Q- B Continuous Function In Quad Topological Spaces

U.D. Tapi¹, Ranu Sharma²

Department of Applied Mathematics and Computational Science,SGSITS,Indore(M.P.) Email id: <u>utapi@sgsits.ac.in</u>, r.tiwari28@yahoo.com Affiliated to D.A.V.V Indore (M.P), INDIA

Abstract

The purpose of this paper is to study the properties of q-b open sets and q-b closed sets and introduce q-continous function in quad topological spaces (q-topological spaces).

Keywords- Quad topological spaces, q-b open sets, q-b interiror , q-b closure ,q-b continuous function.

1.INTRODUCTION

J .C. Kelly ^[1] introduced bitopological spaces in 1963. The study of tri-topological spaces was first initiated by Martin M. Kovar ^[2] in 2000,where a non empty set X with three topologies is called tri-topolgical spaces.Tri α Continuous Functions and tri β continuous functions introduced by S. Palaniammal ^[4] in 2011. D.V. Mukundan ^[3] introduced the concept on topological structures with four topologies, quad topology (4-tuple topology) and defined new types of open (closed) set . In year 2011 Luay Al-Sweedy and A.F.Hassan defined δ^{**} -continuous function in tritopolgical space. In this paper, we study the properties of q-b open sets and q-b closed sets and q-b continuous function in quad topological space (q-topological spaces).

2. PRILIMINARIES

Definition 2.1 [3] :Let X be a nonempty set and T_1, T_2, T_3 and T_4 are general topologies on X.Then a subset A of space X is said to be quad-open(q-open) set if $A \subset T_1 \cup T_2 \cup T_3 \cup T_4$ and its complement is said to be q-closed and set X with four topologies called q-topological spaces (X, T_1, T_2, T_3, T_4) .q-open sets satisfy all the axioms of topology.

Definition 2.2 [3]: A subset A of a space X is said to be q-b open set if

$$A \subset q - cl(q - intA) \cup q - int(q - clA).$$

Note 2.3[3] : We will denote the q-b interior (resp. q-b closure) of any subset ,say of A by q- b intA (q-b clA),where q-b intA is the union of all q-b open sets contained in A, and q-b clA is the intersection of all q-b closed sets containing A.

3.1 q-b open & q-b closed sets:

Theorem3.1.1: Arbitrary union of q-b open sets is q-b open.

Proof: Let $\{A_{\alpha} \mid \alpha \in I\}$ be a family of q-b open sets in X. For each $\alpha \in I, A \subset q - cl(q - intA) \cup q - int(q - clA)$. Therefore $\cup A \subset [\cup \{q - cl(q - intA)\}] \cup [\cup \{q - int(q - clA)\}]$. $\cup A \subset \{q - cl(q - \cup intA)\} \cup \{q - int(q - \cup clA)\}$.

(by definition of q-b open sets). Therefore $\cup A_{\alpha}$ is q-b open.

Theorem3.1.2: Arbitrary intersection of q-b closed sets is q-b closed.

Proof: Let $\{B_{\alpha} / \alpha \in I\}$ be a family of q-b closed sets in X.

Let $A_{\alpha} = B_{\alpha}^{c}$. $\{A_{\alpha} / \alpha \in I\}$ be a family of q-b open sets in X.

Arbitrary union of q-b open sets is q-b open .Hence $\cup A_{\alpha}$ is q-b open and hence $(\cup A_{\alpha})^c$ is q-b closed i.e $\cap A_{\alpha}^c$ is q-closed i.e $\cap B_{\alpha}$ is q-b closed. Hence arbitrary intersection of q-b closed sets is q-b closed.

Note 3.1.3: 1.q - b int $A \subset A$.

2. q - b int A is q-b open.

3. q- b int A is the largest q-b open set contained in A.

Theorem 3.1.4: A is q-b open iff A = q - b int A.

Proof: A is q-b open and $A \subset A$. Therefore $A \in \{B \mid B \subset A, B \text{ is q-b open}\}$

A is in the collection and every other member in the collection is a subset of A and hence the

union of this collection is A. Hence $\cup \{B \mid B \subset A, B \text{ is q-b open}\} = A$

and hence q - b int A = A.

Conversely since q - b int A is q-b open,

A = q - b int A implies that A is q-b open.

Theorem 3.1.5: q - b int $(A \cup B) \supset q - b$ int $A \cup q - b$ int B

Proof: q - b int $A \subset A$ and q-b int A is q-b open.

q - b int $B \subset B$ and q-b int B is q-b open.

Union of two q-b open sets is q-b open and hence q-b int $A \cup q - b$ int B is a q-b open set. Also q - b int $A \cup q - b$ int $B \subset A \cup B$.

q - b int $A \cup q - b$ int B is one q-b open subset of $A \cup B$ and q - b int $(A \cup B)$ is the largest q-b open subset of $A \cup B$.

Hence q - b int $(A \cup B) \supset q - b$ int $A \cup q - b$ int B.

Definition 3.1.6[3]: Let (X, T_1, T_2, T_3, T_4) be a quad topological space and let

 $A \subset X$. The intersection of all q-b closed sets containing A is called the q-b closure of A & denoted by $q - b \ cl A$. $q - b \ cl A = \cap \{B \mid B \supset A, B \ is q \ b \ closed\}$.

Note 3.1.7: Since intersection of q-closed sets is q-b closed, q-b cl A is a q-b closed set.

Note 3.1.8: q-b cl A is the smallest q-b closed set containing A.

Theorem 3.1.9: A is q-b closed iff A = q - b cl A.

Proof: $q - b \ cl \ A = \cap \{B \ / B \ \supset A \ , B \ is \ q-b \ closed\}.$

If A is a q-closed then A is a member of the above collection and each member

contains A. Hence their intersection is A. Hence q - cl A = A. Conversely if

A = q - b cl A, then A is q-closed because q-b cl A is a q-b closed set.

Definition 3.1.10: Let $A \subset X$, be a quad topological space. $x \in X$ is called a q-b limit point of A, if every q-b open set U containing x, intersects $A - \{x\}$.(ie) every q-b open set containing x,contains a point of A other than x.

3.2: q-b continuous function

Definition 3.2.1: Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two quad topological spaces. A function $f: X \to Y$ is called a q-b continuous function if $f^{-1}(V)$ is q-b open in X, for every q-b open set V in Y.

Example 3.2.2:Let $X = \{1, 2, 3, 4\}, T_1 = \{\emptyset, \{1\}, X\}, T_2 = \{\emptyset, \{1\}, \{1, 3\}, X\}$ $T_3 = \{\emptyset, \{1\}, \{1, 2\}, X\}, T_4 = \{\emptyset, \{4\}, \{1, 4\}, X\}$

Let $Y = \{a, b, c, d\}, T_{1'} = \{\emptyset, \{a\}, Y\}, T_{2'} = \{\emptyset, \{a\}, \{a, c\}, Y\},\$

 $T_{3'} = \{\emptyset, \{a\}, \{a, b\}, Y\}, T_{4'} = \{\emptyset, \{d\}, \{a, d\}, Y\}$

Let $f: X \to Y$ be a function defined as f(1) = a; f(2) = b; f(3) = c;f(4) = d

q-open sets in (X, T_1, T_2, T_3, T_4) are $\emptyset, \{1\}, \{1,2\}, \{1,3\}, \{4\}, \{1,4\}, X$.

q-open sets in $(Y, T_1', T_2', T_3', T_4')$ are $\emptyset, \{a, b\}, \{a, c\}, \{d\}, \{a, d\}, Y$.

q-b open sets in (X, T_1, T_2, T_3, T_4) are $X, \emptyset, \{1\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{1,2,3\}.$

q-b open sets in $(Y, T_1', T_2', T_3', T_4')$ are $Y, \emptyset, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b, c\}$.

Since $f^{-1}(V)$ is q-b open in X for every q-b open set V in Y,

f is q-b continuous.

Definition 3.2.3 :Let X and Y be two q-topological spaces. A function

f: $X \rightarrow Y$ is said to be q-bcontinuous at a point $a \in X$ if for every q-b open set V containing

f(a), \exists a q-b open set U containing a , such that $f(U) \subset V$.

Theorem 3.2.4: $f: X \rightarrow Y$ is q-b continuous iff f is q-b continuous at each point of X.

Proof: Let $f: X \to Y$ be q-b continuous.

Take any $a \in X$. Let V be a q-b open set containing f(a).

 $f: X \to Y$ is q-b continuous, Since $f^{-1}(V)$ is q-b open set containing a.

Let $U = f^{-1}(V)$. Then $f(U) \subset V \Rightarrow \exists$ a q-b open set U containing a and $f(U) \subset V$

Hence f is q-b continuous at a.

Conversely, Suppose f is q-b continuous at each point of X.

Let V be a q-b open set of Y. If $f^{-1}(V) = \emptyset$ then it is q-b open.

Take any $a \in f^{-1}(V)$ f is q-b continuous at a.

Hence \exists Ua ,q-b open set containing a and $f(Ua) \subset V$.

Let $U = \bigcup \{ \text{Ua} / a \in f^{-1}(V) \}.$

Claim: $U = f^{-1}(V)$.

 $a \in f^{-1}(V) \Rightarrow Ua \subset U \Rightarrow a \in U.$

 $x \in U \Rightarrow x \in$ Uafor some $a \Rightarrow f(x) \in V \Rightarrow x \in f^{-1}(V)$. Hence $U = f^{-1}(V)$ Each Ua is q-b open. Hence U is q-b open. $\Rightarrow f^{-1}(V)$ is q-b open in X.

Hence f is q-b continuous.

Theorem 3.2.5: Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two q-topological spaces. Then

f: X \rightarrow Y is q-b continuous function iff $f^{-1}(V)$ is q-b closed in X whenever V is q-b closed in Y.

Proof: Let $f: X \to Y$ be q-b continuous function.

Let V be any q-b closed in Y.

 $\Rightarrow V^c$ is q-b open in $Y \Rightarrow f^{-1}(V^c)$ is q-b open in X.

 $\Rightarrow [f^{-1}(V)]^c$ is q-b open in X.

 $\Rightarrow f^{-1}(V)$ is q-b closed in X.

Hence $f^{-1}(V)$ is q-b closed in X whenever V is q-b closed in Y.

Conversely, suppose $f^{-1}(V)$ is q-b closed in X whenever V is q-b closed in Y.

V is a q-b open set in Y.

 $\Rightarrow V^c$ is q-b closed in Y.

 $\Rightarrow f^{-1}(V^c)$ is q-b closed in X.

 $\Rightarrow [f^{-1}(V)]^c$ is q-b closed in X.

 $\Rightarrow f^{-1}(V)$ is q-b open in X.

Hence f is q-b continuous.

Theorem 3.2.6: : Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two q-topological spaces. Then, $f: X \to Y$ is q-b continuous iff $f[q - cl A] \subset q - cl [f(A)] \quad \forall A \subset X$.

Proof: Suppose f: X \rightarrow Y is q-b continuous. Since q - b cl [f(A)] is q-b closed in Y.Then by theorem (3.2.5) $f^{-1}(q - cl [f(A)])$ is q-b closed in X,

$$q - b cl [f^{-1}(q - b cl(f(A))] = f^{-1}(q - b cl(f(A)) - - - -(1)).$$

Now : $f(A) \subset q - b cl [f(A)], A \subset f^{-1}(f(A)) \subset f^{-1}(q - b cl(f(A))).$

Then
$$q - b cl(A) \subset q - bcl[f^{-1}(q - b cl(f(A))]] = f^{-1}(q - b cl(f(A)))$$
 by (1).

Then
$$f(q - b cl(f(A)) \subset q - b cl(f(A))$$
.

Conversely, Let $f(q - b cl(A)) \subset q - b cl(f(A)) \forall A \subset X$.

Let F be q-b closed set in Y, so that q - b cl(F) = F. Now $f^{-1}(F) \subset X$, by hypothesis,

$$f(q-b\,cl(f^{-1}(F)) \subset q-b\,cl\left(f(f^{-1}(F))\right) \subset q-b\,cl(F) = F.$$

Therefore $q - b \ cl(f^{-1}(F)) \subset f^{-1}(F)$. But $f^{-1}(F) \subset q - b \ cl(f^{-1}(F))$ always.

Hence $q - b cl(f^{-1}(F)) = f^{-1}(F)$ and so $f^{-1}(F)$ is q-b closed in X.

Hence by theorem (3.2.5) f is q-b continuous.

3.3: q- b Homomorphism

Definition 3.3.1: Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two q-topological spaces. A function f: $X \to Y$ is called q-b open map if f (V) q-b open in Y for every q-b open set V in X.

Example 3.3.2: In example 3.2.2 f is q-b open map also.

Definition 3.3.3: Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two q-topological spaces .Let f: $X \to Y$ be a mapping . f is called q- b closed map if f(F) is q-b closed in Y for every q-b closed set F in X.

Example 3.3.4: The function f defined in the example 3.2.2 is q-b closed map.

Result 3.3..5:Let X & Y be two q-topological spaces. Let $f: X \to Y$ be a mapping. *f* is q-b continuous iff $f^{-1}: Y \to X$ is q-b open map.

Definition 3.3.6:Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two q-b topological spaces.Let f: $X \to Y$ be a mapping . f is called a q-b homeomorphism.

If (i) f is a bijection.

(ii) f is q-b continuous.

(iii) f^{-1} is q-b continuous.

Example 3.3.7: The function f defined in the example 3.2.2 is

(i) a bijection. (ii) f is q-b continuous. (iii) f^{-1} is q-b continuous.

Therefore f is a q-b homeomorphism.

CONCLUSION:

In this paper the idea of q-b continous function in quad topological spaces were introduced and studied ,Also properties of q-b open and q-b closed sets were studied .

Reference

- 1. Kelly J.C, Bitopological spaces, Proc.LondonMath.Soc., 3 PP. 17-89, 1963.
- Kovar M., On 3-Topological version of Thet-Reularity ,Internat. J. Math, Sci,Vol.23, No.6,393-398,2000.

- Mukundan D.V., Introduction to Quad topological spaces, Int. Journal of Scientific & Engg. Research ,Vol.4,Issue 7,2483-2485,July-2013.
- 4. Palaniammal S., A Study of Tri topological spaces, Ph.D Thesis 2011.
- Sweedy Al- L.,Hassan A.F.,δ^{**}-continuous function in tritopolgical space.Journal of Basrah Research ,Sc., Vol.37.No.4,2011.