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ABSTRACT 

 In this study MLRM and BLRM were compared. To achieve the goal, MLRM and BLRM estimating 

approach were considered on a simultaneous equation models where gender is been classified as CLASS 

coded with an indicator, taking on the value 0 and 1 respectively. Data were collected based on Age, Sex, 

Weight, Height and Blood pressure of patients at two groups: ‘Group A and Group B from the file record 

office of Federal Medical Centre Owo, Ondo state. The body mass index (BMI) was calculated from the 

patient’s weight and height. Result from the analysis showed that MLRM and BLRM produced different 

values of coefficient and standard error in the two models. The MINITAB statistical software package was 

adopted to carry out the analysis of the results and the study however concluded that MLRM was considered 

to be the best contributory and most efficient model compared with that of BLRM.  

Keywords:  Multiple Linear Regression Model (MLRM), Binary Logistic Regression Model (BLRM), 

Hypertension, Weight (WT), Body Mass Index (BMI), Blood Pressure (BP), Gender->Class, Age. 

INTRODUCTION 

Modelling the relationship between explanatory and response variables is a fundamental activity 

encountered in statistics. Regression analysis entails finding out the relationship that exit between economic 

variables. Regression analysis involves the use of the linear classical model which gives direction to the 

process of regression. Simple regression model entails the process of investigating the relationship between 

a single explanatory (predictor) variable and a single response predictant variable. Multiple regression model 

entails the regression of more than two variables; in this case we have one dependent variable and several 

independent or explanatory variables. However the general linear regression model encompasses not only 

quantitative predictor variable but qualitative ones, designation of one or two possible outcomes are 

observed in a binary form of response such as alive or dead, success or failure. Although response may be 

accumulated to provide the number of success and the number of failure, the quantitative nature of the 

response still remains. 

Efficiency and level of contribution are parts of properties that give a better description of the modelling in 

statistics. In this study the Multiple Linear Regression Model (MLRM) and Binary Linear Regression Model 

(BLRM) would be adopted on a simultaneous equation models. Hence the model with the best level of 

contribution and efficiency would be determined. 
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Hypertension 

Hypertension or high blood pressure is a condition in which the blood pressure in the arteries is chronically 

elevated. With every heartbeat, the heart pumps blood through the arteries to the rest of the body (J. Ray soc 

med 74:896, 1981). It is an increase in blood pressure above the normal range, usually diagnosed on the 

systolic above 120mmHg and diastolic above 80mmHg. However the normal blood level is below 120/80; 

where 120 represent the systolic measurement (peak pressure in the arteries) and 80 represent the diastolic 

measurement (minimum pressure in the arteries). Blood pressure between 120/80 and 139/89 is called pre-

hypertension (to denote an increased risk of hypertension) and a blood pressure of 140/90 or above is 

considered hypertension. Previous studies on hypertension generally emphasized on reducing the 

concentration on the efficacy of diastolic and systolic blood pressure. However, emphases were not much 

concentrated on the eating habit of the patients. Even though, most hypertensive patient required at least two 

different recommended drug classes to achieve the targeted blood pressure of 130/85mmHg, as a single dose 

might not easily bring it down.  

Causes of Hypertension 

Though the exact courses of hypertension are usually unknown, there are several factors that have been 

highly associated with the condition. These includes: *Smoking *Obesity or Being over-weight * Diabetes * 

Sedentary lifestyle * Lack of physical activity * High level of salt intake (sodium sensitivity) *Insufficient 

calcium, potassium and magnesium consumption * Vitamin D-deficiency * High level of alcohol 

consumption * Stress *Aging * Medicine such as birth control pills * Genetic and a family history of 

hypertension * chronic kidney disease * Adrenal and thyroid problems and tumors. 

Classification of Hypertension 

Essential hypertension: - Though essential hypertension remains somewhat mysterious, it has been linked to 

certain risk factors. High blood pressure tends to run in families and is more likely to affect men than 

women. Age and race also play a role. Essential hypertension is also greatly influenced by diet and lifestyle. 

The link between salt and high blood pressure is especially compelling. By contrast, people who add no salt 

to their food show virtually no traces of essential hypertension. The majority of people with high blood 

pressure are “salt sensitive” meaning that anything more than the minimal bodily need for salt is too much 

for them and increase their blood pressure. Other factors that have been associated with essential 

hypertension include obesity; diabetes; stress; insufficient intake of potassium, calcium and magnesium; 

lack of physical activity; chronic alcohol consumption. Secondary hypertension: - when a direct causes for 

high blood pressure can be identified, the condition is describe as secondary hypertension. Among the know 

causes of secondary hypertension, kidney disease ranks highest. Hypertension can also be triggered by 

tumors or other abnormalities that causes the adrenal glands (small glands that sit atop the kidney) to secret 

excess amount of the hormones that elevate blood pressure. 

Classification of high blood pressure 

Normal blood pressure: - less than 120/80 

Pre-hypertension: -120-139/80-89 

Hypertension: - greater than 140/90 

Stage 1 Hypertension: - 140-159/90-99 

Stage 2 Hypertension: - 160 or greater/100 or greater 
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MODEL SPECIFICATION 

Multiple Linear Regression Model (MLRM) 

In this type of model, we have response variable Y which is determine by two or more predictor variables ix

,..., 1px  . Assume that a linear relationship exist between a response variable Y and 1px predictor variables.

 

“The regression model”: 

ipipiii xxxY    1,122110 ...  

Is called a Multiple Linear Regression Model with P-1 predictor variables. It can also be written as: 
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 E ( i ) =0, the response function for regression model above is: 

E(Y) 1122110 ...  pp xxx  . 

General Linear Regression Model in Matrix Term 

The model is:   XY  

Where: 

Y is a vector of response 

β is a vector of parameter 

X is a matrix of constants 

Ɛ is a vector of independent normal random variables with expectation. E(Ɛ)=0 and covariance matrix 
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Where 
2 (Ɛ) is an nx1 

Consequently, the random vector Y has expectation   XYE nx 1 and the variance-covariance matrix of Y is 

the same as that of Ɛ:   .22 IY nxn     

However in matrix term we need to define the following matrices: 
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Estimation of  nii ,...,2,1,0 in multiple regressions. 

The least square criterion is generalised as follow for general linear regression model stated earlier: 

Q=  21,11101 ...   pipii

n

i XXY   

The least square estimators are those values of 110 ,..., p that minimize Q. We let b denotes the vector of 

the least square estimated regression coefficients 110 ,..., pbbb  
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The Least Square Normal equations for the general linear regression model are: YXXbX 11   and the least 

square estimators are:   1
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The method of maximum likelihood leads to the same estimator for normal error regression model as those 

obtain by the method of least squares.  

The Maximum likelihood Estimator (MLE): 
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Maximizing this likelihood function with respect to 110 ,..., p leads to the estimators given earlier such 

that   1

111

pxpxp YXXXb



 

Logistic Regression Model (LRM) 

Logistic regression is part of a category of statistical methods called generalised linear model. The logistic 

regression model is simply a non linear transformation of linear regression. The logistic distribution is an S-

shaped distribution function (cumulative density function) which is similar to the standard normal 

distribution and constrains the estimated probabilities to lie between 0 and 1. 

(http:/en.wikipedia.org/wiki/binary logistic regression). 

Logistic regression allows one to predict a discrete outcome, such as group membership, from a set of 

variables that may be continuous, discrete, dichotomous, or a mix of any of these. In most cases the response 

variable is dichotomous, such as presence/absence or success/failure. 

There is pertinent condition that should be noted about this function. First of all, it is bounded between zero 

(0) and one (1). Secondly, there is a linear model hidden in the function that can be revealed with a proper 

transformation of the response. Finally, the sign association with the coefficient  indicates the direction of 

the curve. 

The Model: 

The response variable in logistic regression is usually dichotomous, this type of variable is called Bernoulli 

(or binary) variable. When the response variable is binary, there would be presence of an indicator, taking on 

the values 1 and 0 with probabilities   and 1 respectively. Y is a Bernoulli random variable with 

parameter   YE (John Neter, Michael H. Kutner, Christopher J. Nachtshein & William Wasserman, 

1996). 
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The equation (i) for multiple now becomes: 
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Where 0 is the constant of the equation and i is the coefficient of the predictor variables. 

The models of interest are: 

AGEBPBMIGENDER 3210    
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Here we have two equations with one endogenous variables (GENDER) coded with an indicator taking on 

the values 1 and 0 with probabilities   and 1 respectively, and three exogenous variables (BMI,BP 

and AGE). 

Definitions of Terms 

GENDER- Sex coded with an indicator of 1 and 0 such that  

𝐺𝐸𝑁𝐷𝐸𝑅 = {
1 𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑓𝑒𝑚𝑎𝑙𝑒
𝑜 𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑚𝑎𝑙𝑒     
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BMI    - changes in Body Mass Index 

BP       - changes in Blood Pressure 

 AGE        - Denotes the Age of individual patient. 

 

MATERIAL 

The data used for this study was extracted from the record office of Federal Medical centre Owo, Ondo 

state. The patients were randomly grouped into two groups: Group A and Group B for different consultant 

for eight consecutive weeks and the result of the two groups were now compared after this period. The 

Gender called CLASS was coded with an indicator taking on the value 1 and 0 respectively. The Age, Sex, 

Weight, Height and blood pressure of the patients were considered at various groups. Hence, body mass 

index (BMI) was calculated from the patient’s weight and height. 40 observations were considered, out of 

which 30 were female and the remaining 10 were male. 

DISCUSSION OF RESULTS 

Two different statistical models fitted for this research work with their estimated parameters are MLRM and 

BLRM. The MINITAB statistical software package was adopted to obtain the results necessary for 

discussion. 

Table (1): Regression Analysis: GENDER versus ΔBMI, ΔBP, AGE  

 

 

 

 

 

 

Source: Authors computation from MINITAB software 

From the MLRM output in the table 1 above, the model becomes:  

GENDER=0.738-0.0601BMI+0.676BP+0.00224AGE 

Table (2): Binary Logistic Regression: GENDER versus ΔBMI, ΔBP, AGE  

 

 

 

 

 

 

Source: Authors computation from MINITAB software 

From the BLRM output in table 2 above the model becomes: 
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Interpretation 

The Body Mass Index (BMI) predictor from the two models above gave negative sign which implies that the 

two factors are the higher risk factors in reducing the blood pressure among the hypertensive patients. The 

estimated parameters coefficients of the MLRM are all less than the coefficients of the BLRM, out of which 

the blood pressure (BP) increases by 0.6762 in MLRM and 2.56921 in BLRM respectively. Hence, it shows 

Predictor Coef SE Coef Z P 

Constant 0.7375 0.5345 1.38 0.176 

ΔBMI -0.06006 0.04589 -1.31 0.199 

ΔBP 0.6762 0.6510 1.04 0.306 

AGE 0.002245 0.009279 0.24 0.810 

Predictor Coef SE Coef Z P 

Constant 0.886431 1.70701 0.52 0.604 

ΔBMI -0.229338 0.165261 -1.39 0.165 

ΔBP 2.56921 2.38260 1.08 0.281 

AGE 0.0049619 0.0294072 0.17 0.866 
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that the model MLRM contributes better than the BLRM in the analysis. Considering the standard error of 

the two models (0.6510 and 2.38260) - MLRM and BLRM from the output in table 1 & 2 above, the 

standard errors of MLRM are smaller than that of the BLRM. The result reveals that MLRM is the most 

efficient. 

CONCLUSION 

In this research, the two models - MLRM and BLRM were compared. Result from the analysis showed that 

MLRM and BLRM produce different values of coefficients and standard errors in the simultaneous 

equations. This study therefore concluded that MLRM was considered to be the best contributory and most 

efficient model in the analysis due to the less coefficients and smallest standard error deduced from the 

output results of the research work. 
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