Bold signed total domination

KR.Nithyakalyani ${ }^{1}$ and Dr.K.Subramanian ${ }^{2}$

${ }^{1}$ Lecturer, Department of Mathematics, Alagappa Govt. Arts College, Karaikudi, Tamil Nadu, India, nithyakalyani05@gmail.com
${ }^{2}$ Associate Professor, Department of Mathematics, Alagappa Govt. Arts College, Karaikudi, Tamil Nadu, India, drks1955@gmail.com
Corresponding Author:
KR. Nithyakalyani, Lecturer, Department of Mathematics, Alagappa Govt. Arts College, Karaikudi - 630003, Tamil Nadu, India.
Email: nithyakalyani05@gmail.com

Abstract

A set D is a subset of $\mathrm{V}(\mathrm{G})$ is called dominating (or total dominating) set in G , if $$
\mathrm{D} \cap \mathrm{~N}[\mathrm{v}] \neq \phi
$$ (or $\mathrm{D} \cap \mathrm{N}(\mathrm{v}) \neq \phi$, respectively) for every vertex $\mathrm{v} \in \mathrm{V}(\mathrm{G})$. The minimum number of vertices of a dominating set (or of a total dominating set) in G is called the domination number $\gamma(\mathrm{G})$ (or the total domination number $\gamma_{\mathrm{t}}(\mathrm{G})$, respectively) of G . If v is a vertex of a graph G , then $\mathrm{N}(\mathrm{v})$ is its open neighbourhood, (ie) the set of all vertices adjacent to v in G. A mapping $f: V(G) \rightarrow\{-2,1\}$, where $\mathrm{V}(\mathrm{G})$ is the vertex set of G, is called a Bold Signed Total Dominating Function (BSTDF) on G, if w(f) = $\sum_{x \in N(v)} f(x) \geq 1$ for each $\quad v \in V(G) . \min _{f}\left\{\sum_{x \in V(G)} f(x): f\right.$ is a BSTDF $\}$ is called the bold signed total domination number of G and is denoted by $\gamma_{\mathrm{bst}}(\mathrm{G})$. The bold signed total domination number of a graph is a certain variant of the domination number. The lower bounds of $\gamma_{b s t}(G)$ are found for the case of regular graphs, and $\gamma_{\text {bst }}(\mathrm{G})$ are found for complete graphs, circuits and complete bipatite graphs. The independent proofs are seen.

AMS subject classification (2000): 05C69,05C35,05C22.
Keywords: Dominating function; Domination number; Bold signed total dominating function; Bold signed total domination number.

Title: Bold signed total domination.

1 Introduction

In this paper we study the bold signed total domination number of a graph and using the notation as in [2]. We consider finite undirected graphs without loops and multiple edges [1]. The vertex set of a graph G is denoted by $V(G)$. If $v \in V(G)$, then the open neighbourhood $N(v)$ of v in G is the set of all vertices which are adjacent to v in G. Further, the closed neighbourhood of v in G is defined as $\mathrm{N}[\mathrm{v}]=\mathrm{N}(\mathrm{v}) \mathrm{U}\{\mathrm{v}\}$. Let f be a mapping of $\mathrm{V}(\mathrm{G})$ into set of real numbers, let S is a subset of $\mathrm{V}(\mathrm{G})$. Then we denote $f(S)=\sum_{x \in S} f(x)$. Futher, the weight of f is $w(f)=f(V(G))=\sum_{x \in V(G)} f(x)$. We will study the concept, from the definition. A function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{-2,1\}$ is called a Bold Signed dominating function (shortly BSDF) of G, if $f(N[v]) \geq 1$ for each $v \in V(G)$. The minimum of $w(f)=f(V(G))=\sum_{x \in V(G)} f(x)$, taken over all BSDF of G, is the bold signed domination number $\gamma_{b s}(G)$ of G. Similarly, a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{-2,1\}$ is called a bold signed total dominating function (shortly BSTDF) of G, if
$f(N(v)) \geq 1$ for each $v \in V(G)$. The minimum of $w(f)=f(V(G))=\sum_{x \in V(G)} f(x)$, taken over all BSTDF of G , is the bold signed total domination number $\gamma_{\text {bst }}(\mathrm{G})$ of G .
Lemma 1.1 Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{-2,1\}$ and S is a subset of $\mathrm{V}(\mathrm{G})$. Then $\mathrm{f}(\mathrm{S}) \equiv|\mathrm{S}|(\bmod 3)$.
Proof: Let $S^{+}=\{x \in S: f(x)=1\}, S^{-}=\{x \in S: f(x)=-2\}$. Then $|S|=\left|S^{+}\right|+|S|$. Therefore $f(S)=\sum_{x \in S} f(x)=\left|S^{+}\right|-2\left|S^{-}\right|$. Therefore $|S|-f(S)=3|S|($ i.e. $) f(S) \equiv|S|(\bmod 3)$.

Theorem 1.2 For a circuit C_{n} of length $n \geq 3$ we have $\gamma_{\text {bst }}\left(C_{n}\right)=n$.
Proof:Let C_{n} be a circuit of length n. Let r be the number of vertices assigned with -2. (ie) $n-r$ vertices assigned with 1 . Now $f(N(v))=(2-r)-2 r \geq 1$ (since $N(v)$ contains only 2 vertices in C_{n}). (i.e.) $2-3 r \geq 1$ implies $3 \mathrm{r} \leq 1$ (i.e.) $\mathrm{r} \leq(1 / 3)$.
Since r is an integer, $r=0$. Therefore all the vertices are assigned with 1 .
Hence $\gamma_{\text {bst }}\left(\mathrm{C}_{\mathrm{n}}\right)=\min \mathrm{w}(\mathrm{f})=\sum_{\mathrm{v} \mathrm{\in V}(\mathrm{G})} \mathrm{f}(\mathrm{v})=\mathrm{n}$.
Theorem 1.3 Let G be a regular graph of degree r. Then for all $n \geq 3$,
$\gamma_{\text {bst }}(G) \geq \begin{cases}n / r & \text { if } r \equiv 1(\bmod 3) . \\ 2 n / r & \text { if } r \equiv 2(\bmod 3) . \\ 3 n / r & \text { if } r \equiv 0(\bmod 3) .\end{cases}$
Proof: Let G be a regular graph of degree r and n be the number of vertices. If $r=1$, then $\gamma_{b s t}(G)=2$. If $r=2$, then $\gamma_{\text {bst }}(G)=n\left(\right.$ since $\left.G=C_{n}\right)$. For $r \geq 3$. Let f be a BSTDF of G such that min $w(f)=\gamma_{\text {bst }}(G)$. Let $V^{+}=\{v \in V(G): f(v)=1\}$ and $V^{-}=\{v \in V(G): f(v)=-2\}$. Let E_{0} be the set of all edges joining a vertex of V^{+}with a vertex of V^{-}in G . Let $\mathrm{u} \in \mathrm{V}^{+}$and let u be adjacent to exactly s vertices of V^{-}. Hence s vertices assign values -2 . Then u is adjacent to $r-s$ vertices of V^{+}, since deg $\mathrm{u}=\mathrm{r}$. $\mathrm{r}-\mathrm{s}$ vertices are assigned with value 1 . Now $f(N(u))=(r-s)-2 s=r-3 s \geq 1$. (since f is BSTDF, $f(N(u)) \geq 1) .3 s \leq r-1$, $\mathrm{s} \leq(\mathrm{r}-1) / 3$. There fore u is adjacent to atmost $(\mathrm{r}-1) / 3$ vertices ov V^{-}.
Since s is an integer,

$$
\mathrm{s} \leq \begin{cases}(\mathrm{r}-1) / 3 & \text { if } \mathrm{r} \equiv 1(\bmod 3) \\ (\mathrm{r}-1) / 3-(1 / 3) & \text { if } \mathrm{r} \equiv 2(\bmod 3) \\ (\mathrm{r}-1) / 3-(2 / 3) & \text { if } \mathrm{r} \equiv 0(\bmod 3)\end{cases}
$$

Now let $\mathrm{v} \in \mathrm{V}^{-}$and let v be adjacent to exactly t vertices of V^{+}. Then v is adjacent to ($\mathrm{r}-\mathrm{t}$) vertices of V^{-}. Therefore $\mathrm{f}(\mathrm{N}(\mathrm{v}))=\mathrm{t}-2(\mathrm{r}-\mathrm{t})=3 \mathrm{t}-2 \mathrm{r} \geq 1$ (since $\mathrm{f}(\mathrm{N}(\mathrm{v})) \geq 1$). (i.e.) $\mathrm{t} \geq(1+2 \mathrm{r}) / 3$.

Therefore $\quad t \geq \begin{cases}(1+2 r) / 3 & \text { if } r \equiv 1(\bmod 3) \text {. } \\ (1+2 r) / 3+(1 / 3) & \text { if } r \equiv 2(\bmod 3) \text {. } \\ (1+2 r) / 3+(2 / 3) & \text { if } r \equiv 0(\bmod 3) \text {. }\end{cases}$

If $\mathrm{n}^{+}=\left|\mathrm{V}^{+}\right|$and $\mathrm{n}^{-}=\left|\mathrm{V}^{-}\right|$, then $\left|\mathrm{E}_{0}\right| \leq \mathrm{n}^{+} \mathrm{s}$ and $\left|\mathrm{E}_{0}\right| \geq \mathrm{n}^{-} \mathrm{t}$.

Case (i) For $\mathrm{r} \equiv 1 \bmod 3$.
$\left|\mathrm{E}_{0}\right| \leq \mathrm{n}^{+}(\mathrm{r}-1) / 3$ and $\left|\mathrm{E}_{0}\right| \geq \mathrm{n}^{-}(1+2 \mathrm{r}) / 3$.

$$
\begin{aligned}
\mathrm{n}^{-}(1+2 \mathrm{r}) / 3 & \leq \mathrm{n}^{+}(\mathrm{r}-1) / 3 \\
\mathrm{n}^{+}+\mathrm{n}^{-} & \leq\left(\mathrm{n}^{+}-2 \mathrm{n}^{-}\right) \mathrm{r} \\
\mathrm{n} & \leq \mathrm{w}(\mathrm{f}) \mathrm{r} \\
\mathrm{n} & \left.\leq \gamma_{\text {bst }} \mathrm{G}\right) \mathrm{r} \\
\gamma_{\text {bst }}(\mathrm{G}) & \geq \mathrm{n} / \mathrm{r}
\end{aligned}
$$

Hence $\gamma_{\text {bst }}(G) \geq n / r$ if $r \equiv 1 \bmod 3$.
Case (ii) For $\mathrm{r} \equiv 2 \bmod 3$.
$\left|\mathrm{E}_{0}\right| \leq \mathrm{n}^{+}[(\mathrm{r}-1) / 3-(1 / 3)]$ and $\left|\mathrm{E}_{0}\right| \geq \mathrm{n}^{-}[(1+2 \mathrm{r}) / 3+(1 / 3)]$.

$$
\begin{aligned}
\mathrm{n}^{-}[(1+2 \mathrm{r}) / 3+(1 / 3)] & \leq \mathrm{n}^{+}[(\mathrm{r}-1) / 3-(1 / 3)] \\
\mathrm{n}^{-}(2+2 \mathrm{r}) & \leq \mathrm{n}^{+}(\mathrm{r}-2) \\
2\left(\mathrm{n}^{+}+\mathrm{n}^{-}\right) & \leq\left(\mathrm{n}^{+}-2 \mathrm{n}^{-}\right) \mathrm{r} \\
2 \mathrm{n} & \leq \mathrm{w}(\mathrm{f}) \mathrm{r} \\
2 \mathrm{n} & \leq \gamma_{\text {bst }}(\mathrm{G}) \mathrm{r} \\
\gamma_{\text {bst }}(\mathrm{G}) & \geq 2 \mathrm{n} / \mathrm{r}
\end{aligned}
$$

Hence $\gamma_{\text {bst }}(\mathrm{G}) \geq 2 \mathrm{n} / \mathrm{r}$ if $\mathrm{r} \equiv 2 \bmod 3$.
Case (iii) For $r \equiv 0 \bmod 3$.

$$
\left|\mathrm{E}_{0}\right| \leq \mathrm{n}^{+}[(\mathrm{r}-1) / 3-(2 / 3)] \text { and }\left|\mathrm{E}_{0}\right| \geq \mathrm{n}^{-}[(1+2 \mathrm{r}) / 3+(2 / 3)] .
$$

$\begin{aligned} \mathrm{n}^{-}[(1+2 \mathrm{r}) / 3+(2 / 3)] & \leq \mathrm{n}^{+}[(\mathrm{r}-1) / 3-(2 / 3)] \\ \mathrm{n}^{-}(3+2 \mathrm{r}) & \leq \mathrm{n}^{+}(\mathrm{r}-3) \\ 3\left(\mathrm{n}^{+}+\mathrm{n}^{-}\right) & \leq\left(\mathrm{n}^{+}-2 \mathrm{n}^{-}\right) \mathrm{r} \\ 3 \mathrm{n} & \leq \mathrm{w}(\mathrm{f}) \mathrm{r} \\ 3 \mathrm{n} & \leq \gamma_{\text {bst }}(\mathrm{G}) \mathrm{r} \\ \gamma_{\text {bst }}(\mathrm{G}) & \geq 3 \mathrm{n} / \mathrm{r}\end{aligned}$
Hence $\gamma_{\text {bst }}(\mathrm{G}) \geq 3 \mathrm{n} / \mathrm{r}$ if $\mathrm{r} \equiv 0 \bmod 3$.
Theorem 1.4 If $K_{n}(n \geq 2)$ is a complete graph with n vertices, then
$\gamma_{\text {bst }}\left(\mathrm{K}_{\mathrm{n}}\right)=\left\{\begin{array}{l}3 \text { if } \mathrm{n}=3 \mathrm{~s} \\ 4 \text { if } \mathrm{n}=3 \mathrm{~s}+1 \\ 2 \text { if } \mathrm{n}=3 \mathrm{~s}+2 \quad \text { for all } \mathrm{n} \geq 3\end{array}\right.$
Proof: Let K_{n} be a complete graph with n vertices. Therefore $N(v)$ contains ($n-1$) vertices. Let r be the number of vertices assign -2 .Then ($n-1)$ - r vertices assign 1 . We know that $f(N(v)) \geq 1$.Therefore $(n-1-r)-2 r \geq 1$. (i.e.) $n-1-3 r \geq 1$. (i.e.) $n-2 \geq 3 r$. Therefore $r \leq(n-2) / 3$.
Since r is an integer,
$\left\{\begin{array}{lll}(\mathrm{n}-2) / 3 & \text { if } \mathrm{n}=3 \mathrm{~s}+2 . & \\ & & \\ & & \end{array}\right.$

$$
\begin{array}{ll}
\mathrm{r} \leq \quad & (\mathrm{n}-2) / 3-(2 / 3) \\
& \text { if } \mathrm{n}=3 \mathrm{~s}+1 . \\
(\mathrm{n}-2) / 3-(1 / 3) & \text { if } \mathrm{n}=3 \mathrm{~s} .
\end{array}
$$

There fore $\mathrm{w}(\mathrm{f})=\sum_{\mathrm{veV}(\mathrm{G})} \mathrm{f}(\mathrm{v})=\mathrm{n}-\mathrm{r}-2 \mathrm{r}=\mathrm{n}-3 \mathrm{r}$.
(i.e.) $\quad w(f) \geq \begin{cases}n-3[(n-2) / 3]=2 & \text { if } r \leq(n-2) / 3, n=3 s+2 . \\ n-3[(n-2) / 3-(2 / 3)]=4 \\ n-3[(n-2) / 3-(1 / 3)]=3 & \text { if } r \leq(n-2) / 3-(2 / 3), n=3 s+1 . \\ \text { if } r \leq(n-2) / 3-(1 / 3), n=3 s .\end{cases}$

Therefore $\gamma_{\text {bst }}\left(K_{n}\right)=\min w(f)=\left\{\begin{array}{ll}3 & \text { if } n=3 s \\ 4 & \text { if } n=3 s+1 \\ 2 & \text { if } n=3 s+2\end{array}\right.$ for all $n \geq 3$.

Theorem 1.5 For a complete bipartite graph $K_{m, n}$ we have
$\gamma_{b s t}\left(K_{m, n}\right)=\left\{\begin{array}{l}2 \text { if both } m \text { and } n \text { are } 3 s_{i}+1, i=1 \text { or } 2 . \\ 3 \text { if one of } m, n \text { is } 3 s_{i}+1 \text { and another is } 3 s_{j}+2, i \neq j, i, j=1,2 . \\ 4 \text { if both } m \text { and } n \text { are } 3 s_{i}+2 \text { or one of } m, n \text { is } 3 s_{i} \text { and another is } 3 s_{j}+1, i \neq j, i, j=1,2 . \\ 5 \text { if one of } m, n \text { is } 3 s_{i} \text { and another is } 3 s_{j}+2, i \neq j, i, j=1,2 . \\ 6 \text { if both } m \text { and } n \text { are } 3 s_{i}, i=1,2 \quad \text { for } m, n \geq 3\end{array}\right.$
Proof: Let $K_{m, n}$ be a complete bipartite graph. Let V_{1} be a vertex set containing m vertices and V_{2} be a vertex set containing n vertices. Let r_{1} vertices assigned with -2 in V_{1} and r_{2} vertices assigned with 2 in V_{2}.
Therefore

$$
\begin{aligned}
f(N(v)) & =\left\{\begin{array}{l}
n-r_{2}-2 r_{2} \geq 1 \text { if } v \in V_{1} \\
m-r_{1}-2 r_{1} \geq 1 \text { if } v \in V_{2} .
\end{array}\right. \\
& =\left\{\begin{array}{l}
n-3 r_{2} \geq 1 \text { if } v \in V_{1} \\
m-3 r_{1} \geq 1 \text { if } v \in V_{2} .
\end{array}\right. \\
& =\left\{\begin{array}{l}
3 r_{2} \leq n-1 \text { if } v \in V_{1} \\
3 r_{1} \leq m-1 \text { if } v \in V_{2} .
\end{array}\right. \\
& =\left\{\begin{array}{l}
r_{2} \leq(n-1) / 3 \text { if } v \in V_{1} \\
r_{1} \leq(m-1) / 3 \text { if } v \in V_{2} .
\end{array}\right.
\end{aligned}
$$

Since r_{1} and r_{2} are integers, $\mathrm{m}=3 \mathrm{~s}_{1}, 3 \mathrm{~s}_{1}+1$ or $3 \mathrm{~s}_{1}+2$ and $\mathrm{n}=3 \mathrm{~s}_{2}, 3 \mathrm{~s}_{2}+1$ or $3 \mathrm{~s}_{2}+2$.
If $\mathrm{m}=3 \mathrm{~s}_{1}, \mathrm{r}_{1} \leq(\mathrm{m}-1) / 3-(2 / 3)$ and $\mathrm{n}=3 \mathrm{~s}_{2}, \mathrm{r}_{2} \leq(\mathrm{n}-1) / 3-(2 / 3)$.
If $\mathrm{m}=3 \mathrm{~s}_{1}+1, \mathrm{r}_{1} \leq(\mathrm{m}-1) / 3$ and $\mathrm{n}=3 \mathrm{~s}_{2}+1, \mathrm{r}_{2} \leq(\mathrm{n}-1) / 3$.
If $\mathrm{m}=3 \mathrm{~s}_{1}+2, \mathrm{r}_{1} \leq(\mathrm{m}-1) / 3-(1 / 3)$ and $\mathrm{n}=3 \mathrm{~s}_{2}+2, \mathrm{r}_{2} \leq(\mathrm{n}-1) / 3-(1 / 3)$.

Case (i):

If $\mathrm{m}=3 \mathrm{~s}_{1}+1, \mathrm{n}=3 \mathrm{~s}_{2}+1$.
(i.e.) $\mathrm{r}_{1} \leq(\mathrm{m}-1) / 3$ and $\mathrm{r}_{2} \leq(\mathrm{n}-1) / 3$.

Therefore
$\mathrm{w}(\mathrm{f})=\sum_{\mathrm{veV}(\mathrm{G})} \mathrm{f}(\mathrm{v})$.
$=\mathrm{m}-\mathrm{r}_{1}-2 \mathrm{r}_{1}+\mathrm{n}-\mathrm{r}_{2}-2 \mathrm{r}_{2}$
$=\mathrm{m}-3 \mathrm{r}_{1}+\mathrm{n}-3 \mathrm{r}_{2}$
$\geq \mathrm{m}+\mathrm{n}-3[(\mathrm{~m}-1) / 3]-3[(\mathrm{n}-1) / 3]$
$=\mathrm{m}+\mathrm{n}-\mathrm{m}+1-\mathrm{n}+1$
$=2$.
There fore $\gamma_{b s t}(G)=\gamma_{b s t}\left(K_{m, n}\right)=\min w(f)=2$.

Case (ii):

If $\mathrm{m}=3 \mathrm{~s}_{1}+1, \mathrm{n}=3 \mathrm{~s}_{2}+2$.
(i.e.) $\mathrm{r}_{1} \leq(\mathrm{m}-1) / 3$ and $\mathrm{r}_{2} \leq(\mathrm{n}-1) / 3-(1 / 3)$.

Therefore

$$
\begin{aligned}
\mathrm{w}(\mathrm{f}) & =\sum_{\mathrm{veV}(\mathrm{Gf}} \mathrm{f}(\mathrm{v}) . \\
& =\mathrm{m}-3 \mathrm{r}_{1}+\mathrm{n}-3 \mathrm{r}_{2} \\
& \geq \mathrm{m}+\mathrm{n}-3[(\mathrm{~m}-1) / 3]-3[(\mathrm{n}-1) / 3-(1 / 3)] \\
& =3 .
\end{aligned}
$$

Therefore $\gamma_{b s t}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right)=\min \mathrm{w}(\mathrm{f})=3$.

Case (iii):

If $m=3 s_{1}+2, n=3 s_{2}+2$.
(i.e.) $\mathrm{r}_{1} \leq(\mathrm{m}-1) / 3-(1 / 3)$ and $\mathrm{r}_{2} \leq(\mathrm{n}-1) / 3-(1 / 3)$.

Therefore

$$
\begin{aligned}
\mathrm{w}(\mathrm{f}) & =\sum_{\mathrm{veV}(\mathrm{G}, \mathrm{f}} \mathrm{f}(\mathrm{v}) . \\
& =\mathrm{m}-3 \mathrm{r}_{1}+\mathrm{n}-3 \mathrm{r}_{2} \\
& \geq \mathrm{m}+\mathrm{n}-3[(\mathrm{~m}-1) / 3-(1 / 3)]-3[(\mathrm{n}-1) / 3-(1 / 3)] \\
& =4 .
\end{aligned}
$$

Therefore $\gamma_{b s t}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right)=\min \mathrm{w}(\mathrm{f})=4$.

Case (iv):

If $\mathrm{m}=3 \mathrm{~s}_{1}, \mathrm{n}=3 \mathrm{~s}_{2}+1$.
(i.e.) $r_{1} \leq(m-1) / 3-(2 / 3)$ and $r_{2} \leq(n-1) / 3$.

Therefore

$$
\begin{aligned}
\mathrm{w}(\mathrm{f}) & =\sum_{\mathrm{v} \in \mathrm{~V}(\mathrm{G}(\mathrm{f}} \mathrm{f}(\mathrm{v}) . \\
& =\mathrm{m}-3 \mathrm{r}_{1}+\mathrm{n}-3 \mathrm{r}_{2} \\
& \geq \mathrm{m}+\mathrm{n}-3[(\mathrm{~m}-1) / 3-(2 / 3)]-3[(\mathrm{n}-1) / 3] \\
& =4 .
\end{aligned}
$$

Therefore $\gamma_{b s t}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right)=\min \mathrm{w}(\mathrm{f})=4$.

Case (v):

If $\mathrm{m}=3 \mathrm{~s}_{1}, \mathrm{n}=3 \mathrm{~s}_{2}+2$.
(i.e.) $r_{1} \leq(m-1) / 3-(2 / 3)$ and $r_{2} \leq(n-1) / 3-(1 / 3)$.

Therefore

$$
\begin{aligned}
\mathrm{w}(\mathrm{f}) & =\sum_{\mathrm{v} \in \mathrm{~V}(\mathrm{G}, \mathrm{f}} \mathrm{f}(\mathrm{v}) . \\
& =\mathrm{m}-3 \mathrm{r}_{1}+\mathrm{n}-3 \mathrm{r}_{2} \\
& \geq \mathrm{m}+\mathrm{n}-3[(\mathrm{~m}-1) / 3-(2 / 3)]-3[(\mathrm{n}-1) / 3-(1 / 3)] \\
& =5 .
\end{aligned}
$$

Therefore $\gamma_{b s t}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right)=\min \mathrm{w}(\mathrm{f})=5$.
Case (vi):
If $\mathrm{m}=3 \mathrm{~s}_{1}, \mathrm{n}=3 \mathrm{~s}_{2}$.
(i.e.) $r_{1} \leq(m-1) / 3-(2 / 3)$ and $r_{2} \leq(n-1) / 3-(2 / 3)$.

Therefore

$$
\begin{aligned}
& \mathrm{w}(\mathrm{f})=\sum_{\mathrm{veV}(\mathrm{G})} \mathrm{f}(\mathrm{v}) . \\
&=\mathrm{m}-3 \mathrm{r}_{1}+\mathrm{n}-3 \mathrm{r}_{2} \\
& \geq \mathrm{m}+\mathrm{n}-3[(\mathrm{~m}-1) / 3-(2 / 3)]-3[(\mathrm{n}-1) / 3-(2 / 3)] \\
&=6 . \\
& \text { Therefore } \gamma_{\mathrm{bst}}\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right)=\min \mathrm{w}(\mathrm{f})=6 .
\end{aligned}
$$

$\gamma_{b s t}\left(K_{m, n}\right)=\left\{\begin{array}{l}2 \text { if both } m \text { and } n \text { are } 3 s_{i}+1, i=1 \text { or } 2 . \\ 3 \text { if one of } m, n \text { is } 3 s_{i}+1 \text { and another is } 3 s_{j}+2, i \neq j, i, j=1,2 . \\ 4 \text { if both } m \text { and } n \text { are } 3 s_{i}+2 \text { or one of } m, n \text { is } 3 s_{i} \text { and another is } 3 s_{j}+1, i \neq j, i, j=1,2 . \\ 5 \text { if one of } m, n \text { is } 3 s_{i} \text { and another is } 3 s_{j}+2, i \neq j, i, j=1,2 . \\ 6 \text { if both } m \text { and } n \text { are } 3 s_{i}, i=1,2 \quad \text { for } m, n \geq 3 .\end{array}\right.$

References

[1] J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, The MACMILLAN Press Ltd., London and Basingstoke.
[2] Bohdan Zelinka, Liberec, Signed Total Domination Number of a Graph, Czechoslovak Mathematical Journal,51 (126)(2001), 225-229.
[3] V.R.Kulli,Theory of Domination in Graphs, Vishwa International Publications, Gulbarga, India.

