[Volume 3 issue 6 June 2015]
Page No.1037-1053 ISSN :2320-7167

Analysis of Primes in Arithmetical Progressions $6 \boldsymbol{n}+\boldsymbol{K}$ Up To A Trillion

Neeraj Anant Pande
Department of Mathematics \& Statistics, Yeshwant Mahavidyalaya (College), Nanded - 431602, Maharashtra, INDIA
Email: napande@gmail.com

Abstract

Prime numbers exhibit many mysteries one of which is their distribution amongst the positive integers, for which yet there is no regular looking pattern recognized. The simplest form being arithmetical progression, there have been consistent efforts to track their occurrences in these. As part of continued contribution to theseefforts, in this work prime numbers are analyzed with view of their distribution in the arithmetical progressions $6 n+k$.

Keywords: Arithmetical progressions,block-wise distribution, prime, prime density, prime spacing.

INTRODUCTION

Prime numbers are peculiar positive integers with minimum number of positive divisors with the exception of 1.The infinitude of primes is known to human race from more than two millenniums ${ }^{[1]}$.

PRIMES DISTRIBUTIONS

These prime numbers are scattered in the list of integers in quite irregular-like fashion. There are arbitrarily many twin primes, those successive primes with spacing of 2 only and similarly there are also arbitrarily large gaps between successive primes. This poses the irregularity scenario.
The number of primes less than or equal to a positive real number x is expressed by using notation $\pi(x)$.

PRIMES DISTRIBUTIONS IN ARITHMETICAL PROGRESSIONS

An arithmetical progression is sequence of integers of form $a n+b$, where a and b are fixed integers and n varies over all non-negative integers. If we fix a to be a positive integer and allow b to be take values from 0 to $a-1$, then the resulting anumber of arithmetical progressions $a n+k$, for $0 \leq k<a$ cover all integers together.
Clearly for any fixed a, all primes will find their place in some or other arithmetical progression $a n+b$; but the matter of interest lies in how many of them will be in each such
progression and other related properties. Since there are infinitely many primes, for each fixed positive integer a, at least one of these is bound to contain infinitely many primes. Dirichlet ${ }^{[2]}$ addressed this issue more concretely by proving classical result that every arithmetical progression $a n+b$ with $\operatorname{gcd}(a, b)=1$ contains infinitely many primes.
For notation purpose, the symbol $\pi_{a, b}(x)$ is used to represent the number of primes in a specific arithmetical progression $a n+b$ that are less than or equal to x.

PRIMES DISTRIBUTIONS IN ARITHMETICAL PROGRESSIONS $\boldsymbol{6} \boldsymbol{n} \boldsymbol{+} \boldsymbol{k}$

The possible values of remainders after division by 6 are $0,1,2,3,4$ and 5 . Every positive integer after dividing by 6 yields one and only one amongst these valuesas remainder. So it isin one of the arithmetical progressions $6 n+0=6 n$ or $6 n+1$ or $6 n+2$ or $6 n+3$ or $6 n+4$ or $6 n+5$.
First few numbers of the form $6 n$ are

$$
6,12,18,24,30,36,42,48,54,60,66, \cdots
$$

Each of these is perfectly divisible by 6 and so none of these is a prime.
First few numbers of the form $6 n+1$ are

$$
1,7,13,19,25,31,37,43,49,55,61,67, \cdots
$$

This contains infinitely many primes as $\operatorname{gcd}(6,1)=1$ as per requirement of Dirichlet's Theorem.
First few numbers of the form $6 n+2$ are

$$
2,8,14,20,26,32,38,44,50,56,62,68, \cdots
$$

Each of these is even and hence divisible by 2 . Except the first member, viz., 2, none of these is a prime.
First few numbers of the form $6 n+3$ are

$$
3,9,15,21,27,33,39,45,51,57,63,69, \cdots
$$

Each of these is divisible by 3 . Except the first member, viz., 3, none of these is a prime. Thus this sequence contains only one prime 3 and its all other members are composite numbers.
First few numbers of the form $6 n+4$ are

$$
4,10,16,22,28,34,40,46,52,58,64,70, \cdots
$$

Each of these is even. None of these is prime.
First few numbers of the form $6 n+5$ are

$$
5,11,17,23,29,35,41,47,53,59,65,71, \cdots
$$

This sequence does contain infinitely many primes as $\operatorname{gcd}(6,5)=1$ as per requirement of Dirichlet's Theorem.
There are independent proofs about infinitude of primes of both types $6 n+1$ and $6 n+5^{[3]}$.

PRIMES NUMBER RACE

For a positive integer a and all b with $0 \leq b<a$, all the arithmetical progressions $a n+b$ which contain infinitely many primes are compared for more number of primes in them. This is known as prime number race ${ }^{[4]}$.
We compared the number of primes of form $6 n+1$ and $6 n+5$ till one trillion, i.e., $1,000,000,000,000\left(10^{12}\right)$. The ambitiousprocedure could be worked out by using an efficient algorithm from those compared in ${ }^{[5]}$. Java Programming Language ${ }^{[6]}$ was used on computer to execute this task.

Table 1.Number of Primes of form $6 n+k$ in First Blocks of 10 Powers.

Sr. No.	Range $1-x(1$ to $x)$	Ten Power (x)	Number of Primes of the form $6 n+1$ $\pi_{6,1}(x)$	Number of Primes of the form $6 n+5$ $\pi_{6,5}(x)$
	$1-10$	10^{1}	1	1
	$1-100$	10^{2}	11	12
	$1-1,000$	10^{3}	80	86
	$1-10,000$	10^{4}	611	616
	$1-100,000$	10^{5}	4,784	4,806
	$1-1,000,000$	10^{6}	39,231	39,265
	$1-10,000,000$	10^{7}	332,194	332,383
	$1-100,000,000$	10^{8}	$2,880,517$	$2,880,936$
	$1-1,000,000,000$	10^{9}	$25,422,713$	$25,424,819$
	$1-10,000,000,000$	10^{10}	$227,523,123$	$227,529,386$
	$1-100,000,000,000$	10^{11}	$2,059,018,668$	$2,059,036,143$
	$1-1,000,000,000,000$	10^{12}	$18,803,933,520$	$18,803,978,496$

Figure 1.Dominance of $\pi_{6,5}(x)$ over $\pi_{6,1}(x)$

It is observed that the number of primes of the form $6 n+5$ is more than those of form $6 n+1$ in the initial ranges up to 10^{12} in discrete blocks of 10 powers. Whether this trend of $\pi_{6,5}(x)>\pi_{6,1}(x)$ continues ahead on majority is an area of future explorations.

BLOCK-WISE DISTRIBUTION OF PRIMES

Owing to both the facts that there is no simple formula to cover all primes and at the same time they are quite randomly distributed, we have considered all primes up to one trillion $\left(10^{12}\right)$ and divided this range in blocks of powers of 10 each as :

$$
\begin{gathered}
0-9,10-19,20-29,30-39, \cdots \\
0-99,100-199,200-299,300-399, \cdots \\
0-999,1000-1999,2000-2999,3000-3999, \cdots
\end{gathered}
$$

Then analysis is performed for blocks of all sizes of 10^{12-i} for each $1 \leq i \leq 12 \mathrm{in}$ our range of 10^{12}.
The First and the Last Primes in the First Blocks of 10 Powers
The first prime of first block continues for all higher-sized blocks ahead as their first prime also. The last prime of 10 power blocks naturally goes on increasing with increased blocksize.
Table 2.First and Last Primes of form $6 n+k$ in First Blocks of 10 Powers.

Sr No	Blocks of Size (of 10 Power)	First Prime in the First Block		Last Prime in the First Block	
		Form $6 n+1$	Form $6 n+5$	Form 6n+1	Form 6n+5
		7	5	7	5
	10	7	5	97	89
	100	7	5	997	983
	1,000	7	5	9,973	9,941
	10,000	7	5	99,991	99,989
	100,000	7	5	999,979	999,983
	$1,000,000$	7	5	$9,999,991$	$9,999,971$
	$10,000,000$	7	5	$99,999,931$	$99,999,989$
	$100,000,000$	7	5	$999,999,937$	$999,999,929$
	$1,000,000,000$	7	5	$9,999,999,967$	$9,999,999,929$
	$10,000,000,000$	7	5	$99,999,999,943$	$99,999,999,977$
	$100,000,000,000$	7	5	$599,999,999,961$	$999,999,999,989$
	$1,000,000,000,000$	7	5	999,999	

The difference in the last primes of form $6 n+1$ and $6 n+5$ in the first blocks has uncertain trend.

Figures2.First \&Last Primes of form $6 n+k$ in First Blocks of 10 Powers.
Minimum Number of Primes in Blocks of 10 Powers
Inspecting all blocks from 10^{1} to 10^{12}, the minimum number of primes found in them has been determined for primes of forms $6 n+1$ and $6 n+5$.

Table 3.Minimum Number of Primes of form $6 n+k$ in Blocks of 10 Powers

Sr. No.	Blocks of Size (of 10 Power)	Minimum No. of Primes of form $6 n+1$ in Block	Minimum No. of Primes of form $6 n+5$ in Block
	10	0	0
	100	0	0
	1,000	1	1
	10,000	126	124
	100,000	1,653	1,646
	$1,000,000$	17,756	17,619
	$10,000,000$	180,001	180,115
	$100,000,000$	$1,808,103$	$1,808,105$
	$1,000,000,000$	$18,094,690$	$18,093,491$
	$10,000,000,000$	$180,988,251$	$180,989,170$
	$100,000,000,000$	$1,812,964,422$	$1,812,960,010$
	$1,000,000,000,000$	$18,803,933,520$	$18,803,978,496$

There is fluctuation in difference in minimum number of primes of form $6 n+1$ and $6 n+5$.

Figure 3.Minimality Lead of Number of Primes of form $6 n+1$ over $6 n+5$ in 10 Power Blocks

The first and last blocks in range of 10^{12} with minimum number of primes of forms $6 n+1$ and $6 n+5$ in them are also determined.
Table 4.First and last blocks of 10 powers with minimum number of primes of form $6 n+k$.

Sr N o	Blocks of Size (of 10 Power)	First Block with Minimum Number of Primes		Last Block with Minimum Number of Primes	
		Form 6n+1	Form $6 n+5$	Form $6 n+1$	Form 6n+5
	10	20	30	$\begin{gathered} 999,999,999 \\ 990 \end{gathered}$	$\begin{gathered} 999,999,999, \\ 990 \end{gathered}$
	100	69,500	103,100	$\begin{gathered} \hline 999,999,999, \\ 700 \end{gathered}$	$\begin{gathered} \hline 999,999,999 \\ 000 \end{gathered}$
	1,000	$\begin{gathered} 208,627,276 \\ 000 \end{gathered}$	$\begin{gathered} 682,833,699, \\ 000 \end{gathered}$	$\begin{gathered} 946,441,029 \\ 000 \end{gathered}$	$\begin{gathered} 949,672,786 \\ 000 \end{gathered}$
	10,000	$\begin{gathered} 991,093,580, \\ 000 \end{gathered}$	$\begin{gathered} 772,787,800, \\ 000 \end{gathered}$	$\begin{gathered} 991,093,580, \\ 000 \end{gathered}$	$\begin{gathered} 772,787,800 \\ 000 \end{gathered}$
	100,000	$\begin{gathered} 844,002,100 \\ 000 \end{gathered}$	$\begin{gathered} 930,488,800, \\ 000 \end{gathered}$	$\begin{gathered} 844,002,100 \\ 000 \end{gathered}$	$\begin{gathered} 930,488,800, \\ 000 \end{gathered}$
	1,000,000	$\begin{gathered} 970,693,000, \\ 000 \end{gathered}$	$\begin{gathered} 997,040,000, \\ 000 \end{gathered}$	$\begin{gathered} \hline 970,693,000, \\ 000 \end{gathered}$	$\begin{gathered} \hline 997,040,000, \\ 000 \end{gathered}$
	10,000,000	$\begin{gathered} \hline 970,280,000, \\ 000 \end{gathered}$	$\begin{gathered} 998,020,000, \\ 000 \end{gathered}$	$\begin{gathered} 970,280,000 \\ 000 \end{gathered}$	$\begin{gathered} 998,020,000, \\ 000 \end{gathered}$
	100,000,000	$\begin{gathered} 995,400,000, \\ 000 \end{gathered}$	$\begin{gathered} 999,300,000, \\ 000 \end{gathered}$	$\begin{gathered} 995,400,000 \\ 000 \end{gathered}$	$\begin{gathered} 999,300,000, \\ 000 \end{gathered}$
	1,000,000,000	$\begin{gathered} \hline 997,000,000, \\ 000 \end{gathered}$	$\begin{gathered} 998,000,000, \\ 000 \end{gathered}$	$\begin{gathered} \hline 997,000,000, \\ 000 \end{gathered}$	$\begin{gathered} 998,000,000, \\ 000 \end{gathered}$
	$\begin{gathered} 10,000,000,00 \\ 0 \end{gathered}$	$\begin{gathered} 990,000,000, \\ 000 \end{gathered}$	$\begin{gathered} 990,000,000, \\ 000 \end{gathered}$	$\begin{gathered} 990,000,000 \\ 000 \end{gathered}$	$\begin{gathered} 990,000,000, \\ 000 \end{gathered}$
	$\begin{gathered} 100,000,000,0 \\ 00 \end{gathered}$	$\begin{gathered} 900,000,000 \\ 000 \end{gathered}$			

Figure 4.First and Last Blocks of 10 Powers with Minimum Number of Primes of form $6 n+k$.

The frequencies of minimum occurrences of primes of forms $6 n+k$ decrease.
Table 5. Number of 10 Power Blocks with Minimum Number of Primes of form $6 n+k$.

Sr. No.	Blocks of Size (of 10 Power)	Occurrence Frequency of Minimum No. of Primes of form $6 n+1$	Occurrence Frequency of Minimum No. of Primes of form $6 n+5$
	10	$82,443,117,633$	$82,443,091,281$
	100	$1,227,978,147$	$1,228,005,131$
	1,000	8	5
	10,000	1	1
	100,000	1	1
	$1,000,000$	1	1
	$10,000,000$	1	1
	$100,000,000$	1	1
	$1,000,000,000$	1	1
	$10,000,000,000$	1	1
	$100,000,000,000$	1	1
	$1,000,000,000,000$	1	1

Maximum Number of Primes in Blocks of 10 Powers
Like the minimum number of primes of form $6 n+k$ in blocks of 10^{i}, the maximum number of them is also determined.

Table 6.Maximum Number of Primes of form $6 n+k$ in Blocks of 10 Powers.

Sr. No.	Blocks of Size (of 10 Power)	Maximum No. of Primes of form $6 n+1$ in Block	Maximum No. of Primes of form $6 n+5$ in Block
	10	2	2
	100	11	12
	1,000	80	86
	10,000	611	616
	100,000	4,784	4,806
	$1,000,000$	39,231	39,265
	$10,000,000$	332,194	332,383
	$100,000,000$	$2,880,517$	$2,880,936$
	$1,000,000,000$	$25,422,713$	$25,424,819$
	$10,000,000,000$	$227,523,123$	$227,529,386$
	$100,000,000,000$	$2,059,018,668$	$2,059,036,143$
	$1,000,000,000,000$	$18,803,933,520$	$18,803,978,496$

Except for the first block size of 10 , primes of form $6 n+5$ dictate in all blocks.

Figure 5.Maximality Lead of Number of Primes of form $6 n+5$ over $6 n+1$ in 10 Power Blocks. The first and last blocks of 10^{i} till one trillion with maximum number of primes of forms $6 n+1$ and $6 n+5$ are determined.

Table 7.First and last blocks of 10 powers with maximum number of primes of form $6 n+k$.

Sr. No.	Blocks of Size (of 10 Power)	First Block with Max No. of Primes		Last Block with Max No. of Primes	
		Form $6 n+1$	Form $6 n+5$	Form $6 n+1$	Form $6 n+5$
	10	10	10	$999,999,999,570$	$999,999,999,610$
	100	0	0	$977,727,538,300$	0
	1,000	0	0	0	0
	10,000	0	0	0	0
	100,000	0	0	0	0
	$1,000,000$	0	0	0	0
	$10,000,000$	0	0	0	0
	$100,000,000$	0	0	0	0
	$1,000,000,000$	0	0	0	0
	$10,000,000,000$	0	0	0	0
	$100,000,000,000$	0	0	0	0

In general, the prime density shows a decreasing trend with increasing range of numbers. So it is natural that for higher block sizes, the first as well as the last occurrences of maximum number of primes in them starts in the first block after 0 .

Figure 6.First and last blocks of 10 powers with maximum number of primes of form $6 n+k$. Due to reduction in the prime density, the maximum number of primes cannot occur frequently in blocks.

Table 8. Number of 10 power blocks with maximum number of primes of form $6 n+k$.

Sr. No.	Blocks of Size (of 10 Power)	Number of Times the Maximum Number of Primes of form $6 n+1$ Occur in Blocks	Number of Times the Maximum Number of Primes of form $6 n+5$ Occur in Blocks
	10	$1,247,051,153$	$1,247,069,777$
	100	40	1
	$1,000 \&$ Higher Sized Blocks till 10^{12}	1	1

For block of 10 , the frequency of occurrence of maximum primes of form $6 n+5$ is more than that of form $6 n+1$, then $6 n+1$ has taken a marginal lead and then both have the same unit value for higher blocks.

SPACINGS BETWEEN PRIMES OF FORM $\boldsymbol{6} \boldsymbol{n}+\boldsymbol{k}$ IN BLOCKS OF 10 i

Minimum Spacings between Primes of Form $6 n+k$ in Blocks of 10 Powers

Exempting prime-empty blocks, the minimum spacing between primes of form $6 n+1$ and $6 n+5$ in blocks of 10 powers are determined to be 6 each beginning with the first block $10^{1}=10$. Since,found once, for larger block sizes, the minimum spacing value cannot exceed, it remains same for all blocks of all higher powers of 10 .
This minimum block spacing of 6 occurs

Figure 7.Minimum Block Spacing for primes of form $6 n+1$ first at 13 for blocks of 10 and for higher power blocks at 7 . For blocks of 10 , it is not in first block at 7 as the next prime of this form 13 with spacing of 6 occurs in next block. The minimum block spacing of 6 occurs for primes of form $6 n+5$ first at 11 for blocks of 10 and for higher power blocks at 5. The variation is due to same reason for the other form.

The minimum block spacing of 6 for primes of form $6 n+1$ occurs last in our range at $999,999,999,571$ for all 10 power blocks. This last occurrence for primes of form $6 n+5$ is at $999,999,999,611$ for block of 10 and at $999,999,999,857$ for all higher blocks in our range. The reason for change in higher blocks is same block crossing for 10 .

Figure 8.First \& Last Starters of Minimum Block Spacing between Primes of form $6 n+k$.
It is important to note the number times this minimum block spacing occurs.
Table 9.Frequency of Occurrence of Minimum Block Spacing Occurring for $6 n+k$ form Primes

Sr. No.	Blocks of Size (of 10 Power)	Number of Times the Minimum Block Spacing Occurring for Primes of form $6 n+1$	Number of Times the Minimum Block Spacing Occurring for Primes of form $6 n+5$
	10	$1,247,051,153$	$1,247,069,777$
	100	$1,808,234,686$	$1,808,281,094$
	1,000	$1,864,352,043$	$1,864,395,871$
	10,000	$1,869,963,048$	$1,870,006,890$
	100,000	$1,870,524,725$	$1,870,568,132$
	$1,000,000$	$1,870,580,790$	$1,870,624,398$
	$10,000,000$	$1,870,586,258$	$1,870,629,961$
	$100,000,000$	$1,870,586,799$	$1,870,630,570$
	$1,000,000,000$	$1,870,586,847$	$1,870,630,632$
	$10,000,000,000$	$1,870,586,853$	$1,870,630,642$
	$100,000,000,000$	$1,870,586,855$	$1,870,630,643$
	$1,000,000,000,000$	$1,870,586,855$	$1,870,630,643$

The increase in the number of times the minimum spacing occurs for primes of both form is because ofthose primes with desired spacing occurring at the crossing of earlier blocks finding themselves in same larger blocks raising the count. Of course, this rate of increase gradually decreases.

Figure 9.\% Increase in Occurences of Minimum Block Spacing between Primes of form $6 n+k$.

Maximum Spacings between Primes of form $6 n+k$ in Blocks of 10 Powers

The maximum spacing in 10 power blocks increases with increase in block size.
Table 10.Maximum Block Spacing between Primes ofform $6 n+k$.

Sr. No.	Blocks of Size (of 10 Power)	Maximum Block Spacing Occurring for Primes of form 6n + 1	Maximum Block Spacing Occurring for Primes of form 6n + 5
	10	6	6
	100	96	96
	1,000	960	942
	10,000	1,068	1,068
	100,000	1,068	1,068
	$1,000,000$	1,068	1,068
	$10,000,000$	1,068	1,068
	$100,000,000$	1,068	1,068
	$1,000,000,000$	1,068	1,068
	$10,000,000,000$	1,068	1,068
	$100,000,000,000$	1,068	1,068
	$1,000,000,000,000$	1,068	1,068

In the range of $1-10^{12}$, with the exception for the block of 1000 , in-block maximum spacing for primes of both forms is same.
The first and last primes of forms $6 n+1$ and $6 n+5$ with these maximum in-block spacings are determined this range.

Table 11.First \& Last Primes of form $6 n+k$ with Maximum Block Spacings.

$\begin{gathered} \hline \mathrm{Sr} \\ \dot{\mathrm{~N}} \\ \mathrm{o} \\ \mathrm{o} \end{gathered}$	Blocks of Size (of 10 Power)	First Prime with Respective Maximum Block Spacing		Last Prime with Respective Maximum Block Spacing	
		Form $6 n+1$	Form $6 n+5$	Form 6n+1	Form 6n+5
	10	13	11	$\begin{gathered} 999,999,999, \\ 571 \end{gathered}$	$\begin{gathered} 999,999,999, \\ 611 \end{gathered}$
	100	93,001	144,203	$\begin{gathered} 999,999,994, \\ 801 \end{gathered}$	$\begin{gathered} 999,999,981, \\ 503 \end{gathered}$
	1,000	$\begin{gathered} 653,064,334, \\ 009 \end{gathered}$	$\begin{gathered} \text { 596,580,025, } \\ 049 \end{gathered}$	$\begin{gathered} 653,064,334, \\ 009 \end{gathered}$	$\begin{gathered} \text { 596,580,025, } \\ 049 \end{gathered}$
	10,000	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793 \\ 273 \end{gathered}$
	100,000	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$
	1,000,000	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$	$\begin{gathered} \hline 759,345,224 \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793 \\ 273 \end{gathered}$
	10,000,000	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$
	100,000,000	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$
	1,000,000,000	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$
	10,000,000,000	$\begin{gathered} 759,345,224 \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793 \\ 273 \end{gathered}$
	$\begin{gathered} 100,000,000,00 \\ 0 \end{gathered}$	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$
	$\begin{gathered} 1,000,000,000,0 \\ 00 \end{gathered}$	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$	$\begin{gathered} 759,345,224, \\ 761 \end{gathered}$	$\begin{gathered} 423,034,793, \\ 273 \end{gathered}$

We present graphical representation for comparison.

Figure 10.First \& Last Primes of form $6 n+k$ with Maximum Block Spacings.

The frequencies of occurrences of these maximum block spacing are determined.
Table 12.Frequency of maximum block spacings between primes of form $6 n+k$.

Sr. No.	Blocks of Size (of 10 Power)	Number of Times the Maximum Block Spacing Occurs for Primes of form $6 n+1$	Number of Times the Maximum Block Spacing Occurs for Primes of form $6 n+5$
	10	$1,247,051,153$	$1,247,069,777$
	100	$21,217,945$	$21,205,830$
	$1,000 \&$ Higher Sized Blocks till 10^{12}	1	1

END DIGIST OF PRIMES OF FORM $\boldsymbol{6} \boldsymbol{n}+\boldsymbol{k}$

UNITS PLACE DIGITS IN PRIMES FORM $6 n+k$

Out of six possible digits in units place, the primes of form $6 n+k$ exhibit following trends.
Table 13.Number of Primes of form $6 n+k$ with Different Units Place Digits till 10^{12}.

Sr.	Digit in Units	Number of Primes of form	
No.	Place	$6 \mathrm{n}+1$	$6 \mathrm{n}+5$
	1	$4,700,968,833$	$4,700,992,147$
	2	0	0
	3	$4,700,984,929$	$4,700,994,974$
	5	0	1
	7	$4,701,002,681$	$4,700,994,319$
	9	$4,700,977,077$	$4,700,997,055$

As the only even prime 2 and only prime with its unit place digit 5 are exceptional cases for units place digits of primes, they are generally ignored.

Figure 11.Deviation of Number of Unit Place Digits of Primes of form $6 n+k$ from Average.

TENS \&UNITS PLACE DIGITS IN PRIMES FORM 6n + k

Table 14.Number of Primes of form $6 n+k$ with Different Tens and Units Place Digits till 10^{12}.

Sr. No.	Digits in Tens \& Units Place	Number of Primes of form	
		$6 n+1$	$6 n+5$
	01	470,091,333	470,109,891
	02	0	0
	03	470,094,770	470,104,271
	05	0	1
	07	470,097,248	470,104,276
	09	470,094,613	470,103,424
	11	470,102,397	470,089,234
	13	470,100,789	470,099,915
	17	470,091,448	470,097,857
	19	470,106,050	470,118,517
	21	470,098,988	470,108,463
	23	470,102,820	470,102,293
	27	470,103,643	470,103,729
	29	470,102,782	470,094,647
	31	470,103,390	470,097,906
	33	470,101,752	470,095,882
	37	470,104,142	470,094,694
	39	470,101,627	470,093,736
	41	470,093,947	470,096,059
	43	470,095,523	470,102,070
	47	470,095,217	470,102,515
	49	470,105,420	470,095,356
	51	470,107,468	470,097,412
	53	470,094,341	470,101,246
	57	470,099,603	470,093,392
	59	470,103,290	470,096,232
	61	470,093,061	470,103,049
	63	470,102,739	470,092,627
	67	470,104,073	470,099,284
	69	470,085,723	470,086,721
	71	470,100,170	470,096,319
	73	470,094,450	470,102,497

Sr.	Digits in Tens \&	Number of Primes of form	
No.	Units Place	$6 n+1$	$6 n+5$
	77	$470,097,789$	$470,098,854$
	79	$470,091,636$	$470,097,190$
	81	$470,087,306$	$470,092,697$
	83	$470,090,913$	$470,100,987$
	87	$470,105,175$	$470,093,879$
	89	$470,093,415$	$470,108,593$
	91	$470,090,773$	$470,101,117$
	93	$470,106,832$	$470,093,186$
	97	$470,104,343$	$470,105,839$
	99	$470,092,521$	$470,102,639$

Again neglecting the cases 02 and 05 , these numbers can be compared graphically.

Figure 12.Deviation of Last Two Digits of Primes of form $6 n+k$ from Inter se Average.

Analysis of Successive Primes of form $\mathbf{6} \boldsymbol{n}+1$ and $\boldsymbol{6} \boldsymbol{n}+\mathbf{5}$

The case when two successive primes are of same form; either $6 n+1$ or $6 n+5$; is interesting. The number of successive primes of desired forms is as follows.

Figure 13.Number of Successive Primes of form $6 n+k \leq 10^{12}$.

We have rigorously analyzed the successive primes of these specific forms. The minimum spacing between successive primes of forms $6 n+k$ has following properties.

The maximum spacing between successive primes of forms $6 n+k$ has following properties.

Owing to aforementioned irregularity in distribution, efforts, data and analysis are needed to study prime occurrence patterns. The work presented here is also in same direction with respect to a specific linear pattern of $6 n+k$. The availability of rigorous data like can help give a deeper insight into prime distribution.

ACKNOWLEDGEMENTS

The author acknowledges the Java (7 Update 25) Programming Language Development Team and the NetBeans IDE (7.3.1) Development Team, whose software have been freely used in implementing the algorithms developed during this work. Thanks are also due to the Microsoft Office Excel Development Team which proved as an important visualization tool in verifying some of the results directly, in addition to usual plotting of graphs.
Computer Laboratory of Mathematics \& Statistics Department of the affiliation institution has been extensively\&continuously used for several months and hence does have a share of credit in materializing the analysis aimed at. The power support extended by the Department of Electronics of the institute has helped run the processes without interruption and is also acknowledged.
The author is thankful to the University Grants Commission (U.G.C.), New Delhi of the Government of India for funding this research work under a Research Project (F.No. 47748/13(WRO)).

REFERENCES

1. Euclid (of Alexandria) (300 BC), "Elements, Book IX".
2. DirichletP. G. L. (1837), "Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält", Abhand. Ak. Wiss. Berlin.
3. Fine Benjamin, Rosenberger Gerhard (2007), "Number Theory: An Introduction via the Distribution of Primes", Birkhauser.
4. Granville Andrew, Martin Greg (2006), "Prime Number Races", American Mathematical Monthly 113 (1), pp. 1-33.
5. Pande Neeraj Anant (2015), "Improved Prime Generating Algorithms by Skipping Composite Divisors and Even Numbers (Other Than 2)" Mathematics Section, Journal of Science and Arts, Communicated.
6. Schildt Herbert (2006), "Java : The Complete Reference" $7^{\text {th }}$ Edition, Tata McGraw Hill.
