Convergence Classes

Basma Al-Shutnawi¹, Mohammad Zannon²

^{1,2}Department of Mathematics, Tafila technical university, P.O. Box 179, Tafila 66110, Jordan. E-mail -¹ <u>basma@ttu.edu.jo</u> E-mail-²zanno1ms@gmail.com

Abstract

In this paper we present the class of convergent set for the formal power series $f(z,t) = \sum_{j=0}^{D} P_j(z)t^j$, where every P_j is a polynomial whose degree is bounded by a linear function deg $P_j \le Aj + B$, for some A > 0, and $B \ge 0$. The class $C(\delta, A, B)$, and the $C(\delta, A, B)$ convergent set are considered, we find equalconvergent classes. Where the equal convergent classes contains the same elements.

Introduction

The purpose of this paper is to introduce a set in \mathbb{C} , describe the convergence of the formal series .We study convergence sets of formal power series of the type $f(z,t) = \sum_{j=0}^{D} P_j(z)t^j$, where $P_j(z)$ are polynomials with deg $P_j \leq j$ as in ^{[1],[2]} and ^{[3],[4].} We say that f(z,t) is convergent if there exist a constant C such that $|P_j(z)| \leq C$.

The classical theorem of hartog say that the formal power series is convergent if the series convergent when restricted to every line through the origin as in ^{[9],[7],[6],[8],[5].} An interpretation of this theorem is that *f* is holomorphic in \mathbb{C}^n if for each axis *f* is holomorphic on every complex line parallel to this axis. This interpretation leads to a number of question described in the article by K. Spalk, P. Tworzewki, T. Winiarski as in ^[9] in the following way: Osgood-Hartogs-Type problems ask for properties of object whose

restrictions to certain test-sets are well known. A revision of the Hartogs's theorem states that a series *f* converges if and only if it converges along alldirections $\zeta \in \square^{n-1}$. On the contrary for a divergent series it is still possible converge in some directions, so it is natural to consider what the set of all such directions is.Lelong in ^{[5],} showed that a formal power series g(x, y) converges in some neighborhood of the origin if there exists a set $E \subset \mathbb{C}$ of positive capacity such that, for each $s \in E$ the formal power series

DOI:10.18535/ijmcr/v3i8.01

g(x, sx) converges in some neighborhood of the origin (of a size possibly depending on s).[Bochnak 1970; Siciak 1970] in ^{[10],} Proved the following theorem. Let $f \in C^{\mathbb{I}}(D)$, where *D* is a domain in \mathbb{R}^n containing 0. Suppose *f* is analytic on every segment through 0. Then f is analytic in a neighborhood of 0 (as a function of n variables). Abyankar and Moh (see ^{[11]),} showed that the test sets in many cases form a family of linear subspaces of lower dimension. For example, articles by S.S. Abhyankar, T. T. Moh^{[11],} Molzon^[6], A. Sathaye^{[8],} M. A. and others consider the N. Levenberg and R. E. convergence of formal power series of several variables provided the restriction of such a series on each element of a sufficiently large family of linear subspaces is convergence. T. S. Neelon ^[12] proved that a formal power series is convergence if its restriction to certain families of curves or surfaces parametrized by polynomial maps are [13] and Ma in considered two families convergence.Fridman of test sets separately.Fridman, Ma and T. S. Neelon^[4] generalized the result of P. Lelong and A. Sathaye for the linear case by introducing the family of analytic curves as the subspace substitute. We say that that a series $f(z,t) = \sum P_n(z)t^n$ is of class $C(\delta,A,B)$ if deg $P_n \leq C(\delta,A,B)$ $An^{\delta-1} + B$ for *n* sufficiently large, and for $\delta \ge 1, A > 0, B \ge 0$. We define $C(\delta, A, B)$ convergence set $E \subset \mathbb{C}$, if there exists an $f \in C(\delta, A, B)$ such that E = Conv(f), where *Conv*(*f*)is the convergent set *i.e* the set of complex number *z* in \mathbb{C} such that f(z,t)converges in t see ^{[3].} We finding equal convergence sets in the following theorem. Let [X] denote the greatest integer that is greater than or equal to X.

Theorem: For any fixed $\delta \ge 0$, every $C(\delta, A, B)$ convergence set is a $C(\delta, 1, 0.5)$ convergence set.

Proof. Let *E* be a $C(\delta, A, B)$ convergence set. Then there exist an $f \in C(\delta, A, B)$,

$$f(z,t) = P_0(z) + P_1(z)t + \dots + P_n(z)t^n + \dots,$$

With E = Conv(f) and deg $P_n \le An^{\delta - 1} + B$.

Let

$$g(z,t) = \sum_{i=0}^{D} P_i(z) t^{N_j},$$

Where
$$N_j = \left[(A+B)^{\frac{1}{\delta-1}} \right] j$$
. Then, for $j \ge 1$,

1107

DOI:10.18535/ijmcr/v3i8.01

$$deg P_{j} \le A j^{\delta - 1} + B$$

$$\le (A + B) j^{\delta - 1}$$

$$= ((A + B)^{\frac{1}{\delta - 1}} . j)^{\delta - 1}$$

$$\le \left(\left[(A + B)^{\frac{1}{\delta - 1}} \right] j \right)^{\delta - 1} + 0.5$$

$$= N_{j}^{\delta - 1} + 0.5 .$$

Which implies that $g(z,t) \in C(\delta, 1, 0.5)$. Now we need to prove that

E = Conv(g). For $z \in E$ there exists a positive number c such that $|P_n(z)| < c^n$. Let $c_g = c^{1/\left[(A+B)^{\frac{1}{\delta-1}}\right]}$.

Then

$$|P_n(z)| < c_g^{\left[(A+B)^{\frac{1}{\delta-1}}\right]n} = c_g^{N_n},$$

Which shows that $z \in Conv(g)$, and $Conv(f) \subset Conv(g)$. Reverse the above steps we conclude that $Conv(g) \subset Conv(f)$. It's easy to see that the generalization for the previous theorem still true, *i.e*For any fixed $\delta \ge 0$, every $C(\delta, A, B)$ convergence set is $aC(\delta, 1, k)$ convergence set, where $k \ge 0$.

Conclusion:

in this paper we show that every $C(\delta, A, B)$ convergence set is a $C(\delta, A, k)$ convergence set. In the next paper we will look for new classes of convergence sets.

References:

- J. Ribon, Holomorphic extensions of formal objects, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 3 (2004), 657-680
- 2. R. P'erez-Marco, A note on holomorphic extensions, preprint, 2000
- B. Al-Shutnawi, "On convergence sets of formal power series", PhD dissertation, USA, 2013
- 4. B.L. Fridman, D. Ma, T.S. Neelon, "Nonlinear convergence sets of divergent power series", preprint.

- 5. P. Lelong, "On a problem of M.A. Zorn", Proc. Amer. Math. Soc., 2(1951), pp 11-19.
- N. Levenberg, R.E. Molzon," Convergence sets of a formal power series", Math. Z., 197(1988), pp 411-420.
- 7. D. Ma, T.S. Neelon, "On convergence sets of formal power series", preprint.
- 8. Sathaye, "Convergence sets of divergent power series", J. ReineAngew. Math., 283(1976), 86-98.Kokyoroku in Math. 14, Tokyo, 1982.
- 9. K. Spallek, P. Tworzewski, T. Winiarski," Osgood-Hartogs-theorem of mixed type", Math. Ann,288(1990), pp 75-88.
- 10.J. Bochnak, "Analytic function in Banach spaces," Studia Math., 35(1970), pp.273--292.
- 11.S. S. Abhyankar and T. T. Moh, "A reduction theorem for divergent power series,"J. ReineAngew. Math., 241(1970), pp.27-33.
- 12.T. S. Neelon, "Restrictions of power series and functions to algebraic surfaces,"Analysis(Munich), 29(2009), pp.1-15.
- 13.B. L. Fridman and D. Ma, "Osgood {Hartogs-type properties ofpower series and smooth functions}," Math.cv 251(2011), pp. 67-79.