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Abstract. 

In this paper, we propose a discrete-time SI epidemic model described by difference 

equations. The basic reproductive number 0R of a discrete SI epidemic model is computed and 

the dynamical behavior of the model is studied. The stability of the disease free equilibrium 

and the endemic equilibrium are demonstrated. Numerical simulations are performed to 

illustrate the theoretical results. 

 

I. INTRODUCTION 

Mathematical models are important tools in analyzing the spread, dynamical evolution and 

control of infectious diseases. Also they provide great insight into disease spreading. Early 

modelling contributions for infectious disease spread were often for specific diseases. For 

example Bernoulli (1760) aimed at evaluating the effectiveness a certain technique of 

variolation against smallpox, and Ross (1911) modelled the transmission of malaria. One of 

the first more general and rigorous study was made by Kermack and McKendrick (1927). 

The basic reproduction number is the number of cases generated by one infective over the 

period of infectivity when that infective is introduced into a large population of 

susceptibles.The ratio R0 is of fundamental importance. More precisely, the basic 

reproduction number is definedThe basic reproduction number is the number of cases 

generated by one infective over the period of infectivity when that infective is introduced 

into a large population of susceptibles. More precisely, the basic reproduction number is 

defined. 

 

II. FORMULATION OF THE MODEL EQUILIBRIA 

An important research subject in mathematical epidemiology is the global stability of the 

equilibrium states of the epidemic models. There is an increasing interest in the study and 

application of discrete epidemic models. Allen et al. have studied some discrete-time SI, 

SIR, and SIS epidemic models [2, 4, 6]. Most research works on discrete epidemic models 

concern the definition of the basic reproductive number, the global stability of the disease 

free equilibrium, the persistence of diseases, the existence and local stability of endemic 

equilibria, the existence of flip bifurcation and Hopf bifurcation. The results on the global 

stability of the endemic equilibrium are quite few for discrete epidemic models. We consider 
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the simple SI model of an infectious pathogen which divides the host population into two 

groups: susceptible hosts (who are not infected with the pathogen but can get infected), S, 

and infectious hosts (who are infected with the pathogen I.  There exists a vast literature on 

continuous epidemic models [1, 5].The epidemic model we will consider is a nonlinear system 

of ordinary difference equations. In this section, we analyze the following discrete SI 

epidemic model. 
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Here , , , ,A     0 and the initial conditions are (0), (0) 0S I  . The parameters have the 

following meaning: µ is the death rate, β is the average number of contacts perinfective per 

day, 

Γ is the recovery rate, and α is the death rate of infectives caused by the disease. The system 

[1] always has a disease-free equilibrium
0 ( ,0)

A
E


 and an endemic equilibrium 0E is called the 

disease free equilibrium since I class is empty. 

 

III.DYNAMIC BEHAVIOR OF THE MODEL AND NUMERICAL SIMULATIONS  

The basic reproduction number 0R is the number of secondary cases which one case would 

produce in a completely susceptible population. It depends on the duration of the infectious 

period, the probability of infecting a susceptible individual during one contact, and the 

number of new susceptible individuals contacted per unit of time. Also 0R  may vary 

considerably for different infectious diseases. This section deals with the stability of 

equilibria. For the discrete time model, stability of the equilibrium solution requires the 

dominant eigenvalue to have magnitude less thanone. For the system described by equations 
[1], this reduces to requiring all roots of the following equation to lie in the unit circle [7]. The 

local stability analysis of the model can be carried out by computing the Jacobian 

matrixcorresponding to each equilibrium point. We first determine the stability of the 

system. The Jacobian matrix of system [1] is 
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DISEASE FREE EQUILIBRIUM 

To determine if there is an epidemic, we look at the stability of the disease free equilibrium. 

At DFE, the matrix of the linearization is given by  
0

1
( )

0 1 ( )
J E

  

   

   
  

    
 

The eigen values of the matrix 0( )J E are 1 1   and 2 1 ( )         .The basic 

reproductive number, 0R  is fundamental in the study of epidemiological models. Here the 

basic reproductive number
0  R   1

( )



  
 

 
.The epidemic spreads when 

0 1R  and dies out 

when 0 1R  .If 0 1R  , the disease-free equilibrium 0E is stable. 

Example 1. We choose the parameter values A=0.015;β=0.027; µ=0.031; ϕ=0.035; 

α=0.0056. 

Here 0  R  
( )



  


 
 = 0.37709 < 1. so the equilibrium point 0E is globally stable. see, fig -1 

 
                    Fig-1 time plot and phase digram for the system (1) with 0 1R   

Thus the disease free equilibrium of [1] is asymptotically stable when 0 1R  .In the following 

figure, the effect of the parameter β on the disease dynamics (infection) is demonstrated. 

 

Example 2.Choose the parameter A=0.015; β=0.07; µ=0.001; ϕ=0.015; α=0.0056.here

0  R  
( )



  


 
= 3.2407 > 1.so the equilibrium point 0E  is asymptotically stable. see, fig -2 

 
Fig-1 time plot and phase digram for the system (1) with R0>1 
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When 0 1R  , the average number of a new infection by an infected individual is more than 

one. Hence the disease may keep persistent in the population. The discrete SI model 

considered in this paper is simple, but it exhibits rich and complicated dynamical behavior. 

The analytical findings are confirmed with numerical simulations.  

 

VARIATION OF R0 

 
Fig-3 variation of R0 

 

VARIATION OF I 

 
Fig-4 variation of I 

 

Theorem 1. If 0 1R  , then the disease free equilibrium 0 ( ,0)
A

E


 of the model (1) is 

asymptotically stable. 

Proof:  

The linearization matrix of (1) at the positive equilibrium 0 ( ,0)
A

E


 is given by 

The characteristic equation of matrix is 0

1
( )

0 1 ( )
J E

  

   

   
  

    
 

2 2( ) ( 2 2 ) ( 1 ) 1 ( )                                   

We see that the equation ( ) 0   has an eigen value 10 1 1      
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Therefore, in order to determine the stability of the positive equilibrium of model (1) , we 

discuss the roots of the following equation, when
0 1R  , the calculation yields, 
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Furthermore, the constant term satisfies, 
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The jury criterion implies that the roots 
2 nd of  equation  

1( ) 0   , satisfy 2 1  . 

The linearization theory implies that the positive equilibrium 
0 ( ,0)

A
E


 of the system (1)  is 

asymptotically  stable if 0 1R  . 
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