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Abstract:  

Let  N be a  2-torsion free prime near-ring.If N admits a  non zero left semi derivation d  with 

g  such that (i)d[ x , y ] = 0  (ii) d[ x , y ] = [ x , y ] (iii) d[ x ,y ]= -[ x, y ]  (iv) d( x o y) = ( x 

o y)  (v)  d( x o y) = - ( x o y)  (vi)  d[ x , y ] ϵ Z(N) (vii)  [d(x) , y] ϵ Z(N)  (viii)  d(x)oy = xoy 

(ix) d(x o y) ϵ Z(N)  (x) d(x) o y  ϵ Z(N)  (xi) d(x o y) = [ x , y ] (xii) d [ x , y ] = (x o y), for all       

x , y ϵN,  then  N is a commutative ring. 
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1. Introduction 

 In this paper  N will denote a zero symmetric right near –ring  (i.e., a right near ring N 

satisfying the property x.0 = 0 for all x ϵ N). Note that right distributivity in N gives 0.x = 0 

for all x ϵ N. For any x , y ϵ N the symbol [ x , y ] will denote the commutator xy-yx.   While 

the symbol x o y will stands for the anti-commutator xy + yx. The symbol Z(N) will represent 

the multiplicative center of N, that is Z(N) = {  x ϵ N/ xy = yx  for all y ϵ N }. An additive 

mapping  d: N → N   is said to be a derivation if  d(xy) = xd(y) +d(x)y for all x, y ϵ N, or 

equivalently, as noted in [17] that  d(xy) = d(x)y + xd(y) for all x, y ϵ N. An additive mapping  

d: N → N   is said to be a  left derivation if  d(xy) = xd(y) +y d(x)  for all x, y ϵ N. 

 In [2] J.Bergen has introduced the notion of semiderivations of a ring R which extends 

the notion of derivations of a ring R. An additive mapping d: R →  R is called a 

semiderivation if there exists a function g: R →  R such that (i) d(xy) = d(x)g(y) + x d(y) = 

d(x)y + g(x)d(y) and (ii)d(g(x)) = g(d(x)) holds for all x , y ϵ R. In case g is an identity map of 

R  then all semiderivations associated with g are merely ordinary derivations. On the other 

hand , if g is a homomorphism of R such that g ≠ 1 then d = g – 1 is a semiderivation which 

is not a derivation. In case R is a Prime and d ≠ 0 , it has been shown by Chang [3] that g must 

necessarily be a ring endomorphism.  

       An additive mapping d: N →  N is called a semiderivation if there exists a surjective 

function g:  N →  N such that (i) d(xy) = d(x)g(y) + x d(y) = d(x)y + g(x)d(y) and (ii)  d(g(x)) 

= g(d(x)) holds for all x ,y ϵ N  An additive mapping d: N →  N is called a left semiderivation 
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if there exists a surjective function g:  N →  N such that (i) d(xy) =  xd(y) + g(y)d(x) = 

g(x)d(y) +y d(x)  and  (ii)  d(g(x))= g(d(x)) holds for all x, y ϵ N .  

 According to [10] , a near-ring N is said to be prime if x N y = {0} for all x , y ϵ N 

implies  x= 0 or y = 0. Recently  there has been a great deal of wok concerning 

commutativity of prime and semi-prime rings with derivations satisfying certain differential 

identities (see[4,9,11,16]  for reference where further references can be found). In view of 

these results  many authors have investigated commutativity of prime near-rings satisfying 

certain polynomial conditions(see[5-8, 10-15, 17], etc.). In [1] authors investigated  on 

Semiderivations and commutativity in prime rings.  In the present paper it is shown that  

near-rings with left semiderivations  satisfying certain identities are commutative rings. 

 

2. Main result 

Lemma 1:- Let  N be a  2-torsion free prime near-ring,  and d a non zero left semi derivation 

with g of  N and  a ϵ N . If  ad(N)=0, then a =0. 

Proof: 

Suppose that ad(N)=0 . 

For arbitrary  x , y ϵ N  we have 

ad(xy) = 0 

a xd(y) +ag(y)d(x) = 0 

Replace y by x in the above equation and g is on to we get 

2axd(x)=0 

Since  N is a 2-torsion free near –ring , we get 

axd(x) = 0      for all x , y ϵ N 

Since N is prime near ring and  d≠ 0, we get  a = 0. 

 

Lemma 2:- Let  N be a  2-torsion free prime near-ring,  and d a non zero left semiderivation 

with g of  N . If d2 = 0, then  d=0. 

Proof: 

For  arbitrary  x , y ϵ N  we have 

d2(xy)= 0 

d(d(xy)) =0 

d(xd(y) + g(y) d(x)) = 0 

xd2(y) +g(d(y))d(x) + g(y)d2(x) +g(d(x))d(g(y)) = 0 for all x , y ϵ N 

By  hypothesis, 

g(d(y))d(x) + g(d(x))d(g(y)) = 0 

and g  is on to we have 

d(y)d(x) + d(x)d(y) = 0 

Replace   y  by  x in the above equation 

2d(x)d(x) = 0 ,        for all x , y ϵ N 
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Since N is a2-torsion free prime near-ring ,we get 

d(x)d(N)= 0,  for all  x ϵ N 

Using Lemma 1 we get  d = 0. 

 

Lemma 3:- Let  N be a  prime near-ring,  and d a non zero left semi derivation with g of  N . 

If d(N) ⊂ Z(N) , then (N, + ) is Abelian. Moreover , if N is 2-torsion free, then N is 

commutative ring. 

Proof: 

Suppose that a ϵ N such that  d(a) ≠ 0, So ,  d(a) ϵ Z(N) \ {0}  and d(a) + d(a) ϵ Z(N) \ {0}. 

For all x , y ϵ N, we have 

(d(a) + d(a)) (x + y) =   (x + y) (d(a) + d(a)) 

That is, 

d(a)x+d(a)x+d(a)y+d(a)y = xd(a)+yd(a)+xd(a)+yd(a) 

Since  d(a) ϵ Z(N) , we get 

xd(a) + yd(a) =yd(a) + xd(a) 

( x, y)d(a) = 0  for all x , y ϵ N 

Since d(a) ϵ Z(N) \ {0} and N is a prime near-ring , we get (x ,y) =0 , for all x , y ϵ N 

Thus (N , + ) is Abelian. 

Now using hypothesis, for any a,b,c ϵ N, 

cd(ab) = d(ab)c 

cad(b) + cg(b)d(a) = ad(b)c + g(b)d(a)c 

Using  d(N) ⊂ Z(N) and (N, + ) is Abelian, we obtain that 

cad(b) + cg(b)d(a) = acd(b) + g(b)cd(a) 

[ c,a] d(b) = [ g(b) , c ] d(a)        for all a,b,c ϵ N 

Suppose now that N is not commutative. Choosing b ,c  ϵ N such that [ g(b) , c ] ≠ 0 and 

replacing a by d(a) ϵ Z(N), we get 

[g(b) , c]d2(a) = 0  for all a,b,c ϵ N 

Since  g is on to we have 

[ b , c ] d2(a) = 0  for all a,b,c ϵ N 

d2(a) ϵ Z(N), we conclude that  d2(a) = 0, for all a ϵ N, and so  d=0 by lemma 2. 
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But it contradicts d ≠ 0. Which implies [ b , c ]= 0 

Thus N is a commutative ring. 

 

Theorem 1: Let  N be a  2-torsion free prime near-ring.If N admits a  non zero left semi 

derivation d  with g  such that d[ x , y ] = 0, for all x,y ϵ N, then  N is a commutative ring. 

Proof: 

                                           Suppose d[ x ,y ] = 0  for all  x,y ϵ N           ( 1 ) 

Replace  y   by yx in ( 1 ), weget 

d[ x , yx ] =0 

d([ x , y ] x ) = 0 

[ x , y ]d(x) + g(x) d[ x , y ] = 0 

                        Using ( 1 )  implies   [ x , y ]d(x)  = 0  for all x,y ϵ N                    ( 2 ) 

Replace  y by yt in ( 2 ), we get 

[ x , yt ]d(x) = 0  for all x,t ϵ N 

y [ x , t ]d(x) + [ x , y ] t d(x) = 0  for all x, y ,t ϵ N 

Using ( 2) implies  [ x , y ] t d(x) = 0   for all x, y , t ϵ N 

                            [ x , y ] N d(x) = 0   for all x,y ϵ N              ( 3 ) 

Since N is prime near-ring equation ( 3 ) reduces to 

                                       [ x , y ] = 0  or d( x ) = 0  for all x, y ϵ N              ( 4 ) 

From equation ( 4 ) it follows that  for each fixed x ϵ N  we have 

                                                         d( x ) = 0  or x ϵ Z(N)               ( 5 ) 

                      But  x ϵ Z(N) also implies that   d (x) ϵ Z(N)  for all  x ϵ N            ( 6 ) 

In light of ( 6 ), d(N) ⊂ Z(N) and using lemma 3 

We conclude that N is a commutative ring. 

 

Theorem 2 :- Let  N be a  2-torsion free prime near-ring.If N admits a  non zero left semi 

derivation d  with g  such that 

d[ x , y ] = [ x , y ], for all x,y ϵ N 

d[ x , y ] = - [ x , y ], for all x,y ϵ N, then  N is a commutative ring. 
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Proof: 

                           (i)  By hypothesis d[ x , y ] = [ x , y ]  for all x,y ϵ N             ( 7 ) 

Replace x  by  yx in ( 7 ) 

d[ yx , y ] = [ yx , y ] 

d(y[ x , y ]) = y[ x , y ] 

y d[ x , y ] + g[ x , y ] d(y) = y[ x , y ] 

Using ( 7 ) in the above equation, we get 

g[ x , y ] d(y) = 0 

                      Since g is on to we have   [ x , y ] d(y) = 0          for all x,y ϵ N      ( 8 ) 

Replace  x by xt in ( 8 ), we get 

[ xt , y ]d(y) = 0        for all x,t ϵ N 

x [ t , y ]d(y) + [ x , y ] t d(y) = 0  for all x, y ,t ϵ N 

Using ( 8 ) implies  [ x , y ] t d(y) = 0   for all x, y , t ϵ N 

                             [ x , y ] N d(y) = 0   for all x,y ϵ N          ( 9 ) 

Since N is prime near-ring equation ( 9 ) reduces to 

                                  [ x , y ] = 0  or d( y ) = 0  for all x, y ϵ N            (10 ) 

From equation ( 10 ) it follows that  for each fixed  y ϵ N  we have 

                                                d( y ) = 0  or y ϵ Z(N)            ( 11 ) 

              But  y ϵ Z(N) also implies that   d (y) ϵ Z(N)     for all  y ϵ N                   ( 12 ) 

In light of ( 12 ), d(N)  ⊂ Z(N) and using lemma 3 

We conclude that N is a commutative ring. 

                    (ii)  By hypothesis d[ x , y ] = - [ x , y ]         for all x,y ϵ N         (13 ) 

Replace x  by  yx in ( 13 ) 

d[ yx , y ] = -  [ yx , y ] 

d(y[ x , y ]) =  - y[ x , y ] 

y d[ x , y ] + g[ x , y ] d(y) = -  y[ x , y ] 

Using ( 13  ) in the above equation, we get 

g{ x , y ] d(y) = 0 

                      Since g is on to we have   [ x , y ] d(y) = 0          for all x,y ϵ N        (14 ) 

The rest of the proof is as in the proof of theorem 2(i). 
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Theorem 3: Let  N be a  2-torsion free prime near-ring.If N admits a  non zero left semi 

derivation d  with g  such that 

d( x o y) = ( x o y) , for all x,y ϵ N 

d( x o y) = - ( x o y), for all x,y ϵ N,  then  N is a commutative ring. 

Proof: 

                           (i)  By hypothesis d( x o y) = ( x o y) , for all x,y ϵ N      ( 15 ) 

Replace y  by  xy in (15) 

d(x o xy ) = ( x o xy ) 

d(x(x o y)) = x( x o y) 

x d( x o y) + g(x o y) d(x) = x ( x o y) 

Using ( 15 ) in the above equation , we get 

g(x o y) d(x) = 0  for all  x,y ϵ N 

                                              g(xy) d(x) = -g(yx)d(x)        ( 16 ) 

Replace y  by yz in ( 16 ) 

g(xyz) d(x) = - g(yzx) d(x)  for all x,y, z ϵ N 

= - g(y)g(zx)d(x 

= - g(y) (–g(xz)d(x)) 

= g(yxz) d(x) 

g(xy-yx) g(z)d(x) = 0 

g[ x , y ] g(z) d(x) = 0  for all x,y, z ϵ N 

g[ x , y ] N d(x) = 0  for all x,y ϵ N 

              Since g is on to we have,  [ x , y ] N d(x) = 0 for all x,y ϵ N       ( 17 ) 

Since N is prime , equation (17) yields, 

                                d(x) = 0   or   [ x , y ] = 0  for all x,y ϵ N         ( 18 ) 

from ( 18 ) it follows that for each fixed x ϵ N we have 

                                            d( x ) = 0  or x ϵ Z(N)           ( 19 ) 

                     But  x ϵ Z(N) also implies that   d (x) ϵ Z(N)  for all  x ϵ N         ( 20 ) 

In light of ( 20 ), d(N) ⊂ Z(N) and using lemma 3 

We conclude that N is a commutative ring. 

                       (ii)  By hypothesis d( x o y) =  - ( x o y) ,  for all x,y ϵ N         ( 21 ) 
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Replace y  by  xy in (15) 

d(x o xy ) = - ( x o xy ) 

d(x(x o y)) = - x( x o y) 

x d( x o y) + g(x o y) d(x) =  - x ( x o y) 

Using ( 21 ) in the above equation , we get 

g(x o y) d(x) = 0  for all x,y ϵ N 

The rest of the proof is as in the proof of theorem 3(i). 

 

Theorem 4: Let  N be a  2-torsion free prime near-ring which  admits a  non zero left semi 

derivation d  with g  such that d[ x , y ] ϵ Z(N), for all x,y ϵ N, then either d(Z(N)) = 0 or N is 

a commutative ring. 

Proof: 

                              Given that  d[ x , y ] ϵ Z(N)  for all x,y ϵ N                   ( 22 ) 

(a)  If Z(N) = { 0}, it follows that d[ x , y ] = 0,  for all x,y ϵ N 

By Theorem 1 we conclude that N is a commutative ring. 

(b)  If Z(N) ≠ { 0}, replace  y  by  yz in (22), where z ϵ Z(N) weget 

d[ x , yz ] ϵ Z(N) , for all x,y ϵ N , z ϵ Z(N) 

d([ x, y ]z) + d(y[x , z])  ϵ Z(N), 

Since z ϵ Z(N) implies d([ x, y ]z) ϵ Z(N) 

               [ x , y ] d(z) + g(z) d[ x, y ] ϵ Z(N), for all x,y ϵ N , z ϵ Z(N)       (23) 

Since d[ x , y ] ϵ Z(N) and  z ϵ Z(N),  equation (23) reduces to 

[ x , y ] d(z) ϵ Z(N), for all x,y ϵ N , z ϵ Z(N) 

Accordingly [[ x , y ] d(z) , t ] = 0  for all  t ϵ N 

[ x , y ] [d(z) , t ] +  [[ x , y ], t ] d(z)   = 0  for all x,y, t ϵ N , z ϵ Z(N) 

                          [[ x , y ], t ] d(z)   = 0  for all x,y, t ϵ N , z ϵ Z(N)     (24) 

Replace t by tr , for all t,r ϵ N,  we get 

[[ x , y ], t ] r d(z) + r [[ x , y ], t ] d(z) = 0    for all x,y, t ϵ N , z ϵ Z(N) 

Using (24) in the above equation, we get [[ x , y ], t ] r d(z) = 0  for all x,y, t ϵ N , z ϵ Z(N) 

                    [[ x , y ], t ] N d(z)   = 0    for all x,y, t ϵ N , z ϵ Z(N)    (25) 

Using primeness of N, from (25) it follows that 
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d(Z(N)) = {0}  or [[ x , y ], t ] = 0  for all x,y, t ϵ N 

Assume that [[ x , y ], t ] = 0  for all x,y, t ϵ N, substituting  yx for y, we get 

[[ x , y ]x, t ] = 0  and therefore [ x , y ][x, t ] = 0  for all x,y, t ϵ N 

                                                   As  [ x , y ] ϵ Z(N), hence 

                                  [ x , y ] N [x, y ] = 0  for all x,y ϵ N       (26) 

In light of the primeness of N , Eq.(26) shows that 

[ x , y ] =0 and hence x ϵ Z(N) 

                             Accordingly , d(x) ϵ Z(N), for all x ϵ N      (27) 

Once again using lemma 3, we get N is a commutative ring. 

 

Theorem 5:- Let  N be a   prime near-ring which  admits a  non zero left semi derivation d  

with g, if   [d(x) , y] ϵ Z(N), for all x,y ϵ N, then N is a commutative ring. 

Proof: 

                          Assume that  [d(x) , y] ϵ Z(N),  for all x,y ϵ N    (28) 

                         Hence [[d(x) , y] , t ] = 0,  for all x,y, t ϵ N    (29) 

Replacing  y  by yd(x) in (29) we find that 

                                  [[d(x) , y]d(x)  , t ] = 0, for all x,y, t ϵ N            (30) 

In view of (28), Eq.(30) assures that 

                                     [d(x), y] N [d(x) , y] = {0}, for all x,y ϵ N            (31) 

By primeness of N Equation (31) shows that 

[d(x), y] = 0, for all x,y ϵ N 

Hence  d(N) ⊂ Z(N) and application of lemma 3 assures that  N is a commutative ring. 

 

Theorem 6: Let  N be a  2-torsion free prime near-ring then there exists a  non zero left semi 

derivation d  with g of N  such that  d(x) o y = x o y  for all x,y ϵ N, then N is a commutative 

ring. 

Proof: 

                     Suppose that   d(x) o y = x o y     for all x,y ϵ N         (32) 

Replacing  x  by yx in (32) we obtain 

d(yx) o y = yx o y 
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d(yx) o y = y ( x o y ) 

Using eq.(32) implies 

d(yx) o y = y (d(x) o y) 

d(yx) y +  y d(yx) = y d(x) y + y2 d(x) 

y d(x) y + g(x)d(y)y + y2 d(x) + y g(x)d(y) =  y d(x) y + y2 d(x) 

g(x)d(y)y + y g(x)d(y) =  0 

Since g is on to we have x d(y) y +  yx d(y) =  0 

                                  yx d(y) =  - x d(y) y for all x,y ϵ N                                      (33) 

Replacing  x  by xz in (33), we find that 

yxzd(y) = - xzd(y)y 

=  -x(zd(y)y) = -x(-yzd(y)) = -x(-y)zd(y)  for all x,y ,z ϵ N 

The last expression reduced to 

                                               yxzd(y) =  -x(-y)zd(y)  for all x,y,z ϵ N        (34) 

 Since  -yxzd(y) = (-y)xzd(y),  (34) becomes 

                                   (-y)xzd(y) = x(-y)zd(y),  for all x,y,z ϵ N                          (35) 

Taking  -y instead of y in (35) we obtain 

yxzd(-y) = xyzd(-y)  for all  x,y,z ϵ N 

So  that (yx-xy)zd(-y) = 0  and therefore 

                                  [ y , x ] N d(-y) = {0}   for all  x,y ϵ N                          (36) 

By primeness , Eq.(36) assures that for each  y ϵ N , either y ϵ Z(N)  or d(-y) = 0. 

                                       Accordingly , d(y) = 0  or y ϵ Z(N)  for all y ϵ N      (37) 

Since Eq.(37) is the same as Eq.(11), arguing as in the proof of Theorem 2 we conclude that 

N is a commutative ring. 

 

Theorem 7: Let  N be a  2-torsion free prime near-ring which  admits a  non zero left semi 

derivation d  with g  such that d(x o y) ϵ Z(N), for all x,y ϵ N, then N is a commutative ring. 

Proof: 

                                     Suppose that   d(x o y) ϵ Z(N), for all x,y ϵ N       (38) 

(a) If Z(N) = {0}, then d( x o y ) = 0 and replacing  y  by  yx we obtain 

d( x o yx ) = 0 
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d(( x o y )x) = 0 

(xoy)d(x) + g(x)d(xoy) = 0,  since d(xoy) =0 implies 

(xoy)d(x) = 0   for all x,y ϵ N   and thus 

                                               xyd(x) = - yxd(x)  for all x,y ϵ N             (39) 

Substituting  yz for y in (39), we have 

xyxd(x) = - yzxd(x) = -y (-xzd(x)) = - y (-x)zd(x) for all  x,y,z ϵ N 

this means that 

                                      xyxd(x) = - y (-x)zd(x) for all  x,y,z ϵ N                     (40) 

Since   -xyzd(x) = (-x)yzd(x), then  (40) becomes 

                                          (-x)yzd(x) = y(-x)zd(x)  for all  x,y,z ϵ N                    (41) 

                                     Then  [ -x , y ] z d(x) = 0  for all  x,y,z ϵ N            (42) 

Taking –x instead of x in (42) gives 

                                            [ x , y ] z d(-x) = 0 for all  x,y,z ϵ N                     (43) 

                      Accordingly ,    [ x , y ] N d(-x) = 0  for all  x,y,z                            (44) 

Since Eq.(44) is the same as Eq.(36), arguing as in the proof of Theorem 6,  we conclude that 

N is a commutative ring. 

                        (b) If Z(N) ≠ { 0}, replace  y  by  yz in (38), where z ϵ Z(N) weget 

d( x o yz ) ϵ Z(N) 

d((xoy)z – y[ x , z] ) ϵ Z(N) 

Since  z ϵ Z(N) implies,  d((xoy)z) ϵ Z(N) 

                              (xoy)d(z) + g(z)d( xoy) ϵ Z(N) , for all x,y ϵ N , z ϵ Z(N)           (45) 

Using d[ x , y ] ϵ Z(N) and  z ϵ Z(N),  equation (45) reduces to 

                           (xoy) d(z) ϵ Z(N)  ,  for all x,y ϵ N , z ϵ Z(N)             (46) 

Since  d(z) ϵ Z(N), (46) yields that 

[(xoy) d(z) , t ] = 0   for all x,y ,t ϵ N , z ϵ Z(N) 

(xoy) [d(z) , t ] + [(xoy) , t ] d(z) = 0, 

Since  d(z) ϵ Z(N) implies   [(xoy) , t ] d(z) = 0,  so 

                                [(xoy) , t ] N d(z) = 0    for all  x,y ,t ϵ N , z ϵ Z(N)   (47) 

By primeness of N Eq.(47) forces 

                            either d(Z(N)) = {0}  or xoy ϵ Z(N) for all x,y ϵ N   (48) 
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Suppose that d(Z(N)) = 0 . If 0 ≠ y ϵ Z(N) 

Since d( xoy) = d(xy+yx) ϵ Z(N)  =  xd(y) + g(y)d(x) + yd(x) + g(x)d(y) ϵ Z(N), 

Since y ϵ Z(N), g is onto we have 

d( x o y )   = d(x)y + d(x)y ϵ Z(N), then d(d(x)y+d(x)y) = 0 and hence 

                                         ( d2(x) + d2(x)) y = 0  for all  x ϵ N                    (49) 

Using the fact that  0 ≠ y ϵ Z(N) , Eq.(49) leads to  d2(x) = 0  for all  x ϵ N. 

So that d2 = 0  and lemma 2 forces d = 0, a contradiction. Accordingly, we have 

x  o y ϵ Z(N)  for all  x , y  ϵ N. 

Let  0 ≠ y ϵ Z(N),  from  x o y = y ( x + x ). 

x2 o y = y (x2 + x2 ) it follows , because of the primeness, that 

( x + x ) xt = (x2 + x2 )t = t(x2 + x2 ) = t( x + x )x = ( x + x )tx  for all  x , t ϵ N. 

and  therefore 

                       ( x + x ) N [ x , t ] = {0}  for all  x ,t ϵ N.           (50) 

Once again using the primeness hypothesis, Eq.(50) yields 

x ϵ Z(N)  or 2x = 0 in which case  2-torsion freeness forces x= 0. 

Consequently , in both cases we arrive at x ϵ Z(N)  for all x ϵ N. 

Hence  d(Z) ⊂ Z(N) and lemma 3  assures that N is a commutative ring. 

 

Theorem 8: Let  N be a  2-torsion free prime near-ring which  admits a  non zero left semi 

derivation d  with g  such that  d(x) o y  ϵ Z(N), for all x,y ϵ N, then N is a commutative ring. 

Proof: 

                              Assume that    d(x) o y  ϵ Z(N),  for all  x,y ϵ N              (51) 

(a) If Z(N) = 0 , then Eq.(51) reduces to 

                                    d(x)y = - yd(x)    for all  x,y ϵ N                       (52) 

Substituting  yz for  y in (52) we obtain 

d(x)yz = - yzd(x) = (-y)zd(x) = (-y)(-d(x)z) = (-y)d(-x)z     for all  x,y, z ϵ N 

in such a way 

                                          (d(x)y+yd(-x))z = 0  for all  x,y, z ϵ N                       (53) 

                                      Taking  -x instead of  x in (53) we get 

                         (-d(x)y + yd(x)) N z = {0}  for all  x,y, z ϵ N                     (54) 
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Since N is prime , Eq.(54) forces d(N) ⊂ Z(N) and lemma 3 it follows that N is a  

commutative ring. 

(b) Suppose that  Z(N) ≠ {0}. If   0 ≠ z ϵ Z(N), then since d(x) o z ϵ Z(N), we find that 

d(x)z + zd(x) ϵ Z(N) 

                         Since  z ϵ Z(N) implies  d(x) + d(x)  ϵ Z(N)  for all  x ϵ N           (55) 

More over from (51)  it follows 

d( x + x)y + y d( x+ x)  ϵ Z(N) which, because of (55) yields that 

(d( x + x) +  d( x+ x)) y  ϵ Z(N)  for all  x,y, z ϵ N 

and therefore, for all   t, x, y ϵ N  we have 

(d( x + x) +  d( x+ x)) ty = y (d( x + x) +  d( x+ x))t 

= (d( x + x) +  d( x+ x)) yt  for all  x , t ϵ N 

So that 

             (d( x + x) +  d( x+ x)) N [ t , y ] = {0}  for all   t, x, y ϵ N     (56) 

In view of the primeness of N Eq.(56) implies that either d( x + x) + d( x + x) = 0 and thus  

d= 0, a contradiction, or N ⊂ Z(N) in which case  d(N) ⊂Z(N),then by lemma 3,     

N is a commutating ring. 

 

Theorem 9: Let  N be a  2-torsion free prime near-ring which  admits a  non zero left semi 

derivation d  with g  such that  d(x o y) = [ x , y ] for all x,y ϵ N, then N is a commutative 

ring. 

Proof: 

                             We have  d(x o y) = [ x , y ]  for all x,y ϵ N     (57) 

Replacing  y  by  xy in  (57), we get 

d(x(x o y )) = x[ x , y ] 

x d(x o y )  + g(x o y)d(x) = x[ x , y ] 

Since g is on to and using (57) we get 

                                ( x o y ) d(x)  = 0  for all x,y ϵ N               (58) 

Replacing y  by zy  in (58) we find that 

(x(zy) + (zy)x)d(x) = 0  for all x,y,z ϵ N 

Now application of (58) yields that  yxd(x) = -xyd(x) 
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Combining this fact together with the latter relation we arrive at 

(xz + z(-x))yd(x) = 0  for all x,y,z ϵ N 

[ x , z ] y d(x) = 0  for all x,y,z ϵ N 

                                      [ x , z ] N d(x) = 0  for all x,z ϵ N        (59) 

But since N is a prime near-ring ,for which fixed  x ϵ N either 

d(x) = 0   or  x ϵ Z( N)  for all x ϵ N 

Hence using similar arguments as used after Eq.(5) we find that N is a commutative ring. 

In this case (57) and 2-torsion freeness implies that 

                                             d(xy) = 0  for all x,y ϵ N   (60) 

                  this means that  xd(y) + g(y)d(x) = 0  for all x,y ϵ N           (61) 

putting x  by xz in (61) and using(60) , we get 

x z d(y) = 0 which implies  x N d(y) = {0}  for all x,y ϵ N 

Since N is a prime and  d ≠ 0, then x = 0  for x ϵ N, a contradiction. 

 

Theorem 10: Let  N be a  2-torsion free prime near-ring which  admits a  non zero left semi 

derivation d  with g  such that  d [ x , y ] = (x o y)  for all x,y ϵ N, then N is a commutative 

ring. 

Proof: 

                          We have  d [ x , y ] = (x o y)   for all x,y ϵ N           (62) 

Replacing  y  by  xy in  (62), we get 

d(x[ x , y ]) = x(x o y ) 

x d[ x , y ]  + g[ x , y ]d(x) = x(x o y ) 

Since g is on to and using (61) we get 

                                  [ x , y ] d(x)  = 0  for all x,y ϵ N          (63) 

Replacing y by yz in (63) , we get 

                                [ x , y ]  N d(x)  = 0  for all x,y ϵ N                  (64) 

Since Eq.(64) is the same as Eq.(59) , arguing as in the proof of Theorem 9  we get the  

required result. 
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