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ABSTRACT 

In this paper, we are concerned with the oscillation of third order nonlinear neutral delay 

difference equations and  some sufficient conditions for oscillation of solutions of third 

nonlinear neutral delay difference equations of the type 
2( ( )( ( ( ) ( ) ( ( )))) ) ( ) ( ( )) 0a n x n p n x n q n x n        

are obtained . An example is provided to illustrate the main results. 

 

INTRODUCTION 

We consider the nonlinear neutral delay difference equation of the form  

                 
2( ( )( ( ( ) ( ) ( ( )))) ) ( ) ( ( )) 0a n x n p n x n q n x n                   (1) 

where  is a quotient of odd positive integers and 0 0 0( ) { , 1,...}n N n n n   , 0n is a nonnegative 

integer, subject to the following conditions. 

( ) ( ), ( ), ( )H a n p n q n are positive sequence . 0 ( ) 1p n p   , and  are positive integers and  a(n) 

satisfies 
0

1

1

( )
s n

a s 





  . 

In recent years, the oscillation theory and asymptotic behaviour of difference equations and 

their applications have been and still are receiving intensive attention. In fact, in the last few 

years several monographs and hundreds of research papers have appeared [1]. Determining 

oscillation criteria for particular second order difference equations has received a great deal 

of attention in the last few years. Compared to second order difference equations, the study 

of oscillation and asymptotic behaviour of third order difference equations has received 

considerably less attention [7 – 9].  

Let max{ ( ), ( )}n n   .  By a solution of equation (1) we mean a real sequence x(n) is defined 

for all 0n n    satisfies (1) for all 0n n . A nontrivial solution x(n) is said to be oscillatory if 

it is neither eventually positive or eventually negative; otherwise , it is nonoscillatory. 

Equation (1) is said to be oscillatory if all its solutions are oscillatory. 
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2. MAIN RESULTS 

Lemma  2.1.  Let x(n) be a positive solution of (1). Then there are only  the following  two 

case for ( ) ( ) ( ) ( ( ))z n x n p n x n   
2( ) 0, ( ) 0, ( ) ,z n z n z n o      

2( ) 0, ( ) 0, ( ) ,z n z n z n o     where n is sufficiently large. 

Proof.  Assume that x(n) is a positive solution of (1) on 0n n . We see that  ( ) ( ) 0z n x n   

and          

                        
2  ( ( )( ( ( ))) ) ( ) ( ( ))a n z n q n x n                                 (2) 

2( ( )( ( ( ))) )a n z n   is decreasing and of one sign. Therefore 2 ( )z n  is also of one sign. We have 

two possibilities 2 ( ) 0z n   or  2 ( ) 0z n   for  1n n  by (2). If we choose 2 ( ) 0z n  , then there 

exits a constant  0M   such that  
2  ( )( ( ( ))) 0a n z n M     

Summing the above inequality from 1n and 1n , we obtain 
1 1

1 1

1
( ) ( )

( )

n

t s

z n z n M

a s









      

Letting nand using (H), we obtain ∆z(n) . Thus 2 ( ) 0z n  eventually. But 
2 ( ) 0z n  and ( ) 0z n  . Hence ( ) 0z n  for 1n n , which is a contradiction.  This contradiction 

proves 2 ( ) ,z n o  and we have only two case (i),(ii) for z(n). The proof is complete. 

 

Lemma 2.2. Let x(n) be a positive solution of equation (1) and the corresponding  z(n) 

satisfies (ii). If 

                                                 0

1
( ) ,

( )n n s n t s

q t
a s


  

  

 
  

 
                                   (3)                                         

Then lim ( ) lim ( ) 0
n n

x n z n
 

  . 

Proof.  Suppose that x(n) is a positive solution of (1). Since ( ) 0z n  and ( ) 0z n  , then there      

exists a finite limit, lim ( )
n

z n


 . We shall prove that 0 . Assume that 0 . Then for any 

0 . We have ( )l z n  eventually .choose
1(1 )

0
p

p


 . It is easy to verify that 

( ) ( ) ( ) ( ( )) ( ( )) ( ) ( ) ( )x n z n p n x n pz n p k kz n            

where 
( )

0
p

k
l

 
 


. Using the above  inequality , we obtain  from (2) 

2( ( )( ( ( )) )) ( ) ( ( )).a n z n q n k z n        

Summing  the above inequality from n to  
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2( )( ( ( ))) ( ) ( ( ))
s n

a n z n k q s z s   




    

Using ( ( ))z n   , we get 
1

2 1
( ) ( )

( ) s n

z n k q s
a n





 
   

 
  

Summing again from n to , we have 
1

1
( ) ( )

( )s n t s

z n k q t
a s

 

 

 
   

 
   

Again taking summing n to , 

1

1

1

1
( )

( ) ( )  
s n

n n s n

q t
z n k a i


 


 

 
 
 

  

This contradicts (2). Then 0 . Moreover the inequality 0 ( ) ( )x n z n   implies that 

lim ( ) 0
n

x n


  and the proof is complete . 

 

Lemma 2.3. Assume that 2( ) 0, ( ) 0, ( ) 0u n u n u n     for all  0n n  . Then for each (0,1)  

there exists an integer 0N n  such that 
( ( )) ( )

( )

u n u n

n n




 for n N . 

Proof. From the monotonicity property of ( ),u n we have  

                                    

1

( )

( ) ( ( )) ( ) ( ( ))( ( ))

( ) ( )
1 ( ( ))

( ( )) ( ( ))

n

s n

u n u n u s u n n n

u n u n
n n

u n u n



  


 





     

  



        (4)                                                  

 

Also  

 0 0( ( )) ( ( )) ( ( ))( ( ) )u n u n u n u n n n         

So, for each  (0,1)l and 0N n  such that 

                                                          

( )
( ),

( ( ))

u n
n n N

u n



 


.               (5)                                                                        

Combining (4) and (5), we get  

( ) 1
1 ( ( ))

( ( )) ( )

u n
n n

u n n


 
    

                                                                                  

1
1

( ( ))

n

n

  
     
   

 

                                                    

( )

( ( )) ( ( ))

u n n

u n n 

 
  
 
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and the proof is complete. 

 

Lemma 2.4. Assume that 2 3( ) 0, ( ) 0, ( ) 0, ( ) 0z n z n z n z n       for all n N . Then 

( 1)

( ) 2

z n n N

z n

 



for n N . 

Proof. From the monotonicity property of 2 ( )z n , we have 
1

2 2( ) ( ) ( ) ( ) ( )
n

s N

z n z N z s n N z n




         

Summing from N to n-1, we obtain 

                                 

1
2( ) ( ) ( ) ( )

n

s N

z n z N s N z s




     

                                         ( 1) ( ) ( ) ( ) ( ) ( 1) ( )z n z n z N n N z n z n z N           

                                         

1
( 1) ( ) ( )

2
z n n N z n   

 
 

Lemma 2.5. Assume that 2 3( ) 0, ( ) 0, ( ) 0z n z n z n      for all n N . Then 
2 ( )

( ) 1
( )

z n
n N

z n


 


for 

n N . 

Proof.  The result follows from the following inequality  
1

2 2( ) ( ) ( )( )
n

s N

z n z s z s n N




       

    Now, we present the oscillation results. For simplicity, we introduce the following 

notation 

                              
* liminf ( )

( )
l

n
s n

n
p p s

a n

 




 
0

1

*

1
limsup ( )

( )
l

n
s n

s
q p s

n a s

 




                (6)                

where 
( ) ( )

( ) (1 ) ( )
2

s s N
p s l p q s

s

 

       
     

   
with  (0,1)l  arbitrarily chosen and N large 

enough. Moreover for z(n) satisfying case (i), we define  

                                                     

2 ( )
( ) ( )

( )

z n
w n a n

z n


 

  
 

                               (7)                                                                        

and 

                           

( 1)
liminf

( 1)n

n w n
r

a n









and

( )
limsup

( )n

n w n
R

a n




                            (8)     

                    

Lemma 2.6. Assume that a(n) is non decreasing. Let x(n) be a positive solution of equation 

(1) (i)  Let *p   and *q   . Suppose that the corresponding z(n) satisfies case (i) of Lemma  
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(2.1). Then 

                                            

1
1

*p r r 


  and * * 1p q                                    (9)                                                                       

  (ii)  If *p  or *q   , then z(n) does not belong under case (i) of Lemma (2.1). 

Proof. Part (i): Assume that x(n) is a positive solution of equation (1) and the corresponding 

z(n) satisfies (i). First note that  

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) (1 ) ( )x n z n p n x n z n p n z n p z n        

Using the above inequality in equation (1), we obtain 

                              
        2( ) ( ) 1 ( ) ( ) 0a n z n p q n z n

                             (10)                     

The last inequality together with  ( ) 0a n  gives 3 ( ) 0z n  . So there exists an integer 0N n  

such that z(n) satisfies   2 3( ) 0, ( ) 0, ( ) 0, ( ) 0z n z n z n z n         for n N . From definition of 

w(n) and (10), we see that w(n) is positive and satisfies, 

   
 

   

   

2 2( ) ( ) ( 1) ( 1) ( )
( )

( ) ( ) ( 1)

a n z n a n z n z n
w n

z n z n z n

  

  

      
  

   
 

              

   

 

1
1

1

1 ( ) ( )
( ) ( 1)

( )
( 1)

p q n z n
w n w n

z n
a n

 







   
   




          (11) 

From Lemma (2.3) with ( ) ( )u n z n  , we have for  the same as in ( )p s  

1 ( ) 1

( ) ( ( ))

n

z n n z n






 
, n N  

which with (11) gives  
1

1

1

( ) ( ( ))
( ) ( ) (1 ) ( 1)

( ( ))
( 1)

n z n
w n q n p w n

n z n
a n



  



  



  
       

   


 

Using the fact from Lemma (2.4) that 
( )

( 1) ( )
2

n N
z n z n


    we have,  

                         

1
1

1
( ) ( ) ( 1) 0

( 1)

lw n P n w n

a n





 

    



                   (12) 

Since ( ) 0P n   and ( ) 0w n  for n N , ( ) 0w n  and  

1 1
1

( ) 1

( 1) ( 1)

w n

w n a n 





   

for n N  

Summing the last inequality N to  n-1and using the fact that w(n) is decreasing, we obtain  
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1

1 1
1

( ) ( ) 1

( ) ( 1)

n

s N

w n w N

w n a n 






 






 

                         

1
1

1

1

( )
( )

1

( 1)

n

s N

w N
w n

a n













 
 
 

  
 
   



                         (13)

 

which view of (H) implies that, lim ( ) 0
n

w n


 . On the other hand, from the definition of w(n) 

and Lemma(2.5), we see that  

                                                                0 1r R                                (14)                                                                        

Now, we prove that the first inequality in (9) holds.  Let 0 . Then from the definition of *p  

and r we can choose an integer 2n N  sufficiently large that 
*( )

( )
l

s n

n
p s p

a n

 



   and 

( 1) 1
( 1)

n
w n

a n



  


for 2n n . Summing (12) from n to   and using lim ( ) 0
n

w n


 , we have  

            

1
1

21

( 1)
( ) ( ) ,

( 1)

l

s n s n

w s
w n p s n n

a s








 

 


  



                    (15) 

Using the fact ( ) 0a n  , it follows from (15) that 
1

1
1

* 1
1

1

( ) ( 1) ( 1)

( ) ( )
( 1)

s n

n w n n s a s w s
p

a n a n
s a s

   

 







 

 
 



  

                                                               

1
1

* 1
1

1

( ) ( 1)
( )

( )
( 1)

s n

n r a s
p

a n
s a s

 

 







 

 
  



  

                                                               

1
1

* 1

( ) ( 1)
( )

( ) s n

n r a s
p

a n s

 











 
     

                                                               

1
1

* 1
( ) ( )

s n

p n r
s

 








      

and so  

                                         

1
1

* 1

( )
( ) ( )

( ) s n

n w n
p n r

a n s


 








                     (16)                                                

From (2.16) and
1 1

s n n

ds

s s 





 


  , we have  

1
1

*

( )
( ) ( )

( )

n w n
p r

a n






     

Taking  lim inf  of both sides as n , we get  
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1
1

*( ) ( )r p r 


     

Since 0  is arbitrary we get the result, 

                                                           

1
1

*p r r 


                                        (17)                                                                                      

To complete the proof of part (I), it remains to prove the second inequality in (9). 

Multiplying the inequality (12) by 
1

( )

n

a n

 

 and summing from 2n  to 1n , we obtain  

      2 2 2

1
1 1 1( ) ( 1)

( )
( ) ( ) ( ) ( 1)

l

s n s n s n

n s w n s s w s
p s

a n a s a s a s


    




    

  

  
    

 
                 (18) 

By summation by parts, we obtain 

2 2 2

1
11 1 11 1 1

2 2
2

2

( )
( ) ( ) ( ) ( 1)

( ) ( ) ( ) ( 1) ( )

n n n

l

s n s n s n

n s w nn s s
w n w n P s w s

a n a n a s a s a s


   




    

  

   
        

   
    

Since ( ) 0a n  , we have  

1 1 1( ) ( ) ( ) ( 1)( 1)

( ) ( ) ( 1) ( 1)

s a s s s a s s

a n a s a s a s

           
   

  
 

Hence, 

2 2

1
111 1 1

2 2

2

( )( )( ) ( 1)( 1) ( 1) ( 1)

( ) ( ) ( ) ( 1) ( 1)

n n
l

s n s n

s P sn w nn w n s w s s w s

a n a n a s a s a s


   




  

 

 
             

  

   

Using the inequality 
1 1

1( 1)

B
Bu Au

A

  


 





 


 


 

With 
( 1)

0,
( 1)

s w s
u A

a s






  


 and 
( 1)

( 1)
s

B
s




 

   
 

, we get 

2 2

( 1)111 1 1
2 2

2

( )( )( ) 1

( ) ( ) ( )

n n
l

s n s n

s P sn w nn w n s

a n a n a s s

    

 

 
    

 
   

It follows that 

                    2 2

( 1)11 1 1
2 2

2

( )( )( ) 1 1 1

( ) ( ) ( )

n n
l

s n s n

s P sn w nn w n s

a n a n n a s n s

    

 

 
    

 
               (19) 

Taking the limsup  of n  

* 1R q    

Combining this with the inequalities in (17) and (14), we have  

1
1

* * 1p r r r R q


        
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which gives the desired second inequality in (9). The proof of part (I) is complete.  

Part (ii): Assume x(n) positive solution of (1). We shall show that z(n) does not belong to 

case (i) of Lemma (2.1). Assume the contrary. First assume *p   . This is exactly as in the 

first part, we obtain (15). Then  

( ) ( )
( ) ( )

l

s n

n n
w n P s

a n a n

  



   

Taking liminf  of both sides at n , we obtain in view of (1) 

1 r   

This is a contradiction. Next we assume that *q   . Then taking liminf  and limsup  on the left 

and right sides of (19) respectively, we obtain 

0 R    

This contradiction completes the proof. 

Now we are ready to present the following oscillation criterion for equation (1). 

 

Theorem 2.7. Assume that condition (3) holds and a(n) is nondecreasing. Let x(n) be a 

solution of (1). If  

* 1
liminf ( )

( ) ( 1)
l

n
s n

n
p P s

a n

 












 


                   (20) 

then x(n) is oscillatory or ( ) 0x n   as n . 

Proof. Let x(n) be a nonoscillatory solution of equation (1) without loss of generality we 

may assume that x(n) is a positive solution of equation (1). If *p   , then by Lemma (2.6), 

z(n) does not belong to case (i) of Lemma (2.1). That is, z(n) has to satisfy (ii), from Lemma 

(2.2), we see that liminf ( ) 0
n

x n


 . 

    Next, we assume that *p   . We shall discuss two possibilities. If for z(n) case (ii) holds, 

then exactly as above we are led, by Lemma (2.6), to liminf ( ) 0
n

x n


 . 

    Now we assume that for z(n) case (i) holds. Let w(n) and r be defined by (7) and (8) 

respectively, then from Lemma (2.6) we see that r satisfies the inequality 
1

1

*p r r 


   

Using the inequality 
1 1

1( 1)

B
Bu Au

A

  


 





 


 


 with A = B = 1 and u = 1, we obtain that  

* 1( 1)
p







 



 

which contradicts (20). This completes the proof. 

 

Corollary 2.8. Assume that condition (3) holds and a(n) is nondecreasing. Let x(n) be a 

solution of (1). If 
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2

1

( ) (2 )
liminf ( )

( ) ( 1) (1 )n
s n

n s
q s

a n s p

  

  

 









 

                  (21) 

then x(n) is oscillatory or ( ) 0x n   as n . 

Proof. We shall show that condition (21) implies condition (20). First note that for any 

(0,1)  there exists an integer 1n  such that 1( ) ( ),n N n n n    . Therefore, 

                                     
2 2

1

(1 ) ( )
( ) ( ),

2
l

p n
P n q n n n

n

  








                      (22)                                    

On the other hand (21) implies that for some (0,1)l  

  

2

2 1

( ) 1 (2 )
liminf ( )

( ) ( 1) (1 )n
s n

n s
q s

a n s p

  

   

 









 

          (23) 

Combining (22) with (23), we obtain (20). 

 

Theorem 2.9. Assume that condition (3) holds and a(n) is nondecreasing. Let x(n) be a 

solution of (1). If  

                                                      * * 1p q                                      (24) 

then x(n) is oscillatory or satisfies lim 0
n

 . 

Proof. Let x(n) be a nonoscillatory solution of equation (1) without loss of generality we 

may assume that x(n) is a positive solution of equation (1). If *p  or *q   , then by Lemma 

(2.6), z(n) does not belong to case (i) of Lemma (2.1). That is, z(n) has to satisfy (ii), from 

Lemma (2.2), we see that liminf ( ) 0
n

x n


 . 

    Next, we assume that *p   or *q   . We shall discuss two possibilities. If for z(n) case (ii) 

holds, then exactly as above we are led, by Lemma (2.2), to liminf ( ) 0
n

x n


 . Now we assume 

that for z(n) case (i) holds. Let w(n) and r be defined by (7) and (8) respectively, then from 

Lemma (2.6) we see that *p or *q  satisfies the inequality, which contradicts (24). This 

complete the proof. 

     As a consequence of Theorem (2.9), we have the following results. 

Corollary 2.10. Assume that condition (3) holds and a(n) is nondecreasing. Let x(n) be a 

solution of (1). If  

                                      
0

11

*

1
liminf ( ) 1

( )

n

n
s n

s
p P s

n a s

 




                                  ( 25)                               

then x(n) is oscillatory or satisfies lim 0
n

 . 

    As a matter of fact we can again slightly simplify function ( )P n in (25). 

Corollary 2.11. Assume that condition (3) holds and a(n) is nondecreasing. Let x(n) be a 

solution of (1). If  

                                       
0

211 ( ) 2
limsup ( )

( ) (1 )

n

n s n

s s
q s

n a s p





 

 




                            (26)                             
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then x(n) is oscillatory or satisfies lim 0
n

 . 

      The proof is similar to that of Corollary (2.8) and hence the details are omitted. We 

conclude this section with two examples. 

 

Example 2.12. Consider the third order nonlinear difference equation 

3 3

2 1 8
( ) ( 1) (2 1)( 2) 0

3 3
n x n x n n n
     

                  

              (27) 

        It is easy to see that condition (3) holds. Hence, by Corollary (2.8), we see that every 

solution of equation (27) is either oscillatory or converges to zero as n . 
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