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Abstract 

 

A set D is a subset of V (G) is called dominating (or total dominating) set in G, if             D ∩ N[v] ≠ ɸ 
(or D ∩ N(v) ≠ ɸ , respectively) for every vertex v ϵ V(G). The minimum number of vertices of a 

dominating set (or of a total dominating set) in G is called the domination number γ(G) (or the total 
domination number γt(G), respectively) of G. If v is a vertex of a graph G, then N(v) is its open 
neighbourhood, (ie) the set of all vertices adjacent to v in G. A mapping f : V(G) → { -2,1 }, where 

V(G) is the vertex set of G, is called a Bold Signed Total Dominating Function (BSTDF) on G, if w(f) = 
∑xϵN(v) f(x)  ≥ 1 for each              v ϵ V(G). minf{∑xϵV(G) f(x): f is a BSTDF } is called the bold signed 

total domination number of G and is denoted by γbst(G). The bold signed total domination number of a 
graph is a certain variant of the domination number. The lower bounds of γbst(G) are found for the case 
of regular graphs, and γbst(G) are found for complete graphs, circuits and complete bipatite graphs. The 

independent proofs are seen. 
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1 Introduction  

 
In this paper we study the bold signed total domination number of a graph and using the notation as in 

[2]. We consider finite undirected graphs without loops and multiple edges [1]. The vertex set of a graph 
G is denoted by V (G). If v ϵ V (G), then the open neighbourhood N(v) of v in G is the set of all vertices 
which are adjacent to v in G. Further, the closed neighbourhood of v in G is de fined as                       

N[v] = N(v) U {v}. Let f be a mapping of V (G) into set of real numbers, let S is a subset of V(G). Then 
we denote f(S) = ∑xϵS f(x). Futher, the weight of f is w(f) = f(V(G)) = ∑xϵV(G) f(x). We will study the 
concept, from the definition. A function f : V(G) → { -2,1 } is called a Bold Signed dominating function 

(shortly BSDF ) of G, if f(N[v]) ≥ 1 for each  v ϵ V(G). The minimum of w(f) = f(V(G)) =  ∑xϵV(G) f(x), 
taken over all BSDF of G, is the bold signed domination number γbs(G) of G. Similarly, a function                   

f : V(G) → { -2,1 } is called a bold signed total dominating function (shortly BSTDF ) of G, if       
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f(N(v)) ≥ 1 for each v ϵ V(G). The minimum of w(f) = f(V(G)) = ∑xϵV(G) f(x), taken over all BSTDF of 
G, is the bold signed total domination number γbst(G) of G. 

Lemma 1.1 Let f : V(G) → { -2,1 } and S is a subset of V(G). Then f(S) ≡ |S| (mod 3). 
 

Proof: Let S+ = {x ϵ S : f(x) = 1}, S- = {x ϵ S : f(x) = -2}. Then |S| = |S+| + |S-|. Therefore  
f(S) = ∑xϵS f(x) = |S+|-2|S-|. Therefore |S|- f(S) = 3|S-| (i.e.) f(S) ≡ |S| (mod 3). 
 

Theorem 1.2 For a circuit Cn of length n ≥ 3 we have  γbst(Cn) = n. 
 

Proof:Let Cn be a circuit of length n. Let r be the number of vertices assigned with -2. (ie) n-r vertices 

assigned with 1. Now f(N(v)) = (2-r)-2r ≥ 1 (since N(v) contains only 2 vertices in Cn). (i.e.) 2-3r ≥1 

implies 3r ≤1 (i.e.) r ≤ (1/3). 
Since r is an integer, r=0. Therefore all the vertices are assigned with 1.  

Hence γbst(Cn) = min w(f) = ∑vϵV(G)f(v) = n. 

 

Theorem 1.3 Let G be a regular graph of degree r. Then for all n ≥3,  

 

                        n/r        if   r ≡1(mod 3). 

 

γbst(G) ≥          2n/r      if   r ≡2(mod 3). 

 

                        3n/r      if   r ≡0(mod 3). 

 

Proof: Let G be a regular graph of degree r and n be the number of vertices. If  r = 1, then  γbst(G) = 2. If 
r = 2, then γbst(G) = n ( since G = Cn). For r ≥ 3. Let f be a BSTDF of G such that min w(f) = γbst(G). Let 
V + = {v ϵ V(G) : f(v) = 1} and V- = {v ϵ V(G) : f(v) = -2}. Let E0 be the set of all edges joining a vertex 

of V + with a vertex of V- in G. Let u ϵ V + and let u be adjacent to exactly s vertices of V- . Hence s 
vertices assign values -2. Then u is adjacent to r- s vertices of V +,since deg u = r. r - s vertices are 

assigned with value 1. Now f(N(u)) = (r-s)-2s = r-3s ≥ 1. (since f is BSTDF, f(N(u)) ≥ 1). 3s ≤ r - 1,  
s ≤ (r-1)/3. Therefore u is adjacent to atmost (r-1)/3 vertices ov V-. 
Since s is an integer,           

                

                       (r-1)/3               if   r ≡1(mod 3). 

 

       s  ≤          (r-1)/3-(1/3)      if   r ≡2(mod 3). 

 

                       (r-1)/3-(2/3)      if   r ≡0(mod 3). 
 

 
Now let v ϵ V- and let v be adjacent to exactly t vertices of V+. Then v is adjacent to (r-t) vertices of V-. 
Therefore f(N(v)) = t-2(r-t) = 3t-2r  ≥ 1(since f(N(v)) ≥ 1). (i.e.) t ≥ (1+2r)/3.  

 

                                      (1+2r)/3                if   r ≡1(mod 3). 

 

Therefore      t  ≥           (1+2r)/3+(1/3)      if   r ≡2(mod 3). 

 

                                      (1+2r)/3+(2/3)      if   r ≡0(mod 3). 
 

 
If n+ = |V+| and n- = |V-|, then |E0| ≤ n+ s and |E0| ≥ n- t. 
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Case (i) For r ≡ 1 mod 3. 
  

 |E0| ≤ n+ (r-1)/3 and |E0| ≥ n- (1+2r)/3. 
 

 
n- (1+2r)/3 ≤  n+ (r-1)/3 
      n+ + n- ≤ (n+ - 2n-) r 

               n ≤ w(f) r 
               n ≤ γbst(G) r 

       γbst(G) ≥ n/r 
 
Hence γbst(G) ≥ n/r if r ≡ 1 mod 3. 

 
Case (ii) For r ≡ 2 mod 3. 

  
 |E0| ≤ n+ [(r-1)/3 – (1/3)] and |E0| ≥ n- [(1+2r)/3 + (1/3)] . 
 

n- [(1+2r)/3 + (1/3)] ≤  n+ [(r-1)/3 – (1/3)] 
                  n- (2+2r) ≤ n+ (r-2) 

                2(n+ + n- ) ≤ (n+ - 2n-) r 

                            2n ≤ w(f) r 
                            2n ≤ γbst(G) r 

                      γbst(G) ≥ 2n/r 
 

Hence γbst(G) ≥ 2n/r if r ≡ 2 mod 3. 
 
Case (iii) For r ≡ 0 mod 3. 

  
 |E0| ≤ n+ [(r-1)/3 – (2/3)] and |E0| ≥ n- [(1+2r)/3 + (2/3)] . 

 
n- [(1+2r)/3 + (2/3)] ≤  n+ [(r-1)/3 – (2/3)] 
                  n- (3+2r) ≤ n+ (r-3) 

                3(n+ + n- ) ≤ (n+ - 2n-) r 

                            3n ≤ w(f) r 

                            3n ≤ γbst(G) r 
                      γbst(G) ≥ 3n/r 
 

Hence γbst(G) ≥ 3n/r if r ≡ 0 mod 3. 
 

Theorem 1.4 If Kn (n ≥ 2) is a complete graph with n vertices, then  
                 
                        3   if   n = 3s 

 
γbst(Kn) =         4   if    n = 3s + 1 

 
                         2  if    n = 3s + 2          for all n ≥ 3 
 

Proof: Let Kn be a complete graph with n vertices.Therefore N(v) contains (n-1) vertices. Let r be the 
number of vertices assign -2.Then (n-1)-r vertices assign 1.We know that f(N(v)) ≥ 1.Therefore 

(n-1-r)-2r ≥ 1. (i.e.) n-1-3r ≥ 1. (i.e.) n-2 ≥ 3r. Therefore r ≤ (n-2)/3. 
Since r is an integer, 
 

                       (n-2)/3               if   n = 3s + 2. 
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       r  ≤          (n-2)/3-(2/3)       if   n = 3s + 1.  

 
                       (n-2)/3-(1/3)      if    n = 3s. 

 
Therefore w(f) = ∑vϵV(G)f(v) = n-r-2r = n-3r. 
 

                                    n-3[(n-2)/3] = 2                  if  r ≤ (n-2)/3,  n = 3s + 2. 

 

(i.e.)       w(f)   ≥         n-3[(n-2)/3-(2/3)] = 4         if  r ≤ (n-2)/3-(2/3),  n = 3s + 1. 

 

                                    n-3[(n-2)/3-(1/3)] = 3         if  r ≤ (n-2)/3-(1/3),  n = 3s. 

 
             

                                                              3   if   n = 3s 
 
Therefore    γbst(Kn) = min w(f) =         4   if    n = 3s + 1 

 
                                                               2  if    n = 3s + 2      for all n ≥ 3. 

 
 
Theorem 1.5 For a complete bipartite graph Km,n we have 

 
                            2  if both m and n are 3si + 1, i = 1 or 2. 

                            3  if one of m, n is 3si + 1 and another is 3sj + 2, i ≠ j, i, j = 1, 2. 
γbst(Km,n) =         4  if both m and n are 3si + 2 or one of m, n is 3si and another is 3sj + 1, i ≠ j, i, j = 1, 2. 
                            5  if one of m, n is 3si and another is 3sj + 2, i ≠ j, i, j = 1, 2. 

                            6  if both m and n are 3si, i = 1, 2                 for m, n ≥  3 
 

Proof: Let Km,n be a complete bipartite graph. Let V1 be a vertex set containing m vertices and V2 be 
a vertex set containing n vertices. Let r1 vertices assigned with -2 in V1 and r2 vertices assigned with  -
2 in V2. 

Therefore 
 

  n-r2-2r2 ≥ 1   if  v ϵ V1  
f(N(v))  =  
  m-r1-2r1 ≥ 1   if  v ϵ V2 . 

 
 

  n-3r2 ≥ 1   if  v ϵ V1  
              =  
  m-3r1 ≥ 1   if  v ϵ V2 . 

 
 

  3r2 ≤  n-1   if  v ϵ V1  
              =  
  3r1 ≤  m-1   if  v ϵ V2 . 

 
 

   r2 ≤  (n-1)/3   if  v ϵ V1  
              =  
   r1 ≤  (m-1)/3   if  v ϵ V2 . 
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 Since r1 and r2 are integers, m = 3s1, 3s1 + 1 or 3s1 + 2 and n = 3s2, 3s2 + 1 or 3s2 + 2. 
 

If m = 3s1, r1 ≤ (m-1)/3 – (2/3) and n = 3s2, r2 ≤ (n-1)/3 – (2/3). 
 
If m = 3s1 + 1, r1 ≤ (m-1)/3 and n = 3s2 + 1, r2 ≤ (n-1)/3 . 

 
If m = 3s1 + 2, r1 ≤ (m-1)/3 – (1/3) and n = 3s2 + 2, r2 ≤ (n-1)/3 – (1/3). 

 
Case (i): 

If m = 3s1 + 1, n = 3s2 + 1. 

(i.e.) r1 ≤ (m-1)/3 and r2 ≤ (n-1)/3. 
Therefore  

 w(f)   =  ∑vϵV(G)f(v). 
           =  m-r1-2r1+n-r2-2r2 
           =  m-3r1+n-3r2 

           ≥  m+n-3[(m-1)/3]-3[(n-1)/3] 
           =  m+n-m+1-n+1 

           =  2. 
Therefore γbst(G) = γbst(Km,n) = min w(f) = 2. 
 

 
Case (ii): 

If m = 3s1 + 1, n = 3s2 + 2. 
(i.e.) r1 ≤ (m-1)/3 and r2 ≤ (n-1)/3 – (1/3). 
Therefore  

 w(f)   =  ∑vϵV(G)f(v). 
           =  m-3r1+n-3r2 

           ≥  m+n-3[(m-1)/3]-3[(n-1)/3-(1/3)] 
           =  3. 
Therefore   γbst(Km,n) = min w(f) = 3. 

 
 

Case (iii): 

If m = 3s1 + 2, n = 3s2 + 2. 
(i.e.) r1 ≤ (m-1)/3-(1/3) and r2 ≤ (n-1)/3 – (1/3). 

Therefore  
 w(f)   =  ∑vϵV(G)f(v). 

           =  m-3r1+n-3r2 
           ≥  m+n-3[(m-1)/3-(1/3)]-3[(n-1)/3-(1/3)] 
           =  4. 

Therefore   γbst(Km,n) = min w(f) = 4. 
 

 
Case (iv): 

If m = 3s1, n = 3s2 + 1. 

(i.e.) r1 ≤ (m-1)/3-(2/3) and r2 ≤ (n-1)/3. 
Therefore  

 w(f)   =  ∑vϵV(G)f(v). 
           =  m-3r1+n-3r2 
           ≥  m+n-3[(m-1)/3-(2/3)]-3[(n-1)/3] 

           =  4. 
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Therefore   γbst(Km,n) = min w(f) = 4. 
 

 
Case (v): 

If m = 3s1, n = 3s2 + 2. 
(i.e.) r1 ≤ (m-1)/3-(2/3) and r2 ≤ (n-1)/3 – (1/3). 
Therefore  

 w(f)   =  ∑vϵV(G)f(v). 
           =  m-3r1+n-3r2 

           ≥  m+n-3[(m-1)/3-(2/3)]-3[(n-1)/3-(1/3)] 
           =  5. 
Therefore   γbst(Km,n) = min w(f) = 5. 

Case (vi): 

If m = 3s1, n = 3s2. 

(i.e.) r1 ≤ (m-1)/3-(2/3) and r2 ≤ (n-1)/3 – (2/3). 
Therefore  
 w(f)   =  ∑vϵV(G)f(v). 

           =  m-3r1+n-3r2 
           ≥  m+n-3[(m-1)/3-(2/3)]-3[(n-1)/3-(2/3)] 

           =  6. 
Therefore   γbst(Km,n) = min w(f) = 6. 
 

                            2  if both m and n are 3si + 1, i = 1 or 2. 
                            3  if one of m, n is 3si + 1 and another is 3sj + 2, i ≠ j, i, j = 1, 2. 

γbst(Km,n) =         4  if both m and n are 3si + 2 or one of m, n is 3si and another is 3sj + 1, i ≠ j, i, j = 1, 2. 
                            5  if one of m, n is 3si and another is 3sj + 2, i ≠ j, i, j = 1, 2. 
                            6  if both m and n are 3si, i = 1, 2                 for m, n ≥  3. 
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