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Abstract 

Oblique projection operator (OPO)can be used to project measurements onto a low-rank desired signal 

subspace along a direction thatis oblique to the subspace. The appropriate subspace projection may be used 

to enhance the characteristics of the desired signal power and reduces the interference effect. In this 

paper,we propose a high-resolution direction-of-arrival(DOA)estimation algorithm for signal sources of 

uniform linear array (ULA) in the presence of mutual coupling by using an oblique projection operator. The 

mutual coupling coefficient between two sensor elements is inversely proportional to their distance and the 

value can be approximated as zero when the distance is far enough. The mutual coupling matrix (MCM) of a 

ULA can be expressed as a banded symmetric Toeplitz matrix. The multiple signal classification 

(MUSIC)algorithm by using an orthogonal projection operator for DOA estimation in the presence of mutual 

coupling signal environments can only utilize the middle subarray, the DOA estimation is biased. We usean 

oblique projection operator on a beam space to overcome the drawback of MUSIC algorithm for DOA 

estimation in the presence of mutual coupling and the algorithm proceeds into two stages. First, we use 

MUSIC algorithm to obtain the estimated DOAs of the signal sources. Because the estimation sareprone to 

bias, we built a beam space near the estimated angles in Stage 1 to reduce DOA bias. Next, the projection 

weights of steering vectors on signal subspaces were replaced with their revised steering vectors. We use an 

oblique projection operator on the beam space to develop the characteristic of DOA of signal sources on a 

spatial spectrum for scanning and estimating the angle-of-arrival of signal sources. High-resolution DOA 

estimates are thus obtained. Finally, simulation results demonstrate the performance and procedural 

accuracy of our method. 

 

Keywords: Direction-of-arrival (DOA), multiple signal classification (MUSIC), oblique projection operator, 

beam space, mutual coupling 

 

Introduction 

The projection operators can be into orthogonal and oblique operators. Orthogonal projection operators arise 

naturally in the optimal solutions of many problems in DOA estimation [3–4].Oblique projection operator 

(OPO) can be used to project measurements onto a low-rank desired signal subspace along a direction that is 

oblique to the subspace. The appropriate subspace projection can be used to enhance the characteristics of 

the desired signal power and reduces the interference effect. In the recent years, oblique projection operators 

has received a lot of attention in signal processing[15-18]. 

The direction-of-arrivals (DOAs) estimation of signals impinging on an array of sensors is the fundamentals 

of employing array processing in various applications related to radar, sonar, communications, and 

astronomy. A number of subspace high-resolution DOA estimation has been developed, including the 

multiple signal classification (MUSIC) and the estimation signal parameter via a rotational invariant 

technique (ESPRIT) [3–4].These conventional high-resolution DOA estimation methods generally need a 

prior knowledge of array manifold. Their performance will be distorted by the unknown array manifold 

errors, such as the mutual coupling of the interaction between the sensor elements. The DOA estimation in 

the presence of unknown mutual coupling attracts an extensive attention, many mutual coupling calibration 
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methods has been proposed [6-14]. Making use of the calibration sources with known locations, a maximum-

likelihood calibration method proposed in [7] can compensate the mutual coupling as well as gain, phase and 

sensor position errors. In real system it may be difficult to obtain calibration sources, the methods in [8-11] is 

another kind of array calibration methods which do not require the calibration sources at known location, 

called auto-calibration. Auto-calibration is more preferable method, since it can be estimate the DOAs and 

the mutual coupling coefficients simultaneously. The mutual coupling auto-calibration method proposed by 

Friedlander et al [8] and Selloneet al [9] present an iterative procedure to estimate the DOA sand mutual 

coupling coefficients. However, there are a great number of unknown parameters involved in these two 

methods lead their computation is high and complexities. So it may not be to suitfor real-time applications 

and may alsonot be convergent [11-14].  

In orderto overcome the shortcomings of mutual coupling auto-calibration methods presented above.In [13-14], 

mutual coupling calibration methods for ULA are proposed. These methods are based on the fact that the 

mutual coupling coefficient between two sensor elements is inversely proportional to their distance and the 

value can be approximated as zero when the distance is far enough. The mutual coupling matrix (MCM) of a 

ULA can be expressed as a banded symmetric Toeplitz matrix, and then the number of unknown parameters 

isreduced significantly. In [13], the DOAs of uncorrelated signals estimated by a reduced array with unknown 

mutual coupling. Unlike the MUSIC algorithm directly for DOA estimation, only the middle subarray is 

utilizedin the presence of mutual coupling, in [14] propose a method which use the whole array, instead of the 

middle subarray,to improve the accuracy of DOA estimation. 

The oblique projection operator (OPO) was introduced to estimate DOA of signal sources in [15-18]. An OPO 

which is established by projecting the desired source signal subspaceuse to extract the desired source signal 

covariance from the source signal covariance matrix. The numerical simulation shows that the estimation of 

DOAs for high correlated or coherent signal sources performance well. 

 In this paper, we propose a high-resolution DOA estimation method for the incident DOA 

ofuncorrelated signal sources in the presence of mutual coupling. This method proceeds into two procedures. 

First, we useMUSIC algorithm to obtain DOA estimates for one set of signal sources, which is expected to 

show a bias in the estimation, and we rebuilt a new steering matrix near the estimated DOAs angle. The 

original collected data are projected on the beam space extended from the steering vectors to build a new set 

of data [19-22].Next, OPO [15-18] on the beam space is employed to develop the characteristic of DOAs of 

signal sources on a spatial spectrum for scanning and estimating the angle-of-arrival of the signal sources.  

 This rest of this paper is organized as follows. A simple description of the data model is introduced in 

Section 2. The beam space, the OPO built on the beam space, and our algorithm are introduced in Section 

3.The computer simulation results for showing our algorithm’s estimation performance are presented in 

Section 4.We conclude this paper in Section 5. 

 

Data Model 

 Assume that a D number of far-field narrow band uncorrelated signal sources enter a uniform linear 

array made up of M sensors at varying angles-of-arrival  1 2
, , ,

D
   , that the spacing constant between the 

two adjacent antenna component sisd, where dis
1

2
 of the wavelength. Let 

1 2
( ) [ ( ), ( ), , ( )]T

i i i M i
a a a   a  

be the steering vector of the angle-of-arrival i  in the 1M   dimension, then 

( ) exp[ 2 ( 1)sin / ]ka j d k       is the response of the incident signal coming from the kth sensor from 

the angle-of-arrival   at unit amplitude 1j   , and  is the wavelength of the signal carrier. In the 

presence of the mutual coupling environment, the data vector of the array sensors at time t and 1M   

dimension canthus be written as: 

1

( ) ( ) ( ) ( ) ( ) ( )
D

i i

i

t s t t t t


   x Ca n As n  (1)  

where 1,2, ,t N  and N is the number of snapshots.In particular, C is the M M  dimension mutual 

coupling matrix (MCM) of a ULA
1 2( ) [ ( ), ( ), , ( )]T

Dt s t s t s ts isthe 1D  dimension vectors composed of 
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signal amplitudes, 1 2[ ( ), ( ), , ( )]D  A a a a represents the steering matrix in the M D  dimension, where 

the superscript Trepresents transposition. The noise ( )tn of the array sensors is the zero-mean spatially white 

Gaussian process not correlated with any of the signal sources. The noise covariance matrix is thus the 

following unknown diagonal matrix. 
2{ ( ) ( )}H

n n ME t t   R n n I  (2)  

where { }E and the superscript H represent the expected value and the complex conjugate transpose, 

respectively, and MI  is the unit matrix in the M M dimension.  

 In practice, the mutual coupling coefficient coefficients between two sensor elements is inversely 

proportional to their distance and the value can be approximated as zero when the distance is far enough. 

The mutual coupling matrix (MCM) C of a ULA can be expressed as a banded symmetric Toeplitz matrix 

[8-14]. More precisely, the mutual coupling coefficient can be approximated to be zero when the distance 

between two sensor elements is more than p inter-sensor spacing. Here, we assume there are only 1p   

nonzero mutual coupling coefficients. As a result, C  can be expressed as a band symmetric Toeplitz matrix 

as follows [8-14] 

1

1 1

1 1

1 1

1 1

1

1

1 0

1

.

1

0 1

1

p

p

p p

p p

p

p M M

c c

c c c

c c c c

c c c c

c c c

c c


 
 
 
 
 
 
 
 
 
 
 
 
 
  

C  (3)  

In the presence of mutual coupling, the realsteering vector should be re written as ( ) ( )c i i a Ca , for

1,2, ,i D .For simplicity of notation, we denote c A CA , then 

 1 2 1 2[ ( ), ( ), , ( )] [ ( ), ( ), , ( )]c D c c c D       A CA Ca Ca Ca a a a . Thus the 1M   array output vector can 

then be represented by the following model 

( ) ( ) ( ).ct t t x A s n  (4)  

The source signal covariance matrix is 

( ) { ( ) ( )} ( ) ( ) ( )H H H

s c c c cE t t    R A s s A A SA  (5)  

where 

{ ( ) ( )}HE t tS s s  (6)  

The array output vector of array sensors in the M M  dimension has the following covariance matrix: 

2

{ ( ) ( )}

{ ( ) ( )} { ( ) ( )}

.

H

x

H H H

c c

H

c c n M

s n

E t t

E t t E t t





 

  

 

R x x

A s s A n n

A SA I

R R

 (7)  

 Here, the covariance matrix of array output vector of array sensors xR can be substituted by the 

received limited sample mean
1

(1/ ) ( ) ( )
N H

x k
N k k


 R x x , where N is the number of snapshots. 

The eigen value decomposition (EVD) of can beproducing the following equation: 

1 1

D MH H H H

x m m m m m m s s s n n nm m D
 

  
    R e e e e E Λ E E Λ E  (8)  

xR
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where  and is the eigen value of ; the is the eigenvector of unit 

norm corresponding to m , for ,respectively. Each vector of is 

perpendicular to that of , and  is the eigen value diagonal matrix of .When 

the D signal sources are not correlated and M D , then is the power of each 

source signal; when , then the rank of  isD. 

The signal subspace and noise subspace is spanned by sE and nE , respectively, From the principle of 

subspace, sE  and the signal steering vector matrix cA demonstrate an identical signal subspace and 

 [3].The vertical projection operator (VPO)
sEP in the signal subspace and noise subspace are 

perpendicular to each other (
s n
E EP P ).Because the signal subspace and noise subspace are orthogonal, the 

MUSIC algorithm [3]with MCM can be implemented to estimates the DOAs of the signal sourcesin the 

presence of mutual coupling from the MUSIC spatial spectrum as 

MUSIC

1 1
( ) max max

( ) ( )( ) ( )
n

H HH

c n n cc c

J
 


  

 
Ε

a Ε E aa P a
 (9)  

 In the presence of mutual coupling environment, the MUSIC algorithm produce biased DOA 

estimates.To reduce the estimation biases, we use the OPO [15-18] on the beam space to build the 

characteristics of the source signal DOAs on the spatial spectrum for scanning and estimating the angle-of-

arrival of a source signal to obtain high-resolution estimations. We thus propose the following algorithm. 

 

Proposed Algorithm 

In this paper, we proposed a high-resolution method for estimating DOAs of signal sources in the presence 

of mutual coupling. The method was divided into two stages: first, the DOA estimates of a group of signal 

sources were obtained using (9) and the signal sources directions were determined. Second, we rebuilt a new 

steering matrix near the estimated DOA angle found in Stage One. In addition, the original collected data 

were projected on the beam space extended from steering vectors to build a new set of data and OPO, which 

were used to separate the desired source signal from the source signal subspace. The desired source signal 

covariance to be estimated was extracted from the source signal covariance matrix to build the 

characteristics of the source signal DOAs on the spatial spectrum. Stages 1 and 2 are described as follows. 

Stage 1: (9) was used to obtain DOA estimates for the signal sources . Next, by referring to 

[18, 21–22], 
1

2
 was chosen as the resolution of the left and ride side of to obtain and .  

Stage 2: A 3M D dimensional matrix was adopted. 1 1 1 2 2 2[ ( ), ( ), ( ), ( ), ( ), ( ), , ( )]D          W a a a a a a a

we rebuilt a new steering matrix. Subsequently, the original collected data were projected on the beam space 

extended from the steering vectors to build a new set of data. The new data output was written as a 3 1D  

dimensional vector ( ) ( )Ht ty W x , where 

( ) ( )

( ) ( ).

H

H H

c

t t

t t



 

y W x

W A s W n
 (10)  

Let
H

cA W A and ( ) ( )
H

t tn W n , 

1 2

1 2

( ), ( ), , ( )

[ ( ), ( ), , ( )].

H

c

H H H

c c c D

D

  

  



 
 



A W A

W a W a W a

a a a

 (11)  

A in beam space processing served the same role as cA in element-space processing. Therefore, 

( ) ( ) ( ).t t t y As n  (12)  

2

1 2 1D D M n           
xR me

1,2, ,m M
1 2[ , , , ]s DE e e e

1[ , , ]n D ME e e
2

n n M D Λ I
nR

{ ( ) ( )}, for 1,2, ,H

i iE s t s t i D

{ ( ) ( )} 0, forH

i jE s t s t i j 
sR

s nE E

1 2{ , , , }D  

i i  i 
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From (10), the ( )ty covariance matrix was written as 

{ ( ) ( )} { ( ) ( )}.
H HH

y E t t E t t  R y y ASA n n  (13)  

Let
H

s R ASA and { ( ) ( )}
H

n E t tR n n , then(13) could be re-written as 

.y s n R R R  (14)  

yR underwent eigen value decomposition [19–20], which could be represented as 

3

1 1

{ ( ) ( )}

.

H
y

D DH H

m m m m m mm m D

H H

s s s n n n

E t t

 
  



 

 

 

R y y

v v v v

E Λ E E Λ E

 (15)  

where
2

1 2 1 3
n

D D D
     


        and was the eigenvalue of yR and corresponds to the eigenvector 

 of ,for 1,2, ,3m D . sE and A were denoted as the signal subspace in the beam space and nE  

was denoted as the noise subspace in the beam space where 
1[ , , ]s DE v v  and 

1 3[ , , ]n D DE v v . 

Next, we established OPO on the beam space for projecting the desired source signal subspace, separating 

the desired source signal from signal sources in the presence of mutual coupling environment. We extracted 

the desired source signal covariance from the source signal covariance matrix, thereby developing the 

spectrum algorithm used for source signal DOA estimations. To ensure the algorithm was valid for general 

applications, we chose the i the source signal as the desired source signal to be estimated. (12) was rewritten 

as follows: 

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ).

D

i i j j

j
j i

i i i

t s t s t t

s t t t

 

 




  

  

y a a n

a Β b n

 (16)  

 Here, is the3 ( 1)D D   dimensional matrix of A minus ( )ia  and ( )tb  is the ( 1) 1D   

dimensional column matrix of is minus ( )ts . Because the signal subspace sE  and noise subspace nE  were 

orthogonal, then 3 3D D
s n

 E E , where  denoted the direct sum operation of vector subspaces. Let

{ }
H

i i iE s s  , and the diagonal element be the  diagonal matrix of { }
H

l l lE s s  , where 

l i . We obtained the equivalence relation for the signal covariance matrix sR  
2

( ) ( ) ( ) ( )

.

H H

y n n n

H
H

s i i i i i i

H

s s s

    

  



 



R E Λ E ASA

R a a B S B

E Λ E

 (17)  

The OPO
( )| ( )i i a B

O [15–18] was defined as follows: 

1

( ) ( )( )| ( )
( )( ( ) ( )) ( )

i ii i

H H

i i i i  
      B Ba B

O a a P a a P . (18)  

Here, 
( )i



BP  was the VPO of the range space perpendicular to . According to (18), the range space of

( )| ( )i i a B
O is ( )ia  and the null space contained . Thus, 

( )| ( )
( ) ( )

i i
i i 
 

a B
O a a ,

( )| ( )
( ) 0

i i
i 
 

a B
O B . (19)  

 
( )| ( )i i a B

O could be used to remove ( )iB , where ( )ia  remained unaffected. This allowed us to 

separate the desired source signal to be estimated from the other signal sources. The OPO 
( )| ( )i i a B

O  differed 

mv m

( )iB

iS ( 1) ( 1)D D  

( )iB

( )iB
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from the VPO in (9) and could only be used to remove the subspace perpendicular to the projected space. 

 To extract the desired signal source variance {( ( ) )( ( ) ) }H

i i i iE s s a a  from the signal source 

covariance matrix, we developed the desired source signal DOA spectrum estimation algorithm. To obtain 

an accurate estimate ( ( ) ii sa ) of ( )i isa , we performed an oblique projection on ( )ia  using ( )ty , making 

( )| ( )

1

( ) ( )

ˆ( ) ( )

( )( ( ) ( )) ( ) ( ).

i i

i i

i i

H H

i i i i

s t

t

 

 



     





a B

B B

a O y

a a P a a P y
 (20)  

The covariance {( ( ) )( ( ) ) }H

i i i iE s s a a of signal source was derived from the ( ) ii sa  second-order statistics

{( ( ) )( ( ) ) }H

i i i iE s s a a using (19) and(20), 

( )| ( ) ( )| ( )

( )| ( ) ( )| ( )

2

( )| ( ) ( )| ( )

{ ( ) ( ) } { ( ) ( ) }

( ) ( ) .

i i i i

i i i i

i i i i

H
H H H

i ii i

H
y

HH H
n n ni i i

E s s E t t
   

   

   

 

  





 

a B a B

a B a B

a B a B

a a O y y O

O R O

a a O E Λ E O

 (21)  

Using (17) and (21), we derived (22) and (23): 

( )| ( ) ( ) ( )
( ) ( )

i i i i

HH
s i i i   

  
a B a B

O R O a a  (22)  

( )| ( ) ( )| ( )
( ) ( )

i i i i

H H
s i i i   

 
B a B a

O R O B S B  (23)  

Using (22) and (23), (24) was obtained: 

( )| ( ) ( )| ( ) ( )| ( ) ( )| ( )

( ) ( ) ( ) ( )

.

i i i i i i i i

H H
s s

H H

i i i i i i

s

       

    



 



a B a B B a B a
O R O O R O

a a B S B

R

 (24)  

 Based on (22), we used the OPO 
( )| ( )i i a B

O  to extract the desired signal source covariance from sR

.To obtain the desired signal source covariance using (22), sR  and 
( )| ( )i i a B

O  must be determined first.The 

following lemmas show that the pseudo-inverse matrix of sR  ( s



R ) could be obtained from the received 

limited signal samples, which could be used to estimate sR  and produce 
( )| ( )i i a B

O [15–18]. 

Lemma 3.1:The equation for the OPO
( )| ( )i i a B

O  is as follows: 

1

( )| ( )
( )( ( ) ( )) ( )

i i

H H
s si i i i 

   
 

a B
O a a R a a R  (25)  

and 

( )| ( ) ( )| ( )

1

( ) ( )

( )( ( ) ( )) ( )

i i i i

H H
s i i i

H H
si i i i

   
  

   
 





a B a B
O R O a a

a a R a a

 (26)  

where 1( ( ) ( ))
H

si i i  
  a R a . Here,

2

( )
H H

s s s s

  R ASA E Λ E  was thepseudo-inverse matrixof sR . 

 

Proof: please refer to Appendix I 

From Lemma 3.1, we obtained s



R  from the received limited signal samples to estimate sR . Therefore, ( )ia  

in (25) was changed to ( )a  as the scanning steering vector to build a -related algorithm, where 

0 0[ 90 , 90 ]    was scanned to estimate the 
( )| ( )i i a B

O . Equation (25)was reordered to produce (27): 

i
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1

( )
( )( ( ) ( )) ( )

H H
s s


   

 
a

F a a R a a R  (27)  

Theorem 3.2[16, 18]:Let 

( ) ( ) ( ) ( )
( ) ( ) ,H H

s s
   

   
a a A a A a

G F R F P F R P F  (28)  

then  

Trace{ } Trace{ } 2 ( ) ( ) /( ( ) ( )) Trace{ }

Trace{ }, when ( ) ( )

n

H H
s s s

s i

   

 



  

 

E
G R a P a a R a R

R a a

 
(29)  

where
A

P  was the VPO with A  as the range space.  

Proof: please refer to Appendix II 

According to (29), when the scanning angle   was set at 0 0[ 90 , 90 ]  and ( ) ( ) /( ( ) ( ))
n

H H
s   


E
a P a a R a

equaled zero, we obtained the spatial incidence angle-of-arrival of source signal i  in a similar way to 

building a peak in the power spectrum in the beam space to estimate the source signal DOAs. 

( ) ( ) ( ) ( )
( ) max max

( ) ( ) ( ) ( )
n

H H H
s s

H HH H
n n

f
 

   


   

 

 

E

a R a a WR W a

a P a a WE E W a
 (30)  

We provide the following flowchart to show the procedures of our two-stage algorithm, which is listed 

below: 

Start

Input data

Eigenvalue decomposition of 

covariant  matrix of input 

data

Estimate DOAs by Eq.(9) 

which is a method using the 

oblique projection operator    

Build the beamspace by 

Eq.(13) using the initial 

estimate of DOA from first 

stage 

Evaluate the oblique 

projection operator on 

beamspace by Eq.(18)

Estimate DOAs by Eq.(30) 

Stop

First stage

Second stage

 
 

Fig. 1.Flowchart of proposed method 



DOI:10.18535/ijmcr/v3i9.01 
 

                                                                    IJMCR  www.ijmcr.in| 3:9|September|2015|1154-1164 |                                                            1161 

 

 

Design Example 

In this section, we used computer simulations to demon strate the proposed method’s DOA estimation 

performance for uniform linear arrays.AnM number of array sensor elements were found on the uniform 

linear arrays and the distance between each element was half that of the wavelength. The signal-to-noise 

ratio (SNR) was the ratio between the signal power and the noise variance of each sensor element.The 

number of signal sources was known and the zero-mean spatially white Gaussian process was used when 

performing these simulations. 

During the first simulation, threeuncorrelated signal sources entered the system at 0

1
0  , 0

2
8  and 0

3
42  . 

The SNR of all the signal sources was 15 dB and the number M of sensor elements was 10 and the mutual 

coefficients between the sensors are 1 0.37 0.42c j  and 2 0.09 0.21c j  . Fig. 2shows the ( )f   spectrum. 

The peak of the spectrum demonstrates the angle-of-arrival of the source signal, and DOA estimations still 

yieldeda high resolution in highly correlated source signal environments. 

 
Fig. 2. Normalized spectrum of the proposed method 

 

We used the root mean square error (RMSE) as the performance indicator of the estimation method, where 

the RMSE of the DOA is as follows 

2

1 1
( ( ) ( )) /( )

F D

i ir i
RMSE r r FD 

 
    (31)  

( )i r was the estimate of ( )i r  during the rthMonte Carlo test. We used the RMSE to compare the DOA 

estimation performance between MUSIC, and our proposed method. All simulations listed below were 

obtained using1000 Monte Carlo tests.  

For the second simulation, we investigated the performance when the SNR ranged from 0 dB to 20 dB; and 

the number of snapshots was 1000. By projecting the received signal subspace on the beam space to enhance 

the source signal characteristics, our method can compensate the mutual coupling between sensors and the 

estimation bias. Fig. 3 shows that our method outperformed the MUSIC methods. The simulations indicated 

that in a low SNR environment, our proposed method still demonstrated improved performance in such an 

environment. 
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Fig. 3. RMSE of DOA estimations for varying SNRs 

 

Conclusion 

In this paper, we introduced a high-resolution estimation method, using the OPO to separate signal sources 

from the source signal subspace and adopting the beam space to reduce estimation bias of MUSIC in the 

presence of the mutual coupling environment. Computer simulations results revealed that using oblique 

projection operator to project appropriate subspace can compensate the mutual coupling error sand that our 

proposed method yielded superior resolution in the DOA estimation results for signal sources of uniform 

linear array (ULA) in the presence of mutual coupling. 

Appendix 

We referred to [15–18] and proposed Lemma 3.1 andTheorem3.2. According to Lemmas 5.3h and 5.9 [23], 

the pseudo-inverse matrix of sR in (25) was as follows: 
1

( ) ( )
H H

s

   
 R ASA A S A  (32)  

where 
1

( )
H H 

A A A A . Because [ ( ), ( )]i i A a B , we obtained the following results using [16,18]: 

1

( ) ( )

1

( ) ( )

( ( ) ( )) ( )

( ( ) ( )) ( )

i i

i i

H H

i i i

i i i

 

 

  

  

  



  

 
 
 
 

B B

a a

a P a a P
A

B P B B P
 (33)  

Based on the definitions of the pseudo-inverse matrix and vertical projection, we derived the following basic 

characteristics: 

s s s s

  

R R R R  (34)  

s s s 
A A

P R R P R  (35)  

Proof of Lemma 3.1 

We used (32) and (33) to derive ( )
H

si


a R , and obtained the following equation: 

0 2 4 6 8 10 12 14 16 18 20

10
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-0.3
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R
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1

1

1

( ) ( ) 1

1

( ) ( )

1

( ) ( )

( ) ( )( )

( )( )

( ( ))

( ( ) ( )) ( )
( ( ))

( ( ) ( )) ( )

1
( ,0, ,0)

1
( ( ) ( )) ( )

i i

i i

i i

H H H

si i

H H

i

H

i

H H

i i i H

i

i i i

i

H H

i i i

i

 

 

 

 





  


  



  


 

 

 

  



  



  







 
 
 
 





B B

a a

B B

a R a ASA

a A S A

A a S A

a P a a P
a S A

B P B B P

A

a P a a P

 (36)  

We derived (37) from (36): 

1

( ) ( )

1
( ) ( ) ( ( ) ( )) ( ( ) ( ))

1

i i

H H H

si i i i i i

i

i

      




   




B Ba R a a P a a P a

 (37)  

By using (32), (33), and (37), we obtained 

1

1

1

1

( ) ( ) 1

1

( ) ( )

( )( ( ) ( )) ( )

( ) ( )( )

( ) ( ( ))

( ( ) ( )) ( )
( ) ( ( ))

( ( ) ( )) ( )

( (1
( ) ( ,0, ,0)

i i

i i

H H
si i i i ss

H H

i i i

H

i i i

H H

i i i H

i i i

i i i

H

i i

i

 

 

   

  

  

  
  

  

 


  

 

 

  


  





 
 
 
 



B B

a a

a a R a a R

a a A S A

a A a S A

a P a a P
a a S A

B P B B P

a
a

1

( ) ( )

1

( ) ( )

1

( ) ( )

) ( )) ( )

( ( ) ( )) ( )

( )( ( ) ( )) ( )

i i

i i

i i

H

i i i

i i i

H H

i i i i

 

 

 

  

  

   

  

  

  

 
 
 
 



B B

a a

B B

P a a P

B P B B P

a a P a a P

 (38)  

According to the definition of
( )| ( )i i a B

O  in (18) and (38), we validated Lemma 3.1. 

Proof of Theorem 3.2  

For simplicity, we abbreviated ( )a  as ā. Using Lemma 3.1 and (34), we obtained 

1 1

1 1

1

( ) ( )

( ) ( )

( )

1

H
s

H H H H

s s s s s

H H H H

s s s

H H

s

H

H

s

    

   

 











a a
F R F

a a R a a R R R a a R a a

a a R a a R a a R a a

a a R a a

aa
a R a

 (39)  

Using (27), (28), (34), (35), (39), and Lemma 3.1, we obtained 
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2 1 1
( ) ( )

1 1
( ) ( )

1 1
.

n

H H HH H
s s s

H H H

s s s

H H

s
H H

s s

H

s
H H

s s
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 

 

      

    
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a a A a A a A A

A A

E

F R F P F R P F aa R P aa aa P
a R a a R a a R a

R I P aa aa I P
a R a a R a

R P aa
a R a a R a

 (40)  

Using (40) and the matrix trace characteristics, we obtained 

1 1
Trace{ } Trace{ }

2( )
Trace{ }

Trace{ }

n n

n

H H

s
H H

s s

H

s
H

s

s
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

E E

E

G R P aa aa P
a R a a R a

a P a
R

a R a

R

 
(41)  

 

When ( ) 0
n i 

E
P a , (29) is valid, thereby confirming the validity of the theorem. 
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