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Abstract  
In this paper we present the class of convergent set for the formal power series 𝑓(𝑧, 𝑡) =

∑ 𝑃𝑗(𝑧)𝑡𝑗∞
𝑗=0 , where every  𝑃𝑗is a polynomial  whose degree is bounded by a linear 

function deg 𝑃𝑗 ≤ 𝐴𝑗 + 𝐵, for some  𝐴 > 0, 𝑎𝑛𝑑 𝐵 ≥ 0. The class 𝐶(𝛿, 𝐴, 𝐵), and 
the𝐶(𝛿, 𝐴, 𝐵)convergent set are considered, we find equalconvergent classes.Where the 
equal convergent classes contains the same elements. 

Introduction  
The purpose of this paper is to introduce a set inℂ, describe the convergence of the 
formal series .We study convergence sets of formal power series of the type𝑓(𝑧, 𝑡) =

∑ 𝑃𝑗(𝑧)𝑡𝑗∞
𝑗=0 , where 𝑃𝑗(𝑧)are polynomials with deg 𝑃𝑗 ≤ 𝑗 as in [1],[2] and [3],[4]. We say that  

𝑓(𝑧, 𝑡) is convergent if there exist a constant 𝐶 such that 
                                                                                          |𝑃𝑗(𝑧)| ≤ 𝐶. 
The classical theorem of hartog say that the formal power series is convergent if the 
series convergent when restricted to every line  through the origin as in [9],[7],[6],[8],[5]. An 
interpretation of this  theorem is that 𝑓is holomorphic in ℂ𝑛if for each axis 𝑓 is  
holomorphic on every complex line parallel to this axis. This  interpretation leads to a 
number of question described in the article by K. Spalk, P. Tworzewki , T. Winiarski as 
in [9] in the following way: Osgood-Hartogs-Type problems ask for properties of object 
whose  
restrictions to certain test-sets are well known. A revision of the Hartogs's theorem states 
that a series 𝑓 converges if and only if it converges along alldirections 𝜁𝜖∞𝑛−1. On the 
contrary for a divergent series it is still possible converge in some directions, so it is 
natural to consider what the set of all such directions is.Lelong in [5], showed that a 
formal power series 𝑔(𝑥, 𝑦) converges in some neighborhood of the origin if there exists 
a set 𝐸 ⊂ ℂof positive capacity such that, for each 𝑠 ∈ 𝐸the formal power series 
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𝑔(𝑥, 𝑠𝑥)converges in some neighborhood of the origin (of a size possibly depending on 
𝑠).[Bochnak 1970; Siciak 1970] in [10], Proved the  following theorem. Let 𝑓 ∈ ∁∞(𝐷), 
where 𝐷is a domain in ℝ𝑛 containing 0. Suppose 𝑓is analytic on every segment through 
0. Then 𝑓is analytic in a neighborhood of 0 (as a function of 𝑛variables).  Abyankar and 
Moh (see [11]), showed that the test sets in many cases  form a family of linear 
subspaces of lower dimension. For example,  articles by S.S. Abhyankar, T. T. Moh[11], 
N. Levenberg and R. E.  Molzon [6] , A. Sathaye [8], M. A. and others consider the  
convergence of formal power series of several variables provided the  restriction of such 
a series on each element of a sufficiently large family of linear subspaces is 
convergence. T. S. Neelon [12] proved that a formal power series is convergence if its 
restriction to certain families of curves or surfaces parametrized by polynomial maps are  
convergence.Fridman and Ma in [13] considered two families of test sets 
separately.Fridman, Ma and T. S. Neelon[4] generalized the result of P. Lelong and A. 
Sathaye for the linear case by introducing the family ofanalytic curves as the subspace 
substitute.We say that that a series 𝑓(𝑧, 𝑡) = ∑ 𝑃𝑛(𝑧)𝑡𝑛 is of class 𝐶(𝛿, 𝐴, 𝐵) if deg𝑃𝑛 ≤

𝐴𝑛𝛿−1 + 𝐵 for 𝑛 sufficiently large, and for𝛿 ≥ 1, 𝐴 > 0, 𝐵 ≥ 0. We definea𝐶(𝛿, 𝐴, 𝐵) 
convergence set 𝐸 ⊂ ℂ,if there  exists an 𝑓 ∈ 𝐶(𝛿, 𝐴, 𝐵) such that 𝐸 = 𝐶𝑜𝑛𝑣(𝑓), where 
𝐶𝑜𝑛𝑣(𝑓)is  the convergent set i.e the set of complex number 𝑧 in ℂ such that  𝑓(𝑧, 𝑡) 
converges in 𝑡 see [3]. We finding equal convergence sets in  the following theorem. 
Let ⌈𝑋⌉ denote the greatest integer that is greater than or equal to 𝑋. 

Theorem: For any fixed 𝛿 ≥ 0, every 𝐶(𝛿, 𝐴, 𝐵) convergence set is a 𝐶(𝛿, 1,0.5) 
convergence set. 

Proof. Let 𝐸 be a 𝐶(𝛿, 𝐴, 𝐵) convergence set. Then there exist an 𝑓 ∈ 𝐶(𝛿, 𝐴, 𝐵) ,  

𝑓(𝑧, 𝑡) = 𝑃0(𝑧) + 𝑃1(𝑧)𝑡 + ⋯ + 𝑃𝑛(𝑧)𝑡𝑛 + ⋯, 

With 𝐸 = 𝐶𝑜𝑛𝑣(𝑓) and deg 𝑃𝑛 ≤ 𝐴𝑛𝛿−1 + 𝐵. 
Let 

𝑔(𝑧, 𝑡) = ∑ 𝑃𝑗(𝑧)𝑡𝑁𝑗∞
𝑗=0 , 

Where 𝑁𝑗 = ⌈(𝐴 + 𝐵)
1

𝛿−1⌉ 𝑗 . Then, for 𝑗 ≥ 1, 
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deg𝑃𝑗 ≤ 𝐴𝑗𝛿−1 + 𝐵 

≤ (𝐴 + 𝐵)𝑗𝛿−1 

           = ((𝐴 + 𝐵)
1

𝛿−1  . 𝑗)𝛿−1 

≤ (⌈(𝐴 + 𝐵)
1

𝛿−1 ⌉ 𝑗)
𝛿−1

+ 0.5 

= 𝑁𝑗
𝛿−1 + 0.5 . 

Which implies that 𝑔(𝑧, 𝑡) ∈ 𝐶(𝛿, 1,0.5). Now we need to prove that  
𝐸 = 𝐶𝑜𝑛𝑣(𝑔). For 𝑧 ∈ 𝐸 there exists a positive number 𝑐 such that |𝑃𝑛(𝑧)| < 𝑐𝑛. Let 𝑐𝑔 =

𝑐
1 ⌈(𝐴+𝐵)

1
𝛿−1⌉⁄ .  

Then  

|𝑃𝑛(𝑧)| < 𝑐𝑔

⌈(𝐴+𝐵)
1

𝛿−1⌉𝑛

=𝑐𝑔
𝑁𝑛, 

Which shows that 𝑧 ∈ 𝐶𝑜𝑛𝑣(𝑔), and 𝐶𝑜𝑛𝑣(𝑓) ⊂ 𝐶𝑜𝑛𝑣(𝑔). Reverse the above steps we 
conclude that  𝐶𝑜𝑛𝑣(𝑔) ⊂ 𝐶𝑜𝑛𝑣(𝑓). It's easy to see that the generalization for the 
previous theorem still  true,  𝑖. 𝑒For any fixed 𝛿 ≥ 0, every 𝐶(𝛿, 𝐴, 𝐵) convergence set is 
a𝐶(𝛿, 1, 𝑘) convergence set, where 𝑘 ≥ 0. 

Conclusion:  
in this paper we show that every 𝐶(𝛿, 𝐴, 𝐵) convergence set is a 𝐶(𝛿, 𝐴, 𝑘) convergence 
set. In the next paper we will look for new classes of convergence sets. 
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