITLE: Accurate and economical solution of Richards' equation by the method of lines and comparison of the computational performance of 

ODE solvers. 

 

1. INTRODUCTION 

 
Numerical simulation of variably saturated flow is one of the most important problems of practical interest for which main issues 

remain unresolved. Proper formulation of governing equation and constitutive relations are two major unresolved issues [1]. 

While main formulation issues remain, the standard approach to model variably saturated flow is through the use of numerical 

solution to Richards' equation. The movement of water in unsaturated soils described by the Richards' equation (RE) and defined 

by coupling a statement of flow continuity equation with Darcy's law. It is a highly nonlinear parabolic partial differential 

equation (PDE) which is often complicated to approximate since it does not have a closed-form analytical solution. 

 

The highly nonlinear character of RE due to the dependence of the hydraulic conductivity and diffusivity on the moisture content, 

in combination with the non-trivial forcing conditions that are often encountered in engineering practice, makes RE almost 

impossible to solve using analytical approaches except for a few special cases [2, 3, 4]. The practical utility of analytical and semi-

analytical solutions is restricted by their respective assumptions, which most notably, are homogeneity of the soil medium and a 

simple mathematical form for the constitutive and forcing equations. Most of the analytical solutions are obtained by using the 

exponential hydraulic model. The governing flow equation becomes linearized by this exponential model, which allows us to 

determine the possible analytical solution.  

 

Although analytical solutions may have limited practical applications, they do serve as a means for verifying many numerical 

models for unsaturated flow. These are especially useful for infiltration in very dry layered soils where numerical models often 

suffer from lack of convergence and mass balance problems. Besides this, the analytical solutions may improve our understanding 

of the infiltration process under a transient state in layered soils. 
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The analytical solutions mentioned above are restrictive in nature and also limited to one-dimensional problems. Therefore, to 

solve more complicated problems, other numerical treatments are needed. In the last few decades, numerical methods have been 

developed for solving RE. Appropriate numerical schemes are desired, for moisture flow in unsaturated porous media. 

Accordingly, a huge number of numerical algorithms has been proposed to approximate Richard' equation, typically based low-

order finite-difference or finite element schemes [2, 5, 6].  

 

The numerical solution of RE need to take decisions about the form of the equation to be solved, the constitutive relations use to 

close the equation, the spatial approximation, the temporal approximation, the nonlinear equation solution, and the linear equation 

solution methods. Standard approaches have evolved for each of these decisions, together with potentially attractive alternatives to 

the standard choices in some cases [1]. 

 

For the numerical solution of RE, it is suitable to decouple the issues of temporal and spatial accuracy. Low-order finite difference 

or finite element spatial approximations and low-order time integration are most common techniques for approximating the RE [7, 

8]. Additionally, most variably saturated flow simulators currently in use are based upon fixed spatial grids and either fixed time-

step or an empirically based adaptive time stepping method [5, 9]. The numerical stability of the finite element models is 

improved by mass lumping since previous findings indicate that consistent mass formulation could cause numerical oscillations 

[5, 10, 11]. Previous studies emphasize the significance of proper treatment of the time derivative for reliable numerical 

simulations [5, 12]. Typically used time stepping schemes are the backward Euler and Crank-Nicolson schemes. Other time 

stepping schemes used for RE include the three-level Lees scheme, the Douglas-Jones predictor corrector method, implicit Runge-

Kutta schemes and backward difference formulae [4, 13]. 

 

The solution of the non-linear algebraic systems that arise in implicit numerical discretizations of RE has been the subject of 

significant research studies. Iterative methods (e.g., Picard, Newton iteration methods, fast secant and relaxation methods) as well 

as non-iterative methods (e.g.,the implicit factored scheme) have been proposed to resolve the nonlinearities [12, 14, 15]. In fact, 

the fixed-point iteration scheme, the Picard method is prevalent due to its simplicity and satisfactory performance [16].  

 

For variable step size, variable-order temporal integration, the popular approach is the method of lines (MOL) [17, 18]. It is a 

prescribed decoupling of the temporal and spatial approximations of a given solution to a system of partial differential algebraic 

equations. In the MOL approach, the temporal integration aspects of the problems can be handled by sophisticated and mature 

algorithms and codes can be developed to solve systems of ordinary differential or differential algebraic equations (DAE) [19, 20]. 

As a result, peoples are motivating with the MOL approach. 

 

To obtain the numerical solution of problems involving flow and transport in porous media, including RE, lately the MOL has 

become an attractive alternative approach than traditional approach [1, 6, 20, 21, 22]. For solving RE, the MOL technique has 

been proven to be significantly more efficient than standard fixed time-step or fixed order empirically based adaptive approaches 

[6]. For the finite difference and mixed finite element spatial discretization approaches [22, 23], the issues involving the solution 

of the resulting system of algebraic equations [23, 24] are aspects of multidimensional and heterogeneous systems which have 

been investigated. With such developments, temporal integration of RE is considered relatively mature. 

 

A DAE-based MOL solution of RE can result in a more robust and efficient than traditional approach in some cases [6]. In this 

approach, estimates of temporal truncation error were used explicitly to control the solution order, which ranged from first to fifth 

order in time, and the time-step size. 

 

In spite of the above mentioned, for certain classes of difficult test problems, mainly those that give rise to sharp fronts that 

propagate through the domain have remained the major issues of robustness and efficiency [1]. These sharp fronts can require 

significant changes in spatial adaptation as a function of temporal evolution of the problem in both space and time. Numerical 

methods for RE were mainly inadequate to simple time stepping schemes coupled with finite difference or finite element spatial 

approximations. Fixed and heuristic time stepping schemes are the two commonly used simple time stepping strategies that are 

crude and uneconomical of computational resources [4] within numerical hydrological simulations. The introduction of adaptive 

algorithms, which adjust to the behavior of the solution and are usually more consistent and efficient than uncontrolled methods, 

is the fundamental advance in the numerical analysis for RE. Adaptive spatial approximations for RE include mesh refinement, 

moving mesh, and subspace enrichment schemes. A combination of two or three of the basic methods is the most effective 

approaches that are often used. Theoretically, fastest possible convergence rate may be achieved from the combined  and -

based methods. However, the difficulty of data structures for some combined adaptive methods can be substantial [25]. Adaptive 

time integration methods included variable-order variable-step (up to fifth) DAE solver (DASPK) integrators [1, 6, 21] and lower-

order adaptive backward Euler and related schemes [13, 26]. In all cases, formal truncation error control leads to significant gains 

in accuracy and efficiency over fixed step and heuristic time stepping algorithms, and also improves the mass balance of schemes 

based on the  formulation of RE. To solve RE, it suffices to say that the unconditional stability is an important property of an 

effective time stepping scheme due to the stiffness of spatially discrete parabolic partial differential equations [12]. Therefore, 

most invention and research codes utilize the implicit Euler algorithm, which is first order accurate but very stable. 
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This paper is organized as follows. In Section 2 we present the mathematical model of saturated-unsaturated groundwater flow 

equation, i.e. RE complemented by initial and boundary conditions. A brief discussions on the constitutive relationship. spatial 

discretization by the MOL technique are introduced. Implementation issues of the different MATLAB ODE solvers are also 

discussed including the evaluation criteria of performance measures of model. Section 3 presents two numerical examples that 

show the applicability of the proposed methodology to the problem at hand. In section 4 we evaluate the accuracy of the scheme. 

In addition to obtain accuracy and efficiency, we also discuss briefly other features of the method including root mean square 

error, modelling efficiency and mass balance errors. Finally, we present our concluding remarks.  

 

2. NUMERICAL PROCEDURES 
2.1 Problem formulation 

RE is possible to write in a number of different forms, depending on whether pressure (-based form), moisture (-based form), 

or both (mixed form) are used as state variables. Assuming the porous media and water are incompressible, the temporal variation 

of the water saturation is significantly larger than the temporal variation of the water pressure. We assume that the air phase is 

infinitely mobile, so the air pressure remains constant, and we neglect source or sink terms. With these assumptions the mixed 

form of RE can be written as:  

 
  

  
 

 

  
     

 

  
    ,                                                                           (2.1) 

 

where  is the pressure head [L], () is the volumetric soil moisture content [L
3
 L

-3
], K() is the nonnegative hydraulic 

conductivity [LT
-1

], t is the time [T], and z is the vertical coordinate assumed positive upward [L]. 

 

Taking the advantage of the differentiability of the soil retention function, one may write as follows:  
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    ,                                                               (2.2) 

 

where     
  

 
 is the moisture capacity [L

-1
].  

The version is referred to as the head-form (-form) of RE. Another formulation of the RE is based on the water content , 
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                                                                         (2.3) 

 

where   
 

   
  

 

  
 is the soil water unsaturated diffusivity [L

2
 T

-1
]. 

 

Generally, -based form of RE is the most commonly used because it follows for both saturated and unsaturated conditions. 

However, in highly nonlinear problems, such as infiltration into very dry heterogeneous soils, these approximations exhibit very 

poor preservation of mass balance problems, unacceptable time-step limitations [11] and relatively slow convergence [27] which 

seriously undermines its physical basis [26]. 

 

One of the advantages of the -based formulation is that perfectly mass conservative discrete approximations can be applied. 

However, this form degenerates under fully saturated conditions as heterogeneous material produces discontinuous  profiles and 

a pressure-saturation relationship no longer exists. Hence, this form may be useful only for a homogeneous media [28].  

 

Numerical techniques that employ both  and  (the mixed formulation of RE) in the solution procedure have been developed to 

minimize mass-balance errors and enhance computational efficiency. It is applicable to both saturated and unsaturated porous 

media. This form of RE is generally considered superior to the other two forms because of robustness with respect to mass balance 

[5, 11, 25]. Thus, conservation of mass alone does not ensure acceptable numerical solutions, as shown by some studies [5, 25]. 

 

Expressing equation (2.1) in the pressure-head form where the primary variable is the pressure head. The new form of RE is:  
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                                                               (2.4) 

  

or, 
 

  
 

 

          

 

  
     

 

  
    ,                                                       (2.5) 

 

where      
   

  
 and Ss is the specific storage coefficient, which accounts for fluid matrix compressibility. In accounting for 

the effects of specific storage, the governing differential equation is an extension of the classical RE. 

 

To complete this RE model, we need to consider auxiliary conditions of the form: 

              ,                                                                                (2.6) 
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                                                 ,                                                                              (2.7) 

                                                                                                                               (2.8) 

 

where Z is the length of the domain and 0 (defined as initial condition) may be a function of space, but 1 (bottom boundary 

condition) and 2 (top boundary condition) are constants. These simple conditions are adequate to develop a meaningful set of test 

problems.  

 

2.2 Constitutive relationship 

 

For solving RE numerically we must specify the constitutive relations between the dependent variable (pressure head) and the 

nonlinear terms (moisture content, moisture capacity, and conductivity). These characteristic relations can be input to a numerical 

model as data in tabular form, or, more commonly as empirical expression fitted to observed data.  

 

The van Genuchten form [29] is the most common form of these constitutive relations used in this work and the model is given 

by: 

        
     

          
         if                                                                               (2.9a) 
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             if                                                                 (2.11a) 

                                                    if                                                                (2.11b) 

 

 

 

where    is the residual volumetric water content,    is the porosity,   is the mean pore size, and      
   is the uniformity 

of the pore-size distribution. 

 

2.3 Method of lines 

 

The MOL is the common method to solve the time dependent PDE. This approach is more efficient with respect to numerical 

accuracy and enhances computational efficiency than the regular finite difference method. It is a well recognized numerical 

technique or rather a semi analytical method to solve practical complex field problems. Basically, it involves discretising a given 

differential equation in one or two dimensions whilst using an analytical solution in the remaining direction. The MOL has the 

advantages in both of analytical and numerical methods. It does not yield spurious modes nor have the problem of relative 

convergence. 

 

The semi analytical spirit of the formulation by the MOL guides to a straightforward and compact algorithm, which yields 

accurate results with less computational effort than other methods. By separating discretisation of space and time, it is easier to 

establish the stability and convergence for a wide range of problems. By using well documented and reliable ordinary differential 

equations solvers, such as MATLAB ODE solvers (ode45, ode15s, ode113, ode23t, ode23tb, ode23s, etc.), the programming 

effort can be substantially reduced. It is not necessary to solve a large system of equations since only a small amount of 

discretisation lines are necessary in the computation, hence computing time is small. In this work, we consider the simple case of 

applying MOL to solve parabolic PDE, namely RE by using the MATLAB ODE solvers ode15s, ode23s, ode23t, ode23tb.  

 

The basic idea of the MOL is to replace the spatial (boundary value) derivatives in the PDE with algebraic approximations. After 

doing this, the spatial derivatives are no longer stated explicitly in terms of the spatial independent variables. Thus, we have a 

system of ordinary differential equations that approximate the original PDE using standard approaches (e.g., finite difference, 

finite element, or finite volume methods). The challenge, then, is to formulate the approximating system of ordinary differential 

equations. Once this is done, we can apply any integration algorithm for initial value ordinary differential equations to compute an 

approximate numerical solution to the PDE. In this approach one can specify the temporal accuracy; therefore the error checking, 

robustness, order selection, and time-step adaptivity features available in sophisticated ODE codes can be applied to the time 

integration of the PDE. However, ordinary differential equations approaches have received only limited application in the 

subsurface science literature, and significant implementation issues require resolution before such approaches realize their full 

potential in routine applications for difficult nonlinear problems, such as RE. MOL technique for RE require a formulation such as 

(2.2), which is a single equation in one unknown and is independent of the particular method of discretization in space. Mixed 

forms of RE, such as (2.1), simultaneously advance  and  in time with a standard, low-order time integration method (e.g., fully 

implicit or Crank-Nicolson methods) so as to preserve mass balance. Equation (2.1) is formally one equation in two unknowns 
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and as such cannot be given to an ODE solver. Therefore, mixed methods typically use first-order schemes to advance  and 

obtain mass balance [5, 30]. The MOL will permit higher-order integration when based upon a high-order ODE solver.  

 

A MOL approach based on reduction of the original equation to a set of explicit ordinary differential equations would typically 

require rewrite (2.5) to the following form: 

 
 

  
 

 

          

 

  
     

 

  
    ,                                                               (2.12) 

 

which gives an unambiguous set of ordinary differential equations after approximated the spatial derivatives term. This technique 

is the clear one; nevertheless, the beginning work found it to be an ineffective and comparatively costly approach for computing 

solutions to RE [6]. When saturated conditions are developed and fluid compressibility is small, the term      becomes very 

small, makes the approach is very challenging. 

 

Numerical accuracy can be lost due to effect of small      in time integration and/or ill conditioning of the Jacobian matrix of 

the nonlinear system that must be solved at each time step. The time step is dependent in part on how the nonlinear solver 

performs during a corrector step; the latter in turn depends on the norm of the inverse Jacobian and the Lipschitz constants of the 

Jacobian [21]. Division by the small function     , can influence both of these parameters, and ill-conditioned Jacobians can 

lead to loss of accuracy in the solution itself. Furthermore, analytic Jacobians are easier to calculate if we do not have to divide by 

     before computing the Jacobian. A DAE approach, discretizes (2.1) in space, but does not divide by     . Popular methods 

based on (2.1) use this approach but are constrained to low-order methods in time [3, 4].  

 

2.4 Spatial approximation 
 

We consider a uniform spatial discretization comprised of N-1 intervals of length z, with z = Z/(N-1), and            for 

     . 

 

The spatial operator; 
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                                                                             (2.13) 

is approximated at z = zi for 1 < i < N by 
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where r=   
 

     and N is the total number of spatial nodes in the solution, i is the approximation to (zi), Ki=K(i) and 

                                                     
  
 

 

 
                                                                                               (2.15) 

                                               
  
 

 

 
                                                                                              (2.16) 

 

The DAE system that we solve a system of N-2 differential equations for the N-2 unknown functions of 
 
   , subject to the 

boundary conditions 
 
 and 

 
. The ith equation is:  

 

     
   

  
                                                                                                       (2.17) 

where     is a spatial operator given by (2.14) and 

 

                                                                                                           (2.18) 

 

 

2.5 ODE solver 

 

The above set of equations (2.17) can be solved by an implicit ODE or DAE integrator, with a stiff solver being the most 

reasonable choice. To solve this set of equations one can choose the packages LSODE, VODE, DASSL, DASPK (is the latest 

version of DASSL). All are based upon forms of the backward differentiation formulas (BDFs). LSODE and VODE are ODE 

solvers, while DASSL is a DAE solver. All of these solvers are appropriate to stiff systems of differential equations of the type 

encountered in the MOL solution of RE. 
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The spatial domain is discretized by the MOL approach and thus replacing the PDE with a vector system of ordinary differential 

equations, for which efficient and effective integrating packages have been developed [31, 32]. The MATLAB package has strong 

vector and matrix handling capabilities, a good set of ODE solvers, and an extensive functionality which can be used to implement 

the MOL [32]. 

 

We used MATLAB ODE solvers ode15s, ode23s, ode23t, and ode23tb as temporal integration. The ODE solver ode15s is a 

variable order solver based on the numerical differentiation formulas (NDFs). Solver ode15s uses the BDFs (also known as Gear's 

method) which is usually less efficient. In other words, it is a quasi-constant step size implementation of the NDFs in terms of 

backward differences. When ode45 fails, or the solution is very inefficient, and/or one suspects that the problem is stiff, or when 

solving a differential-algebraic problem, then ode15s is an appropriate ODE solver [32, 33, 34, 35] but the accuracy of ode15s is 

low to medium. The solver ode23s is based on a modified Rosenbrock formula of order 2. Because it is a one step solver, it may 

be more efficient than ode15s at crude tolerances. It can solve some kinds of stiff problems for which ode15s is not effective but 

the order of accuracy of this solver is low. Local extrapolation is not done and by default, Jacobians are generated numerically in 

this solver. Again, ode23t is an implementation of the trapezoidal rule using a free interpolant and maintain low order of accuracy. 

This solver can be used if the problem is only moderately stiff and if need a solution without numerical damping. Besides, the 

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula with a first stage that is a trapezoidal rule (TR) step 

and a second stage that is a BDF of order two and also a free interpolant is used. By construction, the same iteration matrix is used 

in evaluating both stages. Like ode23s, this solver may be more efficient than ode15s at crude tolerance but its order of accuracy 

is low. In this study, each test case was run with Relative Tolerance,                 and Absolute Tolerance,        
        .  

 

2.6 Performance measure 

 

To assess the robustness and efficiency of the MOL approach, we use three set of spatial nodes for each of the test cases. We 

study different features of ODE solver, such as, the number of successful steps, failed attempts, function evaluations, partial 

derivatives, LU decompositions, and solutions of linear systems. Also study the characteristic of the method relative to changes in 

the refinement level and the number of cells in the coarse grid. Thus CPU time was considered as a one suitable choice of work 

measure. The number of nodes in the grid is also an important parameter for comparison in this work, since our one main 

objective is to obtain accurate results. The accuracy for each of the simulations is evaluated by means of the root mean square 

error (RMSE) and mass balance (MB) calculated with respect to the surrogate exact solution. The deviation between the fine and 

several sets of coarse solutions is quantified using a RMSE formula. The RMSE are measured at the three different time for both 

the test problems. In addition, a conventional MB approach was also used to track the numerical error. However, maintain a good 

closure of mass in the domain even though the internal structure of the solution was different from the fine solution. So, the 

calculated MB also reported for each of the runs. Adequate conservation of global mass is crucial but not enough for acceptability 

of a numerical simulator. In other words, accurate solutions ensure small MB error. So, we evaluated model performance by 

calculating differences with an exact solution of the RE. For this purpose, the numerical solution is computed using a very fine 

grid. Also, we calculated the modeling efficiency (ME), root square error (RSE), and relative error (RE) to ensure more accuracy 

and efficiency of the approach. In this study, all of the numerical codes have been written by MATLAB 7.6.0 (2008a) software 

and executed on a Dell INSPIRON, 2.56 GHz system. 

 

We consider the following formula for measures of RMSE :  

        
 

 
        

  
    

 

 
                                                                       (2.19)                                                                         

 

We consider 
 
 is the base solution, which is made by dense-grid resolution of the vertical soil column, 

 
 is the computed 

solution and N is the total number of nodes. 

 

MB measurement for determination the ability of a scheme for mass conservation can be defined as follows:  

 

MB= (Total additional mass in the domain)/ (Total net flux into the domain), 

 

Here the additional mass is evaluated with respect to the initial mass in the system. For the finite difference approximations, this is 

calculated by the following formula: 

 

       
    

    
       

   

    
   

  

 
 
    

 
   

 

  
      

  

 
 
  

 
   

 

  
     

   

                                                            (2.20) 

 

where  
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, n is the number of time steps, 

 
  is the pressure head in the jth time and Nth node and 

 
  

 and  
  

 are the initial and final values of moisture content in node i respectively. 
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The following measures of analysis [36] were also used in the comparisons: 

Modeling efficiency:   

        
     

     
 
 

 
                                                                                 (2.21) 

 

Root square error: 

     
 

 
  

     

  
  

    
   

                                                                           (2.22) 

 

and relative error: 

        
 

 
  

     

  
  

                                                                            (2.23) 

 

where    is the mean calculated values. The desired value for ME is one, while those for RSE and RE are zero. The ME, is a 

global model performance measure which gives the ratio of the deviations with regard to the calculated solution. ME compares 

fluctuations in the computed solution with the exact solution. The RSE measure is a term by term comparison of the actual 

difference between the predicted value and the calculated value. This measure provides an estimate of the average relative error 

between the computed and the exact solutions and does not differentiate between under and over-estimation. The RE value 

actually provides this information. RE is positive (respectively negative), when the computed values are on average greater 

(respectively smaller) than the exact values.  

 

3. NUMERICAL TESTS 
 
To assure the purposes of this work, we sum up two test problems on which these investigations were based, examine methods for quantifying 

the accuracy of the resultant solutions, and draw methods to compute the computational work required to achieve the results. A set of numerical 

experiments was performed, to assess the robustness of the approach, to investigate methods for improving the efficiency of solutions to RE and 

to evaluate the advantage of using higher-order methods in time. 

 

3.1 Description of test problems 

 

In order to test and evaluate the solution procedure outlined above, the method is applied to two sets of one-dimensional test problems reported 

by [6]. We denote the numerical test problems are Problem A and Problem B. The simulation conditions are described in Table 1, including 

constitutive relation properties, spatial and temporal domains, and auxiliary conditions. Problem A was previously examined by [4, 6, 30] and 

material properties were used by [5] as well. The material properties for Problem B correspond to a dune sand as reported by [37], while the 

auxiliary conditions vary to yield a range of solution behavior.  

 

The unsaturated hydraulic conductivity for both problems was described by the van Genuchten model [29]. Both sets of simulation conditions 

yield a difficult sharp-front problem. Problem A is considered because it is a standard test problem [6]. It is a common test problem and very 

helpful for illustrating some important aspects. 

 

Problem B is a vertical infiltration problem and has been analyzed by [4, 6, 21, 38]. It has constant head boundary conditions at both top and 

bottom boundaries and a hydrostatic equilibrium initial condition. The combination of the initial and boundary conditions along with the 

constitutive relationships makes it a very difficult problem to solve accurately, since the solution includes an extremely sharp front in space that 

moves through the domain as a function of time. 

 

However, Problem A is substantially less complicated than Problem B because the domain is much shorter, the media is not as uniform (i.e., n is 

smaller for Problem A), and saturated conditions are not developed for Problem A. These factors, combined, suggest that while both problems 

are relatively difficult sharp-front problems. Problem B is considerably more difficult than Problem A and will provide a stringent and 

meaningful test for the methods proposed in this work.  
 

4. RESULTS AND DISCUSSION 
4.1 Test Problem A 

  

The typical van Genuchten soil moisture curves for the test Problem A are shown in Figure 1. A series of simulations were made and each run is 

tested for three sets of vertical discretizations, N=251, 501, and 1001 where the exact solution is made by 3001 nodes. The RMSE is evaluated at 

t=0.10, 0.20, and 0.25 days with respect to the reference solution.  

 

The computational performance of the ODE solvers for the several vertical discretizations of the Problem A is reported in Table 2. Table 2 

shows that when doubling the number of layers, the successful steps of ODE solvers increase by approximately 1.5 times for all solvers. No 

failed attempts are occurred by ode23s for 251 and 501 nodes and a small number of failed attempts are observed for 1001 nodes but required to 

calculate a lot of function evaluations, partial derivatives and system of linear equations. The CPU increases rapidly with the increasing number 

of layers. Table 2 shows that the solver ode23s is computationally very expensive. It is noted that ode23t is less expensive than other solvers to 

complete the simulations for all the cases. On the basis of overall assessment, it can be concluded, ode15s and ode23t are more convenient than 

other MATLAB ODE solvers to solve RE with the MOL technique. 

 

The computed solution profile for four different MATLAB ODE solvers is presented in Figure 2. The solution profiles agree well with the 

published report [5, 6]. The solution figure indicates, there is no any difference among the ODE solvers. 
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The graphical representation of time stepping behavior of all ODE solvers is shown in Figures 3, 4, and 5 for all vertical discretizations. It is 

shown that the ODE solver ode15s takes larger time steps than other solvers during the simulation. After 0.13 days, Figure 5 shows that, the time 

step size increase smoothly for the solver ode15s with very small time stepping reduction and it takes bigger step size than other solvers. On the 

other hand, for 251 and 501 nodes, the solver ode15s needs reduce step size to achieve convergence. The solvers ode23t and ode23tb show 

approximately same behavior. But ode23s has faced more trouble to meet the convergence criteria than other solvers. Individual behavior of all 

MATLAB ODE solvers is shown in Figure 6 for all three vertical discretizations. Clearly, when the number of nodes increases, time step sizes 

reduce for all the nodes during simulation for all the solvers. The maximum, minimum and average time step sizes for all nodes of various 

solvers are summarized in Table 3. The average step size is large for ode15s for all the vertical discretizations are noted. 

  

The evolution of the error is obtained by computing the exact and approximate solutions at a series of a specified output times=0.10, 0.20, and 

0.25 days. The evaluated RMSE for 500 and 1000 layers is shown in Figure 7 for each distinct ODE solvers. Clearly from the Figure 7, the 

highest errors are shown at 0.142 m, 0.105 m and 0.0429 m at the times 0.10, 0.15, and 0.25 days respectively. Sufficiently small errors are 

observed in the remaining domain of the problem. Similar behavior is shown by 251 nodes for all the solvers. The RMSE graph at the three 

different times for the different number of layers of ode15s are shown in Figure 8 (left graph) including a zoom part (right graph) for clear 

observation of error for all layers. All other solvers show same error behavior. Evaluated RMSE for Problem A of the three sets of layers at three 

different time levels are presented in Table 4 for all ODE solvers. It is clear from the error table, the error reduce with increasing the number of 

nodes. From the statistics of Table 4 it can be concluded that all runs have adequate and comparable accuracy. 

 

The mass balance error values for Problem A at different number of layers for various MATLAB solvers are shown in Table 5. Table 5 clearly 

shows, for all three discretization, the MB are acceptably small. MB is not a sufficient criterion for comparing the relative accuracy of the 

models. For this reason we also analysed residual errors. The results for ME, RSE and relative errors (RE) for all the solvers are summarized in 

Table 5. ME for all the ODE solvers are 1, this implies that, the solution is very close to the analytical solution. The RSE and RE values are well 

suited with evaluation criteria. 

 

4.2 Test Problem B 

 
Figure 9 shows the van Genuchten soil moisture retention curves for test Problem B. The first graph shows moisture content profile and second 

graph shows the log hydraulic conductivity profile as a function of pressure head . 

 

To solve this difficult sharp front infiltration problem and compare the accuracy of solution, we have taken three sets of vertical discretization, 

N=201, 401, and 801 nodes and the exact solution is made by 3201 nodes for the determination of solution accuracy.  

 

We have presented a summary of comparison of computational statistics of ODE solvers ode15s, ode23s, ode23t, and ode23tb for this problem, 

such as the number of nodes, the number of successful steps taken, failed steps, the number of function evaluations, the number of Jacobians, the 

number of LU decompositions, the number of solutions of linear systems, and the total CPU for the various runs by the MOL approach in Table 

6. Many fail attempts are occurred for all the cases. The CPU time column shows that the computational cost highly increases with increasing 

the number of nodes.  

 

Figure 10 is a comparison of solution profiles for pressure head for all runs of Problem B that agrees well with the published papers [5, 6]. It is 

clear that all the solvers give same solution profile.  

 

The time stepping behavior of all ODE solvers for all vertical discretizations is shown in Figures 11, 12, and 13. It is evident from these figures, 

all the ODE solvers perform very closely during the simulation. All solvers are forced to take very small step sizes from the beginning to end of 

the simulation. Constraining the time integrators to take extremely small time steps for prolonged periods during a simulation can represent an 

enormous computational burden for subsurface solvers. ode15s takes large stepping than other solvers within the simulation for all the cases. 

Figure 14 is the time stepping behavior of individual solver with all three vertical discretizations and it shows that the time stepping behaviors 

are all most same for all the solvers. For all solvers, time step size decreases along with the number of nodes increase. The maximum, minimum 

and average time step sizes for all the nodes of various solvers are summarized in Table 7. It is clear that large time steps are taken by ode15s. 

  

The accuracy for each of the simulations is evaluated by the RMSE with respect to the exact solution. The error is evaluated for all the 

discretizations at three times, specifically, 0.10, 0.15, and 0.20 days. Figure 15 shows the error behavior of all the solvers for 401 (left graph) and 

801 (right graph) nodes respectively. For these three vertical discretizations, the peak error are shown at 7 m, 5.73 m and 4.04 m at the times 

0.10, 0.15  and 0.25 days respectively and low error values are found in the remaining points of problem domain. Figure 16 shows the errors of 

ode15s for all layers at the three different times and also note that similar error behavior are shown by all other schemes including a zoom (right 

graph) of error behavior of ode15s for clear observation. Detail calculated errors at the three time levels for all cases of discretizations of all the 

various solvers are presented in Table 8. The errors compared with the fine grid solution are shown comparable accuracy for all runs.  

 

The MB of all discretizations by the various solvers are summarized in Table 9. All cases give sufficiently small values, which means that the 

model is robust and efficient. For additional accuracy and robustness of the solution evaluation, ME, RSE and relative errors (RE) are calculated 

for all the solvers along with all the discretizations (Table 9). ME for all the ODE solvers approach to 1, implies that the result is very close to 

the analytical solution. Also RSE and RE values are satisfied the evaluation criteria. 
 

 

5. CONCLUSIONS 

 
We have formulated a spatial discretization approach for a one-dimensional finite difference solution of RE and implemented successfully in a 

MOL framework along with MATLAB ODE solvers. It is a straightforward approach for applying sophisticated adaptive temporal integration 

methods to PDE models of flow in porous media. We have demonstrated that the nonlinear models of one-dimensional flow can be solved 

efficiently in the context of MOL using the standard time integrators. The key objectives are the numerical accuracy and the convergence of the 
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associated iterative schemes which are commonly used to solve the discretized problem. It is shown that higher accuracy can be achieved by 

using high order time discretization within the framework of the MOL. Two difficult test problems have been solved by using the MOL for a 

wide variety of error tolerances and spatial discretizations without difficulty. Furthermore, the convergence behavior of the MATLAB ODE 

solvers has been investigated. For our two test problems, tables of computational statistics show that the number of function evaluations, the 

number of Jacobian evaluations, and the number of steps taken were at the acceptable level for various solvers. High accuracy can be achieved 

with a substantial savings in computational effort, and with excellent RMSE and mass-conservation properties for all solvers. A better 

convergence property has been generally observed when the ODE solver ode15s is used. Hence, the MOL approach is an attractive alternative to 

solve difficult sharp-front problems that arising in the RE. Therefore the proposed approaches similar to that used in this work may provide 

efficient solutions for other difficult nonlinear (2D or 3D) subsurface flow and transport problems. 
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TABLES 
Table 1: Soil hydraulic properties used in the test problems 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2:  Computational performance of various ODE solvers for the Problem A 

Variables    Problem A     Problem B      

   (-) 0.102 0.093 

   (-) 0.368 0.301 

   (m-1) 3.35 5.47 

n  (-) 2.00 4.26 

Ks  (m/days) 7.97 5.40 

Ss (m
-1) 0.00 1.0 10-6 

z  (m) [0  0.3] [0  10] 

t  (days) [0  0.25] [0  0.20] 

  (m) -10.0 -z 

  (m) -10.0 0.00 

   (m) -0.75 0.10 

 No. of nodes    15s 23s 23t 23tb 

No. of  251 2273 4208 4862 3676 



IJMCR www.ijmcr.in| 2:2 |Feb|2014|328-346 |  338 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3: Maximum, minimum and average time steps of various ODE solvers of the Problem A 

 

 

 

 

 

 

 

 

 

 

 

 

       Table 4: Computed RMSE for various ODE solvers for the problem A 

 

 

 

 

 

 

 

 

 

 
Table 5: Computed MB, ME, RSE and RE (%) for various ODE solvers of the Problem A 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6:  Computational Performance of various ODE solvers for the Problem B 

Successful 

Steps 

501 

1001 

3152 

4124 

6068 

8630 

7064 

9418 

5392 

7198 

No. of  

Failed 

Attempts 

251 

501 

1001 

196 

271 

358 

0 

0 

46 

27 

61 

130 

33 

57 

109 

No. of  

Function 

Evaluations 

251 

501 

1001 

19679 

74055 

251267 

1.06042e+6 

3.04614e+6 

8.64735e+6 

15652 

42031 

142346 

20021 

45059 

129002 

No. of  

Partial 

Derivatives 

251 

501 

1001 

59 

134 

242 

4208 

6068 

8630 

27 

59 

126 

23 

49 

102 

No. of  

LU 

Decompositions 

251 

501 

1001 

488 

641 

827 

4208 

6068 

8676 

404 

448 

511 

355 

389 

459 

No. of  

Solutions 

of Linear Systems 

251 

501 

1001 

4928 

7054 

9266 

12624 

18204 

26028 

8908 

12530 

16345 

17957 

25959 

34207 

 

CPU (s) 

251 

501 

1001 

19.95 

380.44 

4136.30 

734.65 

14753.76 

172088.79 

19.44 

240.73 

2417.97 

27.54 

276.60 

1899.31 

No. of nodes Time (days) 15s 23s 23t 23tb 

 

251 
tmax 

tmin 

tave 

3.66290e-4 

2.06693e-10 

1.09987e-4 

1.82940e-4 

1.40818e-9 

5.93965e-5 

1.45430e-4 

1.80676e-10 

5.14086e-5 

2.02130e-4 

1.23093e-9 

6.79902e-5 

 

501 
tmax 

tmin 

tave 

3.66290e-4 

2.06693e-10 

7.92896e-5 

1.82940e-4 

1.40818e-9 

4.11924e-5 

1.45230e-4 

1.80676e-10 

3.53857e-5 

2.02130e-4 

1.23093e-9 

4.63564e-5 

 

1001 
tmax 

tmin 

tave 

3.66290e-4 

2.06693e-10 

6.06061e-5 

1.82940e-4 

1.40818e-9 

2.89654e-5 

1.45430e-4 

1.80676e-10 

2.65421e-5 

2.02130e-4 

1.23093e-9 

3.4727e-5 

No. of nodes Time (days) 15s 23s 23t 23tb 

 

251 

0.10 

0.15 

0.25 

0.2646 

0.1942 

0.1844 

0.2554 

0.1939 

0.1849 

0.2339 

0.1862 

0.1852 

0.2559 

0.2117 

0.1852 

 

501 

0.10 

0.15 

0.25 

0.1371 

5.99e-2 

7.58e-2 

0.1283 

4.46e-2 

7.60e-2 

0.1137 

4.97e-2 

7.66e-2 

0.1212 

4.37e-2 

7.65e-2 

 

1001 

0.10 

0.15 

0.25 

9.89e-2 

1.28e-2 

2.77e-2 

8.41e-2 

1.83e-2 

2.60e-2 

6.73e-2 

2.00e-2 

2.86e-2 

6.74e-2 

1.30e-2 

2.85e-2 

No. of nodes  15s 23s 23t 23tb 

 

251 

MB 

ME 

RSE 

RE (%) 

3.68e-3 

1.00 

3.28e-2 

-0.207 

3.68e-3 

1.00 

3.29e-2 

-0.208 

3.68e-3 

1.00 

3.30e-2 

-0.208 

3.68e-3 

1.00 

3.30e-2 

-0.207 

 

501 

MB 

ME 

RSE 

RE (%) 

1.85e-3 

1.00 

1.42e-2 

-6.34e-2 

1.85e-3 

1.00 

1.42e-2 

-6.36e-2 

1.85e-3 

1.00 

1.44e-2 

-6.43e-2 

1.85e-3 

1.00 

1.44e-2 

-6.42e-2 

 

1001 

MB 

ME 

RSE 

RE (%) 

9.25e-4 

1.00 

5.37e-3 

-1.70e-2 

9.25e-4 

1.00 

4.80e-3 

-1.52e-2 

9.25e-4 

1.00 

5.61e-3 

-1.77e-2 

9.25e-4 

1.00 

5.58e-3 

-1.76e-2 

 No. of nodes 15s 23s 23t 23tb 
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Table 7: Maximum, minimum and average time steps of various ODE solvers of the Problem B 

 

 

 

 

 

 

 

 

 

 

 

 
   Table 8: Computed RMSE for various ODE solvers for the problem B 

 

 

 

 

 

 

 

 

 

 

 

 
Table 9: Computed MB, ME, RSE and RE (%) for various ODE solvers of the Problem B 

No. of  

Successful 

Steps 

201 

401 

801 

3911 

7350 

14132 

5094 

9580 

18730 

5437 

10317 

19873 

4203 

7987 

15449 

No. of  

Failed 

Attempts 

201 

401 

801 

1034 

1710 

2979 

480 

744 

1892 

487 

698 

1084 

600 

883 

1282 

No. of  

Function 

Evaluations 

201 

401 

801 

96472 

232389 

553833 

1.03006e+6 

3.85288e+6 

1.50257e+7 

77609 

189489 

446070 

95093 

236719 

541205 

No. of  

Partial 

Derivatives 

201 

401 

801 

432 

535 

649 

5094 

9580 

18730 

330 

420 

506 

390 

511 

598 

No. of  

LU 

Decompositions 

201 

401 

801 

1613 

2775 

4975 

5574 

10324 

20622 

1486 

2600 

4735 

1368 

2336 

4155 

No. of  

Solutions 

of Linear Systems 

201 

401 

801 

10064 

18382 

34617 

16722 

30972 

61866 

11604 

21480 

41260 

21488 

40664 

78910 

 

CPU (s) 

201 

401 

801 

75.41 

815.55 

6580.22 

742.64 

12598.65 

163496.71 

65.02 

692.80 

5216.08 

77.85 

865.59 

6253.48 

No. of nodes Time (days) 15s 23s 23t 23tb 

 

201 
tmax 

tmin 

tave 

1.41150e-4 

3.29005e-12 

5.11247e-5 

8.77500e-5 

1.52711e-11 

3.92542e-5 

8.67200e-5 

2.87592e-12 

3.67782e-5 

1.08240e-4 

1.33488e-11 

4.75737e-5 

 

401 
tmax 

tmin 

tave 

8.36600e-5 

8.23023e-13 

2.72072e-5 

4.64200e-5 

3.82014e-12 

2.08746e-5 

4.47000e-5 

7.19426e-13 

1.93836e-5 

5.76200e-5 

3.33928e-12 

2.50376e-5 

 

801 
tmax 

tmin 

tave 

4.88500e-5 

2.05821e-13 

1.41513e-5 

2.36200e-5 

9.55337e-13 

1.06775e-5 

2.29500e-5 

1.79914e-13 

1.006390e-5 

2.98700e-5 

8.35085e-13 

1.29450e-5 

No. of nodes Time (days) 15s 23s 23t 23tb 

 

201 

0.10 

0.15 

0.20 

0.8840 

0.4055 

0.3024 

0.8815 

0.4055 

0.3040 

0.8792 

0.4007 

0.3028 

0.8808 

0.3979 

0.3051 

 

401 

0.10 

0.15 

0.20 

0.5985 

0.4013 

0.3177 

0.5988 

0.4129 

0.3199 

0.5987 

0.4000 

0.3217 

0.6002 

0.4084 

0.3210 

 

801 

0.10 

0.15 

0.20 

0.2851 

0.3247 

0.2636 

0.2594 

0.3237 

0.2646 

0.2977 

0.3367 

0.2656 

0.2906 

0.3278 

0.2650 

No. of nodes  15s 23s 23t 23tb 
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FIGURES   
 

 

 

 

 

 
Figure 1. Soil moisture retention curves for test problem A 
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201 

MB 

ME 

RSE 

RE (%) 

5.79e-2 

0.970 

1.3484 

9.5111 

5.79e-2 

0.970 

1.3480 

9.5105 

5.79e-2 

0.970 

1.3484 

9.5105 

5.79e-2 

0.970 

1.3484 

9.5105 

 

401 

MB 

ME 

RSE 

RE (%) 

2.84e-2 

0.985 

0.3874 

1.9346 

2.84e-2 

0.985 

0.3858 

1.9264 

2.84e-2 

0.985 

0.3843 

1.9193 

2.84e-2 

0.985 

0.3874 

1.9220 

 

801 

MB 

ME 

RSE 

RE (%) 

1.41e-2 

0.974 

0.2265 

0.8001 

1.41e-2 

0.974 

0.2262 

0.7991 

1.41e-2 

0.974 

0.2258 

0.7977 

1.41e-2 

0.974 

0.2260 

0.7984 



IJMCR www.ijmcr.in| 2:2 |Feb|2014|328-346 |  341 

 

 
Figure 2. Pressure head profile computed by the various ODE solvers at t=0.25 days. 

 

 

 
Figure 3. Time stepping behavior of various solvers for 251 nodes. 

 
Figure 4. Time stepping behavior of various solvers for 501 nodes.  
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Figure 5. Time stepping behavior of various solvers for 1001 nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Time stepping behavior of ode15s (top left), ode23s (top right), ode23t (bottom left), and ode23tb (bottom right) 
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Figure 7. Computed RMSE of 501 (left) and 1001 (right) nodes for Problem A. The solid, dot-dashed, and dash-dotted lines 

  are at times t=0.10, 0.20, and 0.25 days respectively. Green, red, blue, and magenta: ode15s, ode23s, ode23t, and ode23tb 

  respectively. 

 

 

 
 

Figure 8. Computed RMSE for all nodes by ode15s and its zoom (right graph) portion. 

 

 

 
Figure 9. Soil moisture retention curves for test Problem B. 
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Figure 10. Pressure head profile computed by the various ODE solvers at t=0.20 days. 

 

 

 
Figure 11. Time stepping behavior of various solvers for 201 nodes.  

 

 
Figure 12. Time stepping behavior of various solvers for 401 nodes.  
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Figure 13. Time stepping behavior of various solvers for 801 nodes.  

 

 

 

 

 

 

 

 

  
 

Figure 14. Time 

stepping behavior of ode15s (top left), ode23s (top right), ode23t (bottom left), and ode23tb (bottom right) respectively for all the nodes. 
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Figure 15. Computed RMSE of 401 (left) and 801 (right) nodes for Problem B. Solid, dot-dashed, and dash-dotted lines are at times t=0.10, 0.20, 

and 0.25 days respectively. Green, red, blue, and magenta: ode15s, ode23s, ode23t, and ode23tb respectively. 

 

 

 
Figure 16. Computed RMSE for all nodes by ode15s and its zoom (right) portion. 
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