Bold signed total domination

KR.Nithyakalyani¹ and Dr.K.Subramanian²

¹ Lecturer, Department of Mathematics, Alagappa Govt. Arts College, Karaikudi, Tamil Nadu, India, <u>nithyakalyani 05 @gmail.com</u>

² Associate Professor, Department of Mathematics, Alagappa Govt. Arts College, Karaikudi, TamilNadu, India, <u>drks1955@gmail.com</u>

Corresponding Author:

KR. Nithyakalyani, Lecturer, Department of Mathematics, Alagappa Govt. Arts College, Karaikudi - 630003, Tamil Nadu, India.

Email: nithyakalyani05@gmail.com

Abstract

A set D is a subset of V (G) is called dominating (or total dominating) set in G, if $D \cap N[v] \neq \phi$ (or $D \cap N(v) \neq \phi$, respectively) for every vertex $v \in V(G)$. The minimum number of vertices of a dominating set (or of a total dominating set) in G is called the domination number $\gamma(G)$ (or the total domination number $\gamma_t(G)$, respectively) of G. If v is a vertex of a graph G, then N(v) is its open neighbourhood, (ie) the set of all vertices adjacent to v in G. A mapping $f : V(G) \rightarrow \{-2,1\}$, where V(G) is the vertex set of G, is called a Bold Signed Total Dominating Function (BSTDF) on G, if w(f) = $\sum_{x \in N(v)} f(x) \ge 1$ for each $v \in V(G)$. min_f { $\sum_{x \in V(G)} f(x)$: f is a BSTDF } is called the bold signed total domination number of G and is denoted by $\gamma_{bst}(G)$. The bold signed total domination number of a graph is a certain variant of the domination number. The lower bounds of $\gamma_{bst}(G)$ are found for the case of regular graphs, and $\gamma_{bst}(G)$ are found for complete graphs, circuits and complete bipatite graphs. The independent proofs are seen.

AMS subject classification (2000): 05C69,05C35,05C22.

Keywords: Dominating function; Domination number; Bold signed total dominating function; Bold signed total domination number.

Title: Bold signed total domination.

1 Introduction

In this paper we study the bold signed total domination number of a graph and using the notation as in [2]. We consider finite undirected graphs without loops and multiple edges [1]. The vertex set of a graph G is denoted by V (G). If $v \in V$ (G), then the open neighbourhood N(v) of v in G is the set of all vertices which are adjacent to v in G. Further, the closed neighbourhood of v in G is defined as $N[v] = N(v) \cup \{v\}$. Let f be a mapping of V (G) into set of real numbers, let S is a subset of V(G). Then we denote $f(S) = \sum_{x \in S} f(x)$. Futher, the weight of f is $w(f) = f(V(G)) = \sum_{x \in V(G)} f(x)$. We will study the concept, from the definition. A function $f : V(G) \rightarrow \{-2,1\}$ is called a Bold Signed dominating function (shortly BSDF) of G, if $f(N[v]) \ge 1$ for each $v \in V(G)$. The minimum of $w(f) = f(V(G)) = \sum_{x \in V(G)} f(x)$, taken over all BSDF of G, is the bold signed domination number $\gamma_{bs}(G)$ of G. Similarly, a function $f : V(G) \rightarrow \{-2,1\}$ is called a bold signed total dominating function (shortly BSTDF) of G, if $f(N[v]) \ge 1$ for each $v \in V(G)$.

 $f(N(v)) \ge 1$ for each $v \in V(G)$. The minimum of $w(f) = f(V(G)) = \sum_{x \in V(G)} f(x)$, taken over all BSTDF of G, is the bold signed total domination number $\gamma_{bst}(G)$ of G. **Lemma 1.1** Let $f: V(G) \rightarrow \{-2, 1\}$ and S is a subset of V(G). Then $f(S) \equiv |S| \pmod{3}$.

Proof: Let $S^+ = \{x \in S : f(x) = 1\}$, $S^- = \{x \in S : f(x) = -2\}$. Then $|S| = |S^+| + |S^-|$. Therefore $f(S) = \sum_{x \in S} f(x) = |S^+| - 2|S^-|$. Therefore $|S| - f(S) = 3|S^-|$ (i.e.) $f(S) \equiv |S| \pmod{3}$.

Theorem 1.2 For a circuit C_n of length $n \ge 3$ we have $\gamma_{bst}(C_n) = n$.

Proof:Let C_n be a circuit of length n. Let r be the number of vertices assigned with -2. (ie) n-r vertices assigned with 1. Now $f(N(v)) = (2-r)-2r \ge 1$ (since N(v) contains only 2 vertices in C_n). (i.e.) $2-3r \ge 1$ implies $3r \le 1$ (i.e.) $r \le (1/3)$.

Since r is an integer, r=0. Therefore all the vertices are assigned with 1. Hence $\gamma_{bst}(C_n) = \min w(f) = \sum_{v \in V(G)} f(v) = n$.

Theorem 1.3 Let G be a regular graph of degree r. Then for all $n \ge 3$,

$$\gamma_{bst}(G) \geq \begin{pmatrix} n/r & \text{if } r \equiv 1 \pmod{3}. \\ 2n/r & \text{if } r \equiv 2 \pmod{3}. \\ 3n/r & \text{if } r \equiv 0 \pmod{3}. \end{pmatrix}$$

Proof: Let G be a regular graph of degree r and n be the number of vertices. If r = 1, then $\gamma_{bst}(G) = 2$. If r = 2, then $\gamma_{bst}(G) = n$ (since $G = C_n$). For $r \ge 3$. Let f be a BSTDF of G such that min $w(f) = \gamma_{bst}(G)$. Let $V^+ = \{v \in V(G) : f(v) = 1\}$ and $V^- = \{v \in V(G) : f(v) = -2\}$. Let E_0 be the set of all edges joining a vertex of V^+ with a vertex of V^- in G. Let $u \in V^+$ and let u be adjacent to exactly s vertices of V^- . Hence s vertices assign values -2. Then u is adjacent to r- s vertices of V^+ , since deg u = r. r - s vertices are assigned with value 1. Now $f(N(u)) = (r-s)-2s = r-3s \ge 1$. (since f is BSTDF, $f(N(u)) \ge 1$). $3s \le r - 1$, $s \le (r-1)/3$. Therefore u is adjacent to atmost (r-1)/3 vertices ov V^- .

$$s \leq \begin{cases} (r-1)/3 & \text{if } r \equiv 1 \pmod{3}. \\ (r-1)/3 \cdot (1/3) & \text{if } r \equiv 2 \pmod{3}. \\ (r-1)/3 \cdot (2/3) & \text{if } r \equiv 0 \pmod{3}. \end{cases}$$

Now let $v \in V^{-}$ and let v be adjacent to exactly t vertices of V^{+} . Then v is adjacent to (r-t) vertices of V^{-} . Therefore $f(N(v)) = t-2(r-t) = 3t-2r \ge 1$ (since $f(N(v)) \ge 1$). (i.e.) $t \ge (1+2r)/3$.

Therefore
$$t \ge \begin{cases} (1+2r)/3 & \text{if } r \equiv 1 \pmod{3}. \\ (1+2r)/3 + (1/3) & \text{if } r \equiv 2 \pmod{3}. \\ (1+2r)/3 + (2/3) & \text{if } r \equiv 0 \pmod{3}. \end{cases}$$

 $\text{ If } n^{\scriptscriptstyle +} = |V^{\scriptscriptstyle +}| \text{ and } n^{\scriptscriptstyle -} = |V^{\scriptscriptstyle -}|, \text{ then } |E_0| \leq n^{\scriptscriptstyle +} \text{ s and } |E_0| \geq n^{\scriptscriptstyle -} \text{ t.}$

 $|E_0| \le n^+ (r-1)/3$ and $|E_0| \ge n^- (1+2r)/3$.

$$\begin{split} n^{\bar{}} \, (1{+}2r)/3 &\leq n^{+} \, (r{-}1)/3 \\ n^{+} + n^{\bar{}} &\leq (n^{+} - 2n^{\bar{}}) \, r \\ n &\leq w(f) \, r \\ n &\leq \gamma_{bst}(G) \, r \\ \gamma_{bst}(G) &\geq n/r \end{split}$$

Hence $\gamma_{bst}(G) \ge n/r$ if $r \equiv 1 \mod 3$.

Case (ii) For
$$r \equiv 2 \mod 3$$
.

$$\begin{split} |E_0| &\leq n^+ \left[(r\text{-}1)/3 - (1/3) \right] \text{ and } |E_0| \geq n^- \left[(1\text{+}2r)/3 + (1/3) \right] \,, \\ n^- \left[(1\text{+}2r)/3 + (1/3) \right] &\leq n^+ \left[(r\text{-}1)/3 - (1/3) \right] \\ n^- (2\text{+}2r) &\leq n^+ (r\text{-}2) \\ 2(n^+ + n^-) &\leq (n^+ - 2n^-) \, r \\ 2n &\leq w(f) \, r \\ 2n &\leq \gamma_{bst}(G) \, r \\ \gamma_{bst}(G) &\geq 2n/r \end{split}$$

Hence $\gamma_{bst}(G) \ge 2n/r$ if $r \equiv 2 \mod 3$.

Case (iii) For $r \equiv 0 \mod 3$.

 $|E_0| \le n^+ \left[(r\text{-}1)/3 - (2/3) \right] \text{ and } |E_0| \ge n^{\text{-}} \left[(1\text{+}2r)/3 + (2/3) \right].$

```
\begin{split} n^{\bar{}} \left[ (1+2r)/3 + (2/3) \right] &\leq n^{+} \left[ (r-1)/3 - (2/3) \right] \\ n^{\bar{}} (3+2r) &\leq n^{+} (r-3) \\ 3(n^{+} + n^{\bar{}}) &\leq (n^{+} - 2n^{\bar{}}) r \\ 3n &\leq w(f) r \\ 3n &\leq \gamma_{bst}(G) r \\ \gamma_{bst}(G) &\geq 3n/r \end{split}
```

Hence $\gamma_{bst}(G) \ge 3n/r$ if $r \equiv 0 \mod 3$.

Theorem 1.4 If K_n ($n \ge 2$) is a complete graph with n vertices, then

$$\gamma_{bst}(K_n) = \begin{cases} 3 & \text{if } n = 3s \\ 4 & \text{if } n = 3s + 1 \\ 2 & \text{if } n = 3s + 2 \end{cases} \quad \text{for all } n \ge 3$$

Proof: Let K_n be a complete graph with n vertices. Therefore N(v) contains (n-1) vertices. Let r be the number of vertices assign -2. Then (n-1)-r vertices assign 1. We know that $f(N(v)) \ge 1$. Therefore $(n-1-r)-2r \ge 1$. (i.e.) $n-1-3r \ge 1$. (i.e.) $n-2 \ge 3r$. Therefore $r \le (n-2)/3$. Since r is an integer,

$$(n-2)/3$$
 if $n = 3s + 2$.

 $r \le (n-2)/3-(2/3)$ if n = 3s + 1.

$$(n-2)/3-(1/3)$$
 if $n=3s$.

Therefore $w(f) = \sum_{v \in V(G)} f(v) = n-r-2r = n-3r$.

$$(i.e.) \quad w(f) \geq \begin{cases} n-3[(n-2)/3] = 2 & \text{if } r \leq (n-2)/3, \ n = 3s + 2. \\ n-3[(n-2)/3-(2/3)] = 4 & \text{if } r \leq (n-2)/3-(2/3), \ n = 3s + 1. \\ n-3[(n-2)/3-(1/3)] = 3 & \text{if } r \leq (n-2)/3-(1/3), \ n = 3s. \end{cases}$$

 $\label{eq:gamma} \text{Therefore} \quad \gamma_{bst}(K_n) = \min \, w(f) = \left\{ \begin{array}{ll} 3 \quad \text{if} \quad n=3s \\ 4 \quad \text{if} \quad n=3s+1 \\ 2 \quad \text{if} \quad n=3s+2 \quad \text{ for all } n \geq 3. \end{array} \right.$

Theorem 1.5 For a complete bipartite graph $K_{m,n}$ we have

$$\gamma_{bst}(K_{m,n}) = \begin{cases} 2 \text{ if both m and n are } 3s_i + 1, i = 1 \text{ or } 2. \\ 3 \text{ if one of m, n is } 3s_i + 1 \text{ and another is } 3s_j + 2, i \neq j, i, j = 1, 2. \\ 4 \text{ if both m and n are } 3s_i + 2 \text{ or one of m, n is } 3s_i \text{ and another is } 3s_j + 1, i \neq j, i, j = 1, 2. \\ 5 \text{ if one of m, n is } 3s_i \text{ and another is } 3s_j + 2, i \neq j, i, j = 1, 2. \\ 6 \text{ if both m and n are } 3s_i, i = 1, 2 \qquad \text{for m, n } \ge 3 \end{cases}$$

Proof: Let $K_{m,n}$ be a complete bipartite graph. Let V_1 be a vertex set containing m vertices and V_2 be a vertex set containing n vertices. Let r_1 vertices assigned with -2 in V_1 and r_2 vertices assigned with -2 in V_2 .

Therefore

$$\begin{split} f(N(v)) &= \left\{ \begin{array}{ll} n\text{-}r_2\text{-}2r_2 \ge 1 & \text{if } v \in V_1 \\ m\text{-}r_1\text{-}2r_1 \ge 1 & \text{if } v \in V_2 \, . \end{array} \right. \\ &= \left\{ \begin{array}{ll} n\text{-}3r_2 \ge 1 & \text{if } v \in V_1 \\ m\text{-}3r_1 \ge 1 & \text{if } v \in V_2 \, . \end{array} \right. \\ &= \left\{ \begin{array}{ll} 3r_2 \le n\text{-}1 & \text{if } v \in V_2 \, . \\ 3r_1 \le m\text{-}1 & \text{if } v \in V_2 \, . \end{array} \right. \\ &= \left\{ \begin{array}{ll} r_2 \le (n\text{-}1)/3 & \text{if } v \in V_1 \\ r_1 \le (m\text{-}1)/3 & \text{if } v \in V_2 \, . \end{array} \right. \end{split} \right. \end{split}$$

Since r_1 and r_2 are integers, $m = 3s_1$, $3s_1 + 1$ or $3s_1 + 2$ and $n = 3s_2$, $3s_2 + 1$ or $3s_2 + 2$.

If $m = 3s_1$, $r_1 \le (m-1)/3 - (2/3)$ and $n = 3s_2$, $r_2 \le (n-1)/3 - (2/3)$.

If $m = 3s_1 + 1$, $r_1 \le (m-1)/3$ and $n = 3s_2 + 1$, $r_2 \le (n-1)/3$.

If $m = 3s_1 + 2$, $r_1 \le (m-1)/3 - (1/3)$ and $n = 3s_2 + 2$, $r_2 \le (n-1)/3 - (1/3)$.

Case (i):

If $m = 3s_1 + 1$, $n = 3s_2 + 1$. (i.e.) $r_1 \le (m-1)/3$ and $r_2 \le (n-1)/3$. Therefore $w(f) = \sum_{v \in V(G)} f(v)$. $= m - r_1 - 2r_1 + n - r_2 - 2r_2$ $= m - 3r_1 + n - 3r_2$ $\ge m + n - 3[(m-1)/3] - 3[(n-1)/3]$ = m + n - m + 1 - n + 1 = 2. Therefore $\gamma_{bst}(G) = \gamma_{bst}(K_{m,n}) = \min w(f) = 2$.

 $\begin{array}{ll} \textbf{Case (ii):} \\ \text{If } m = 3s_1 + 1, \ n = 3s_2 + 2. \\ (i.e.) \ r_1 \leq (m{\text{-}}1)/3 \ \text{and} \ r_2 \leq (n{\text{-}}1)/3 - (1/3). \\ \text{Therefore} \\ & w(f) \ = \ \sum_{v \in V(G)} f(v). \\ & = \ m{\text{-}}3r_1 {+}n{\text{-}}3r_2 \\ & \geq \ m{\text{+}}n{\text{-}}3[(m{\text{-}}1)/3]{\text{-}}3[(n{\text{-}}1)/3{\text{-}}(1/3)] \\ & = \ 3. \\ \text{Therefore} \ \gamma_{bst}(K_{m,n}) = \min \ w(f) = 3. \end{array}$

 $\begin{array}{l} \text{Case (iii):} \\ \text{If } m = 3s_1 + 2, \ n = 3s_2 + 2. \\ (\text{i.e.}) \ r_1 \leq (m\text{-}1)/3\text{-}(1/3) \ \text{and} \ r_2 \leq (n\text{-}1)/3 - (1/3). \\ \text{Therefore} \\ & w(f) \ = \ \sum_{v \in V(G)} f(v). \\ & = \ m\text{-}3r_1 + n\text{-}3r_2 \\ & \geq \ m\text{+}n\text{-}3[(m\text{-}1)/3\text{-}(1/3)]\text{-}3[(n\text{-}1)/3\text{-}(1/3)] \\ & = 4. \\ \text{Therefore} \ \gamma_{bst}(K_{m,n}) = \min \ w(f) = 4. \end{array}$

Case (iv): If $m = 3s_1$, $n = 3s_2 + 1$. (i.e.) $r_1 \le (m-1)/3 - (2/3)$ and $r_2 \le (n-1)/3$. Therefore $w(f) = \sum_{v \in V(G)} f(v)$. $= m - 3r_1 + n - 3r_2$ $\ge m + n - 3[(m-1)/3 - (2/3)] - 3[(n-1)/3]$ = 4. Therefore $\gamma_{bst}(K_{m,n}) = \min w(f) = 4$.

Case (v): If $m = 3s_1$, $n = 3s_2 + 2$. (i.e.) $r_1 \le (m-1)/3 - (2/3)$ and $r_2 \le (n-1)/3 - (1/3)$. Therefore $w(f) = \sum_{v \in V(G)} f(v).$ = m-3r₁+n-3r₂ \geq m+n-3[(m-1)/3-(2/3)]-3[(n-1)/3-(1/3)] = 5. Therefore $\gamma_{bst}(K_{m,n}) = \min w(f) = 5$. Case (vi): If $m = 3s_1$, $n = 3s_2$. (i.e.) $r_1 \le (m-1)/3 - (2/3)$ and $r_2 \le (n-1)/3 - (2/3)$. Therefore $w(f) = \sum_{v \in V(G)} f(v).$ $= m-3r_1+n-3r_2$ \geq m+n-3[(m-1)/3-(2/3)]-3[(n-1)/3-(2/3)] = 6. Therefore $\gamma_{bst}(K_{m,n}) = \min w(f) = 6$. 2 if both m and n are $3s_i + 1$, i = 1 or 2. $\gamma_{bst}(K_{m,n}) = \begin{cases} 2 \text{ if both in and in are } 3s_i + 1, i = 1 \text{ or } 2. \\ 3 \text{ if one of } m, n \text{ is } 3s_i + 1 \text{ and another is } 3s_j + 2, i \neq j, i, j = 1, 2. \\ 4 \text{ if both } m \text{ and } n \text{ are } 3s_i + 2 \text{ or one of } m, n \text{ is } 3s_i \text{ and another is } 3s_j + 1, i \neq j, i, j = 1, 2. \\ 5 \text{ if one of } m, n \text{ is } 3s_i \text{ and another is } 3s_j + 2, i \neq j, i, j = 1, 2. \\ 6 \text{ if both } m \text{ and } n \text{ are } 3s_i, i = 1, 2 \qquad \text{for } m, n \geq 3. \end{cases}$

References

- [1] J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, The MACMILLAN Press Ltd., London and Basingstoke.
- [2] Bohdan Zelinka, Liberec, Signed Total Domination Number of a Graph, Czechoslovak Mathematical Journal,51 (126)(2001), 225-229.
- [3] V.R.Kulli, Theory of Domination in Graphs, Vishwa International Publications, Gulbarga, India.