T_s* - Sg - Continuous Maps in Topological Spaces

Dr. T. Indira¹, S. Geetha²

^{1,2}PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Trichy-2. ¹<u>E-mail:-drtindira.chandru@gmail.com</u> ²<u>E-mail:-gsvel@rediffmail.com</u>

ABSTRACT

The aim of this paper is to introduce a new type of function called τ_s^* -semi generalized continuous maps and study about some of their properties.

KEY WORDS

scl**, τ_s^* -topology, τ_s^* -sg-open set, τ_s^* -sg-closed set, τ_s^* - sg-continuous maps, 2010 Mathematics subject classification: Primary 57N05, Secondary 57N05

INTRODUCTION

The concept of generalized closed sets was introduced by Levine[]. Dunham^[4] introduced the concept of closure operator cl* and a topology τ^* and studied some of its properties. Pushpalatha, Easwaran and Rajarubi^[11] introduced and studied τ^* -generalized closed sets, and τ^* -generalized open sets. Using τ^* generalized closed sets, Eswaran and Pushpalatha^[5] introduced and studied τ^* -generalized continuous maps.

The purpose of this paper is to introduce and study the concept of a new class of maps, namely τ_s^* -sgcontinuous maps. Throughout this paper X and Y are topological spaces on which no separation axioms are assumed unless otherwise explicitly stated. For a subset A of a topological space X, cl(A), scl**(A) and A^C denote the closure, semi generalized closure and complement of A respectively.

PRELIMINARIES

Definition :2.1

For the subset A of a topological space X, the semi generalized closure of A (i.e., $scl^{**}(A)$) is defined as the intersection of all sg-closed sets containing A.

Definition:2.2

For the subset A of a topological space X, the topology

$$\tau_s^* = \{G : scl^{**}(G^C) = G^C \}.$$

Definition:2.3

A subset A of a topological space X is called τ_s^* - semi generalized closed set[] (briefly τ_s^* -sg-closed) if scl**(A) \subseteq G whenever A \subseteq G and G is τ_s^* -semi open.

The complement of τ_s^* - semi generalized closed set is called the τ_s^* - semi generalized open set(briefly τ_s^* - sg-open).

Definition:2.4

The τ_s^* - semi generalized closure operator $cl_{\tau_s^*}$ for a subset A of a topological space (X, τ_s^*) is defined by the intersection of all τ_s^* - semi generalized closed sets containing A

(i.e.,) $cl_{\tau s^*}(A) = \cap \{G: A \subseteq G \text{ and } G \text{ is } \tau_s^* \text{ -sg-closed} \}$

Definition:2.5

A map $f: X \to Y$ from a topological space X into a topological space Y is called: continuous if the inverse image of every closed set (or open set) in Y is closed(or open) in X. generalized continuous^[2] (g-continuous) if the inverse image of every closed set in Y is g-closed in X. (3) strongly sg-continuous if the inverse image of each gs-open set of Y is open in X. (5) semi continuous^[13] if the inverse image of each closed set of Y is semi-closed in X. (6) sg-continuous^[12] if the inverse image of each closed set of Y is sg-closed in X. (7) gs-continuous^[14] if the inverse image of each closed set of Y is gs-closed in X. (8) gsp-continuous^[3] if the inverse image of each closed set of Y is gsp-closed in x. (9) ag-continuous^[6] if the inverse image of each closed set of Y is gsp-closed in X. (10)pre-continuous^[9] if the inverse image of each closed set of Y is gre-open in X. (11) α -continuous^[10] if the inverse image of each open set of Y is pre-open in X. (12)sp-continuous^[11] if the inverse image of each open set of Y is semi-preopen in X.

Remark:2.6

In^[7] it has been proved that every closed set is τ_s^* - sg closed.

 $In^{[7]}$ it has been proved that every sg-closed set in X is $\tau_s{}^*$ - sg closed.

$\tau_s ^*$ - sg- CONTINUOUS MAPS IN TOPOLOGICAL SPACES

In this section, we introduce a new class of map namely τ_s^* -semi generalized continuous map in topological spaces and study some of its properties and relationship with some existing mappings.

Definition: 3.1

A map f:X \rightarrow Y from a topological space X into a topological space Y is called τ_s^* -semi generalized continuous map(briefly τ_s^* - sg-continuous) if the inverse image of every closed set in Y is τ_s^* -sg-closed in X.

Theorem: 3.2

Let $f: X \to Y$ be a map from a topological space (X, τ_s^*) into a topological space (Y, σ_s^*) .

(i) The following statements are equivalent:

(a) f is τ_s^* - gs-continuous.

(b) the inverse image of each open set in Y is τ_s^* - sg-open in X.

(ii) If $f: X \to Y$ is τ_s^* - sg-continuous, then $f(cl_{\tau s^*}(A)) \subseteq cl(f(A))$ for every

subset A of X.

Proof:

(i) Assume that $f: X \to Y$ is τ_s^* - sg-continuous. Let F be open in Y. Then F^C is closed in Y. Since f is τ_s^* - sg-continuous, $f^{-1}(F^C)$ is τ_s^* - sg-closed in X.

But $f^{1}(F^{C}) = X - f^{1}(F)$. Thus $X - f^{1}(F)$ is τ_{s}^{*} -sg-closed in X. Therefore (a) \implies (b).

Conversely, assume that the inverse image of each open set in Y is τ_s^* - sg-open in X.

Let F be any closed set in Y. Then F^{C} is open in Y. By assumption, $f^{-1}(F^{C})$ is τ_{s}^{*} - sg-open in X. But $f^{-1}(F^{C}) = X - f^{-1}(F)$. Therefore, X - $f^{-1}(F)$ is τ_{s}^{*} - sg-open in X and so $f^{-1}(F)$ is τ_{s}^{*} -sg-closed in X. Therefore, f is τ_{s}^{*} -sg-continuous.

Hence (b) \implies (a). Thus (a) and (b) are equivalent.

(ii) Assume that f is τ_s^* -sg-continuous. Let A be any subset of X, f(A) is a subset of Y. Then cl(f(A))) is a closed subset of Y. Since f is τ_s^* -sg-continuous, f⁻¹(cl(f(A))) is τ_s^* -sg-closed in X and it containing A. But cl τ_s^* (A) is the intersection of all τ_s^* -sg-closed sets containing A.

$$cl_{\tau s^*}(A) \subseteq f^{-1}(cl(f(A))).$$

(i.e.,) $f(cl_{\tau s^*}(A)) \subseteq cl(f(A)).$

Theorem:3.3

If a map $f: X \to Y$ from a topological space X into a topological space Y is continuous then it is τ_s^* -sgcontinuous but not conversely.

Proof:

Let $f: X \to Y$ be continuous. Let V be a closed set in Y. Since f is continuous, $f^{-1}(V)$ is closed in X. By Remark:2.6(2), $f^{-1}(V)$ is τ_s^* -sg-closed. Thus, f is τ_s^* -sg-continuous.

Remark:

The converse of the theorem need not be true as seen from the following example.

Example:

Let $X = Y = \{a,b,c\}, \tau = \{X,\Phi,\{a,b\}\}$ and $\sigma = \{Y,\Phi,\{b\},\{c\},\{b,c\},\{a,b\}\}.$

Let $f : X \to Y$ be a map defined by f(a)=a, f(b)=b.f(c)=c. Here f is τ_s^* -sg-continuous. But f is not continuous. Since for the sets $\{a,c\},\{a,b\},\{a\}$ are closed in Y, but $\{a,c\},\{a,b\},\{a\}$ are not closed on X.

Theorem:3.5

If a map $f: X \to Y$ from a topological space X into a topological space Y is sg-continuous then it is τ_s^* -sg-continuous but not conversely.

Proof:

Let $f: X \to Y$ be sg-continuous. Let F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is sg-closed in X. Also, by Remark: 2.6(2), $f^{-1}(F)$ is τ_s^* - sg-closed. Then, f is τ_s^* -sg-continuous. Remark:

The converse of the theorem need not be true as seen from the following example.

Example:

Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X,\Phi,\{c\}\}$ and $\sigma = \{Y,\Phi,\{b\},\{c\},\{b,c\}\}$.

Let $f : X \to Y$ be an identity map. Then f is τ_s^* -sg-continuous. But it is not sg-continuous. Since for the closed set $V = \{a,c\}$ in Y, $f^{-1}(V) = \{a,c\}$ is not sg-closed in X.

Theorem:3.7

If a map $f: X \rightarrow Y$ from a topological space X into a topological space Y is strongly sg-continuous then it is τ_s^* - sg-continuous but not conversely.

Proof:

Let $f: X \to Y$ be strongly sg-continuous. Let F be a closed set in Y, then F is sg-closed. Hence F^C is sgopen in Y. Since f is strongly sg-continuous $f^1(F^C)$ is open in X.

But $f^{1}(F^{c}) = X - f^{1}(F)$. Therefore $f^{1}(F)$ is closed in X. By Remark:2.6(1),

 $f^{1}(F)$ is τ_{s}^{*} - sg-closed in X. Therefore f is τ_{s}^{*} -sg-continuous.

Remark:3.8

From the above discussion, we obtain the following implications.

Let $X = Y = \{a,b,c\}$. Let $f : X \rightarrow Y$ be an identity map.

Let $\tau = \{X, \Phi, \{a\}, \{a,c\}\}$ and $\boldsymbol{\sigma} = \{Y, \Phi, \{a\}, \{a,c\}\}$. Then f is semi-continuous.

But it is not τ_s^* - sg-continuous. Since for the closed set $V = \{c\}$ in Y,

 $f^{-1}(V) = \{c\}$ is not τ_s^* - sg-closed in X.

(2) Let $\tau = \{X, \Phi, \{c\}\}$ and $\boldsymbol{\sigma} = \{Y, \Phi, \{b\}, \{c\}, \{b, c\}\}$. Then f is τ_s^* - sg-continuous. But it is not semi-continuous. Since for the closed set $V = \{a,c\}$ in Y, $f^{-1}(V) = \{a,c\}$ is not semi-closed in X. Let Let $\tau = \{X, \Phi, \{c\}\}$ and $\sigma = \{Y, \Phi, \{b\}, \{c\}, \{b, c\}\}$. Then f is τ_s^* - sg-continuous. But it is not sg-continuous. Since for the closed set $V = \{a, c\}$ in Y, $f^{1}(V) = \{a,c\}$ is not sg-closed in X. Let $\tau = \{X, \Phi, \{a\}\}$ and $\boldsymbol{\sigma} = \{Y, \Phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$. Then f is τ_s^* - sg-continuous But it is not gs-continuous. Since for the closed set $V = \{a\}$ in Y, $f^{-1}(V) = \{a\}$ is not gs-closed in X. Let $\tau = \{X, \Phi, \{a, c\}\}$ and $\boldsymbol{\sigma} = \{Y, \Phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Then f is gsp-continuous. But it is not τ_s^* - sg-continuous. Since for closed set $V = \{c\}$ in Y, $f^{-1}(V) = \{c\}$ is not τ_s^* - sg-closed in X. Let $\tau = \{X, \Phi, \{c\}\}$ and $\boldsymbol{\sigma} = \{Y, \Phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Then f is τ_s^* - sg-continuous. But it is not gsp-continuous. Since for closed set $V = \{c\}$ in Y, $f^{-1}(V) = \{c\}$ is not gsp-closed in X. Let $\tau = \{X, \Phi, \{b\}\}$ and $\boldsymbol{\sigma} = \{Y, \Phi, \{c\}, \{a, c\}\}$. Then f is τ_s^* - sg-continuous. But it is not ag-continuous. Since for closed set $V = \{b\}$ in Y, $f^{-1}(V) = \{b\}$ is not αg-closed in X. Let $\tau = \{X, \Phi, \{a\}\}$ and $\boldsymbol{\sigma} = \{Y, \Phi, \{c\}, \{a, c\}, \{b, c\}\}$. Then f is τ_s^* - sg-continuous. But it is not pre-continuous. Since for open set $V = \{b,c\}$ in Y, $f^{-1}(V) = \{b,c\}$ is not Pre-open in X. Let $\tau = \{X, \Phi, \{c\}, \{b, c\}\}$ and $\boldsymbol{\sigma} = \{Y, \Phi, \{c\}, \{a, c\}, \{b, c\}\}$. Then f is α -continuous. But it is not τ_s^* - sg-continuous. Since for closed set $V = \{b\}$ in Y, $f^{-1}(V) = \{b\}$ is not τ_s^* - sg-closed in X. Let $\tau = \{X, \Phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \Phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Then f is τ_s^* - sg-continuous. But it is not α -continuous. Since for the open set V={a,c} in Y, $f^{-1}(V) = \{a, c\}$ is not α -open in X. Let $\tau = \{X, \Phi, \{a\}, \{a,c\}\}$ and $\boldsymbol{\sigma} = \{Y, \Phi, \{a\}, \{a,b\}, \{a,c\}\}$. Then f is sp-continuous. But it is not τ_s^* - sg-continuous. Since for closed set $V = \{c\}$ in Y, $f^{-1}(V) = \{c\}$ is not τ_s^* - sg-closed in X. Let $\tau = \{X, \Phi, \{c\}\}$ and $\boldsymbol{\sigma} = \{Y, \Phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$. Then f is τ_s^* - sg-continuous. But it is not sp-continuous. Since for the open set $V=\{b\}$ in Y, $f^{1}(V) = \{b\}$ is not sp-open in X. Let $\tau = \{X, \Phi, \{c\}, \{b, c\}\}$ and $\sigma = \{Y, \Phi, \{c\}, \{a, c\}, \{b, c\}\}$. Then f is weakly sg-continuous. But it is not τ_s^* - sg-continuous. Since for closed set $V = \{b\}$ in Y, $f^{-1}(V) = \{b\}$ is not τ_s^* - sg-closed in X. Let $\tau = \{X, \Phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \Phi, \{c\}, \{b, c\}\}$. Then f is τ_s^* - sg-continuous. But it is not weakly-sg-continuous. Since for the open set $V = \{a, c\}$ in Y, $f^{1}(V) = \{a,c\}$ is not semi-open in X. Let $\tau = \{X, \Phi, \{c\}, \{a, c\}\}$ and $\boldsymbol{\sigma} = \{Y, \Phi, \{c\}, \{a, c\}, \{b, c\}\}$. Then f is weakly gs-continuous. But it is not τ_s^* - sg-continuous. Since for closed set V = {a} in Y, $f^{-1}(V) = \{a\}$ is not τ_s^* - sg-closed in X. Let $\tau = \{X, \Phi, \{a\}, \{b, c\}\}$ and $\boldsymbol{\sigma} = \{Y, \Phi, \{c\}, \{a, c\}, \{b, c\}\}$. Then f is τ_s^* - sg-continuous. But it is not weakly-gs-continuous. Since for the open set $V=\{c\}$ in Y, $f^{1}(V) = \{c\}$ is not semi-open in X.

CONCLUSION

The class of τ_s^* -sg-continuous maps defined using τ_s^* -sg-closed sets. The τ_s^* -sg-closed sets can be used to derive a new homeomorphism, connectedness, compactness and new separation axioms. This concept can be extended to bitopological and fuzzy topological spaces.

REFERENCES

- M.E. Abd El-Monsef, S.N.El.DEEb and R.A.Mahmoud, β-open sets and and β-continuous mappings, Bull. Fac. Sci. Assiut Univ.12(1)(1983),77-90.
- K. Balachandran, P. Sundaram and J.Maki, On generalized continuous maps in topological spaces. Em. Fac. Sci. K.ochi Univ.(Math.) 12 (1991), 5-13. Monthly,70(1963),36-41.
- 3. J.Dontchev, On generalizing sempreopen sets, Mem. Fac. Sci. Kochi Uni. Ser A, Math., 16(1995), 35-48.
- J.Dontchev, On generalizing semipreopen sets, Mem.Fac.Sci.Kochi Uni.Ser A,Math.,16(1995),35-48.
- 5. S. Eswaran and A Pushpalatha, τ* generalized continuous maps in topological spaces, International J. of Math Sci & Engg. Apppls.(IJMSEA) ISSN 0973-9424 Vol.3, No.IV,(2009),pp.67-76.
- 6. Y. Gnanambal, On generalized preregular sets in topological space, Indian J. Pure Appl. Math.(28)3(1997),351-360.
- 7. T. Indira and S.Geetha , τ_s *-sg -closed sets in topological spaces, International Journal ofMathematics Trends and Technology-Volume 21 No.1-May 2015.
- 8. M. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19, (2)(1970), 89-96.
- 9. A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc.Egypt 53(1982),47-53.
- 10. A.S. Mashhour, I.A.Hasanein and S.N.El-Deeb, On α-continuous and α-open mappings, Acta. Math.Hunga.41(1983),213-218.
- A.Pushpalatha,S.Eswaran and P.Rajarubi,τ*-generalized closed sets in topological spaces, Prodeedings of World Congress on Engineering 2009 Vol II WCE 2009, July 1-3,2009, London, U.K., 1115-1117.
- 12. P.Sundarm, H.Maki and K.Balachandran, sg-closed sets and semi- $T_{1/2}$ spaces. Bull.Fukuoka Univ. Ed..Part III,40(1991),33-40.
- 13. Semi open sets and semicontinuity in topological spaces, Amer. Math.,
- 14. Semigeneralized closed and generalized closed maps, Mem.Fac.Sci.Kochi.