

[Volume 2 issue 7 July 2014]

 Page No.503-511 ISSN :2320-7167

INTERNATIONAL JOURNAL OF MATHEMATICS AND
COMPUTER RESEARCH

IJMCR www.ijmcr.in| 2:7 |July|2014|503-511| 503

Conversion Methodology from hierarchical model to Object-

relational model with structural and semantic aspects preservation

Mustapha Machkour
a,b

, Karim Afdel
a,b

, Youness Idrissi Khamlichi
b,c

aDepartment of Mathematics and Computer Sciences, Faculty of Sciences, Agadir, Morocco

bLaboratory of the Computing Systems and Vision, Faculty of Sciences, Agadir, Morocco
cDepartment of Computer Sciences, National School of Applied Sciences, Khouribga, Hassan 1 University, Morocco

machkour@hotmail.com

Abstract
XML has become a standard for data exchange on the Web. These

data, after interchange among different sites, are often to exploit,

share by applications designed for data stored in databases using

the relational model and recently the object-relational model. The

latter imposed itself due to its benefits in terms of reuse and sharing

that improve productivity for both the developer and end user. In

addition, the object-relational model that's an extension of the

relational model has benefited greatly from the advantages of

relational model in terms of access performance and security. To

fully exploit XML data with the benefits of the object-relational

model, we propose in this paper a methodology to convert data

written in XML format respecting a DTD (Document Type

Definition) into a schema of object-relational model.

Keywords: Hierarchical model, Relational model, Object-

Relational model, XML, DTD, Semantic constraints, Structural

constraints.

1. Introduction

XML (Extensible Markup Language)[6] is a software- and

hardware-independent tool for carrying information. XML is

widely used to describe and write data and documents to be

used in different types of applications that run on

heterogeneous software and/or hardware architectures. To

exploit well these XML data written with hierarchical

schema by applications using relational database systems[8,

10], the schema conversion methods have been proposed [7,

23, 24, 25] and some algorithms for storing and querying

these data have been designed and implemented [14, 32, 35,

36, 37, 39, 40].

However, some of these Relational systems, such as Oracle

database[30, 33, 34], PostGres[38], Sybase and DB2/IBM,

have evolved or are evolving for supporting the

characteristic properties of object-relational model[11, 12,

13, 19, 30]. The object-relational model preserves the

qualities of the relational model and integrates concepts

stemming from the object model such as object type (User-

Defined Type: UDT), object, nested objects, collections

(Array Type: AT or Multiset Type: MT), inheritance,

polymorphism, abstraction…[11, 12, 13, 17, 30].

To access the XML data in object-relational database we

need a methodology or means for converting an XML

schema into an object-relational schema. In this paper, we

propose an algorithm to convert an XML schema based on a

DTD associated to the XML document into object-relational

schema.

2. Related work

Many studies have dealt with the conversion between

models. For example, we cite the conversion between

Network and Relational models [26, 31], between ER and

OO models [5, 21], and between UML and XML models [1,

4, 9, 22].

In our context, many works have been developed for

transforming XML documents with a hierarchical schema

into equivalent data with relational schema in order to be

used by relational database applications. Algorithms have

been designed and implemented in this direction. Also,

transformation methods from relational data to XML have

also been implemented[15, 23]. Furthermore, matching

algorithms have been developed for this kind of

transformation [27, 29].

However, to overcome the limitations and weaknesses of the

relational model, relational schemas are being replaced by

the object schemas or extended to the object-relational

schemas. Recently, builders of relational database systems

add to their systems concepts of object-oriented paradigm to

simplify modeling complex structured data and their

relationships. These became object-relational database

systems (see below figure 1). It is in this context fits the

purpose of this article. In this model and in accordance with

the standard SQL
1
: 1999 and SQL: 2003 [8, 10, 16, 17, 28] ,

we use the terms (among others): object type (UDT), object,

collection of objects, object reference, collection of

references, methods, inheritance, encapsulation and

polymorphism[20]. This is illustrated in Figure 1.

1
 Structured Query Language is a standard language for

databases.

Polymorphism

User types

Collection

Reference Relational
Domain

Table

Attribute
Primary key

Foreign key

Object

Methods

Inheritance

IJMCR www.ijmcr.in| 2:7 |July|2014|503-511 | 504

Figure 1. Concepts of Object-relational model.

3. Transforming XML DTD to Object-

Relational schema

In this section and the followings, we present a methodology

for transforming an XML DTD schema into object-

relational model.

3.1.Definitions and notations

We begin with terminology, definitions and notations for

both object-relational model and XML model.

A schema of the object-relational model consists of[16, 17,

28] :

- Object types(UDT) with attributes or fields (similar to

classes in object-oriented programming language),

- Reference or Type Reference of an object,

- Collections of objects or collections of object references

(using varying array or nested table
2
),

- Object tables,

- Generic type,

- Inheritance.

For the XML schema, we consider the following

notation(Figure 2) to represent the definition of an XML

element in terms of its attributes and its content model[6].

These notations are similar to those used in context-free

grammar or BNF
3
 (Backus-Naur Form) [3].

If A is an XML object such an attribute, a list of attributes,

an element or a content model of an element ..., A (A

underscored) gives the definition of A.

Let E be an XML element, its definition E is given at figure

2.

E :: = <E; Attrs; D>

Figure 2. Definition of XML element.

Items of this definition are explained like as follows:

- The symbols :: = denotes a definition or production;
- E : is the name of the element;
- D: represents the content model of the element E

eventually empty;

- Attrs: is a list that contains the attributes of the
element. It can also be empty:

Attrs :: = (Attr1, Attr2…).

The definition of the attribute list: Attrs, that we note: Attrs

(underlined Attrs, see above Figure 2), is given by a list

containing a definition of each attribute in Attrs. Then we

have the following expression:

Attrs :: = (Attr1, Attr2…).

The Definition of each attribute is as follows:

Attri::=<Attri; typeOrValues; Description>.

Figure 3. Definition of attribute of an XML element.

where

- typeOrValues stands for type of the attribute or list of
values in the XML model;

- The value of "Description" is given by (using context-
free grammar notation [3]):

Description::= #REQUIRED | #IMPLIED | #FIXED value |

value.

2
 Terms used in Oracle DBMS.

3
 Backus-Naur Form: Notation used to describe the syntax

of languages.

Figure 4. Definition of Description for an attribute.

Obviously, the Meta symbol "|" denotes the alternative.

That’s for the representation of XML element and its

definition.

3.2.A mapping between XML and Object-relational

model

Let us now consider the polymorphic
4
 function φ which will

allow us converting an XML schema to Object-relational

model. This function plays a major role in this article. Its

definition is detailed as follows.

For each element E of XML, we associate an object type E

in Object-relational model. This object type is given by φ

(E). So we have,

φ : E φ(E) with

 φ(E) ::= E (list_of_attributes_definition)

Figure 5. Definition of the object type φ(E).

where E (right of the symbol :: =) is the object type

associated with the XML element E argument of φ.

Attributes of the object type E are given by

(list_of_attributes_definition)

Each element of the list above (figure 5) is a definition of an

attribute or field of object type
5
 (in object-relational model).

This definition is done by the following expression:

 <Attr; Type[;Modifiers] >

Figure 6. Definition of an object-type attribute.

where

- Attr: is the name of attribute (of object type),
- Type: is the type of attribute (of object type),
- Modifiers: represents a list of constraints on values of

attribute (of object type). These constraints can
contains null, not null, unique, check and foreign key
constraint. The brackets surrounding it indicate that list
is an option, may be empty as in extended BNF

6

notation[3].

Later on, we show how the attributes of object type "E" are

calculated with the function φ.

We have at Figure 2:

E :: = <E; Attrs; D>

The definition of the object type is given by the following

formula:

φ(E) ::= E (φ(Attrs) U φ(D))

Figure 7. Definition of an object type.

where the symbol ‘U’ denotes the union operator.

This can be explained as:

The list of attributes of the object type E is obtained by the

union of the image (under φ) of attribute definitions of the

XML element and the image (also obtained by φ) of content

definition of the element E.

So, to get the structure of the object type E, we have to

calculate φ (Attrs) and φ (D).

We start by calculating φ (Attrs).

3.2.1.Calculation of φ(Attrs)

4
 Function having an arbitrary number of different types

arguments.
5
 Object type is similar to UDT in SQL: 2003.

6
 Extended BNF notation: BNF extended to use symbols
(,),[,],{,}…

IJMCR www.ijmcr.in| 2:7 |July|2014|503-511 | 505

φ (Attrs) is a list of attributes definition(of the object type)

obtained by the following algorithm:

Algorithm listAttributes;

Input Attrs : list of attributes;

Output φ(Attrs) : list of attribute

definitions (of an object type) ;

begin

if Attrs = empty then

/*There is no attributes for the XML element.*/

 φ (Attrs) ::= empty string;

 else

 if Attrs = (Attr1, Attr2, ...) then

 φ (Attrs) ::=φ (Attr1), φ (Attr2) ...;

 end if;

 end if;

end;
Figure 8. Calculation of φ (Attrs).

Each Attri, as shown in Figure 3, is given by

Attri::=<Attri; typeOrValues; Description>.

Thus the image of Attri, denoted by φ (Attri), is given by

φ(Attri) = φ (<Attri; typeOrValues; Description>).

The value of φ (<Attri; typeOrValues; Description>) is

obtained by

φ (<Attri; typeOrValues; Description>) ::= <Attri;

φ(typeOrValues) minus Constraints; φ(Description) plus

Constraints>.
Figure 9. Definition of the object-type attribute "Attri"

This requires the calculation of φ (typeOrValues),

φ(Description) and the constraints that what we do

thereafter.

3.2.1.1. Calculation of φ (typeOrValues)

The value of φ (typeOrValues) is a type and constraints on

the values of this type. It represents the type and the

constraints on the values of object-type attribute associated

to the XML element. This value is given using the following

table (see Figure 10). The constraints are defined with

notations defined in regular expressions[2] that we remind

below:

- The character "|" is the alternative;
- The * means 0 or more characters;
- The parentheses are metacharacters for priority and

grouping.
typeOrValues
(in XML)

φ (typeOrValues)
(in Object relational model)

Type Constraints

ID Varchar(n) (Letter|_)(Letter|_|Digit|:|.|-
)*,

UC: Unique Constraint

CDATA Varchar(n) No constraint

IDREF Varchar(n) (Letter|_)(Letter|_|Digit|:|.|-
)*,

FKC: Foreign Key Constraint

IDREFS Varray(p) or

Nested table
of Varchar(n)

(Letter|_)(Letter|_|Digit|:|.|-

)*,
FKC:Foreign Key Constraint

NMTOKEN Varchar(n) (Letter|_)(Letter|_|Digit|:|.|-)*

NMTOKENS Varray(p) or

Nested table

of Varchar(n)

(Letter|_)(Letter|_|Digit|:|.|-)*

Enumerated

Attribute list

Varchar(n) (Letter|_)(Letter|_|Digit|:|.|-

)*,
ELConstraint : Enumerated

List Constraint

Figure 10. Calculation of φ(typeOrValues).

In what follows, we explain the two right columns in the

table above (Figure 10):

In column Type:

- Varchar (n) is a standard type of strings used in

database systems. n is the size of type.

- Varray
7
 (p) is a data type representing a collection of

values in object-relational databases. p is the size of the

collection.

- Nested table
8
 is a data type used in object-relational

databases. It represents a collection of values with

unlimited size.

In constraints column (at right in the above table), we have

patterns that values of attribute must respect in order to

preserve the semantic values of XML elements attribute.

Those patterns are similar for all constraints. We can use an

applicative constraint to maintain this constraint type (for

example check constraint with like operator).

These patterns use

- Letter : regular definition[3] defined by the following

expression:

Letter ::= [A..Za..z].

- Digit : regular definition defined by the following

production:

Digit ::= [0..9].

In column constraints, there are also

- Foreign key Constraint (FKC): constraint represents the

usual referential integrity in the database literature.

- Unique Constraint (UC): indicates that attribute values

are distinct.

- Enumerated List Constraint (ELConstraint): Constraint

with a list of values corresponding to the enumerated

value list that specifies the content model of XML

elements attributes. We can use check constraint with

like operator to maintain this constraint.

To simplify explication, we call the shared constraint based

on regular expression

(Letter|_)(Letter|_|Digit|:|.|-)*

 by LexAttrConstraint (Lexical Attribute Constraint).

3.2.1.2. Calculation of φ (Description)

In order to complete the calculation of φ (Attrs), it remains

to calculate φ(Description).

The value of φ (Description) is a list of usual constraints in

databases system. It is obtained by an algorithm based on

the following table:

Description φ(Description)

#REQUIRED Not null

#IMPLIED Null

#FIXED Value Not null, default Value

Value default Value
Figure 11. Calculation of φ (Description).

To explain how this function operates, we propose the

example below:

<!ELEMENT journal (…)>

<!ATTLIST journal id ID #REQUIRED>

<!ATTLIST journal issn CDATA #IMPLIED>

Figure 12. Element journal.

Calculus of φ (journal)

7
 Type of limited collection used in Oracle DBMS.

8
 Type of unlimited collection used in Oracle DBMS.

IJMCR www.ijmcr.in| 2:7 |July|2014|503-511 | 506

The simplified element journal in the example above has

two attributes id and issn.

If we apply φ to journal element we obtain:

φ(journal)=journal(φ (id), φ (issn),…).

"journal" (on the right of "=" symbol) is an object type with

attributes φ (id), φ (issn)…

In order to have φ(journal) we must calculate

φ (id)= φ (<id;ID;REQUIRED>) and

φ(issn)= φ (<issn;CDATA;#IMPLIED>).

Calculus of φ (id)

According to formula in Figure 9 and table in Figure 10, we

have

φ (id) =<id; φ(ID) – (LexAttrConstraint+UC);

φ (#REQUIRED)+ (LexAttrConstraint+UC)>.

Since

φ(ID)=varchar + (LexAttrConstraint+UC)

and

φ (#REQUIRED)=not null.

Then φ (id) becomes

 φ (id) = <id; varchar; not null+

LexAttrConstraint+UC)>.

Hence φ (id) is an attribute of journal object with the

following specifications :

 id :name of attribute;

 varchar : type of id;

 not null, LexAttrConstraint and unique are

constraints of id(object attribute).

Calculus of φ (issn)

Similarly, we get for φ(issn), the following expression

φ (issn)= <issn; varchar; null>

Then the journal object become

journal(<id; varchar; not null+

LexAttrConstraint+UC)>,<issn; varchar; null>,…).

End of example.

We can recapitulate these steps in the following algorithm:

Algorithm Attribute_object_from_attribute_XML_element;

Input Attri: an attribute of an element XML;

Output φ(Attri) : an attribute of un object type;

Begin

 Calculate φ(typeOrValues);

 Calculate φ(Description);

 Return <Attri; φ(typeOrValues) minus Constraints;

φ(Description) plus Constraints>;

End;
Figure 13. Algorithm for obtaining an Object attribute from an

XML attribute.

3.2.2.Calculating φ (D)

We recall that the expression of φ(E) (see Figure 7) is given

by : φ(E)=E (φ(Attrs) U φ(D)).

We have processed φ (Attrs). In order to complete the

definition of the list of attributes of the object type, we now

proceed to calculate φ (D).

We have in Figure 2

E=<E; Attrs; D> where D is the content model of

the XML element E.

D can be:

- List of symbols between "<! ELEMENT ElementName

(" and ")>",

- EMPTY,

- ANY.

For example, in the following simplified example

<!ELEMENT journal (volume+)>

<!ATTLIST journal id ID #REQUIRED category

CDATA #IMPLIED >

<!ELEMENT volume (issue+)>

<!ELEMENT issue (paper+)>

<!ELEMENT paper (title, author)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>
Figure 14. Example of DTD

The journal element has the following representation

journal::=<journal; id, category ; volume+>.

The value of D for journal element is volume+.

The volume element definition is

volume :: = <volume; ; issue+>

Similarly, the paper element has the following

representation

paper::=<paper; ; title,author>.

The value of D for paper element is title, author.

The title element definition is

title :: = <title; ; #PCDATA>,

and author element definition is

author :: = <author; ; #PCDATA>

The value of D for both title and author is #PCDATA.

Elements of D are connected together by sequence,

alternative, Kleene closure, transitive closure and optional

value.

In order to simplify the calculation of φ (D), we introduce

the following BNF (Backus-Naur Form) grammar

representing the content model of elements (E is an element

of D). We call this grammar G:

a) E::=ANY

b) E:: =EMPTY,

c) E :: = E, E for the sequence,

d) E :: = E + E for the alternative,
e) E :: = {E} for the Kleene closure (replace *),
f) E :: = {E},E for the transitive closure (replace +),
g) E :: = [E] for an optional value(replace ?),
h) E :: = #PCDATA for a simple type.

Figure 15. Elements of the G Grammar.

To this grammar we associate the following grammar that

uses the symbol "_" (underscore). We note this grammar G

(G underscored). Recall that E as defined above (see Figure

2) gives the definition of element E. The productions order

in the two grammars, G and G, is preserved. This grammar

is defined as following:

a) E::=ANY

b) E::=EMPTY

c) E::=E, E

d) E ::= E1+E2

e) E::= {E}

f) E::= {E}, E

g) E::= [E]

h) E::=#PCDATA
Figure 16. Elements of the G Grammar.

Let us now define the value of φ for each item of the

grammar G. We define a grammar that we call φ (G):

a) φ (E)= φ (ANY)::=AnyData
9

 or AnyType
10

.

(Generic type in object-relational model).

b) φ (E)= φ (EMPTY)::=Empty string

9
 Type used in Oracle DBMS.

10
 Type used in Oracle DBMS.

IJMCR www.ijmcr.in| 2:7 |July|2014|503-511 | 507

c) φ (E)= φ (E1, E2)::= φ (E1), φ(E2) E1 and E2 are

used to distinguish between E at left of '=' and E at

the right of the '='.

d) φ (E) ::= (+, φ (E1), φ (E2)). Here, we define a

generic type that can hold the object types φ(E1)

and φ(E2).

e) φ (E) ::={φ (E)}, list of φ (E) with null constraint;

f) φ (E) ::={φ (E)} list of φ (E) with not null

constraint;

g) φ(E) ::= [φ (E)], φ (E) with null constraint ;

h) φ (E) ::= φ (#PCDATA).
Figure 17. Elements of the φ(G) Grammar.

The value of φ (# PCDATA) is given by the following

expression:
φ (# PCDATA) ::=<value;varchar; PCDATA_constraint>

Figure 18. Value of φ (# PCDATA)

where

− value is an attribute of the object type containing the

value of the element XML;

− Varchar representing its type;

− PCDATA_Constraint is a constraint on the values of

the attribute. It is defined by the following regular

expression[3]:

(Letter | _ | Digit | . | - | :)*.

At this stage, in order to understand how the function φ

operates, we propose below some conversion examples from

an XML model to an object-relational model.

3.2.2.1. Examples of the transformation

a) Example 1

For element title, we have

title :: = <title; ; #PCDATA>,

If we apply the function φ using its definition, we obtain

φ(title) = φ(<title; ; #PCDATA>)

=title(φ (Attrs)U φ (#PCDATA))

=title(φ (#PCDATA)) since φ (Attrs) is empty(there

is no attribute for title).

Then we replace φ (#PCDATA) with its value using the

grammar φ (G) and we get the final expression of φ(title):

φ (title)=title(<value;varchar;

PCDATA_Constraint >).

Then title is an object type (in object-relational model) with

an attribute named value. The type of attribute value is

varchar and its values verify PCDATA_constraint constraint.

b) Example 2

We can do the same with the author element defined as

following:

author :: = <author; ; #PCDATA>

and we get

φ (author)=author(φ (#PCDATA)) =

author(<value;varchar; PCDATA_constraint >).

c) Example 3

For another complex example that illustrate how φ works,

we take the paper XML element defined as follows:

paper::=<paper; ; title, author>.

In this case

φ(paper)=paper(φ(title,author))=paper(φ(title), φ(author)),

If we replace φ(title) and φ(author) by their values as

computed above, we obtain

 φ(paper)=paper(title(<value;varchar;

 PCDATA_constraint >),

 author(<value;varchar;

 PCDATA_constraint >)).

Thus, paper is an object type with two attributes: title and

author. Each of these attributes is an object type with an

attribute named value.

In general the calculation of φ (D) is given by the following

algorithm:

Algorithm Calculus_of_Attributes;

Input: D, a model of content of an XML element E;

Output: φ(D), list of object attributes;

begin

loop

 select an arbitrary φ (v) in φ (D) with v

 different to E;

 if (φ (v) is not in v (to avoid recursion)) then

 Calculate φ (v) using the φ(G) grammar and

 algorithm at Figure 13;

 End if;

 If (there is no φ(v) in φ (D)) or (each φ(v) in

 φ (D) is in v /* case of recursion*/

 or φ (v)=φ (E)) then

 Exit; /*to leave loop*/

 End if;

 End loop;

End ; /*end of algorithm*/

Figure 19. Calculation algorithm of an object Attribute.

d) Example of the calculus of the φ(D) with recursion

To illustrate the calculus of the φ(D) with recursion, we

consider the following example:

<!ELEMENT paper (title, author, cite?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT cite (paper*)>
Figure 20. Example with recursion.

where the element "cite" represents the cited papers in paper

references.

Here we have paper ::= <paper; ; D> where D is (title,

author, cite?).

Therefore

 φ (paper) = paper(φ(D).

If we replace φ(D) with his value

φ(title, author, [cite]) in last formula ,we obtain

φ (paper) = paper(φ(title, author, [cite]))

and

φ(paper)=paper(φ(title),φ(author),[φ(cite)]).
Figure 21. Intermediate value of φ (paper).

We have already calculated φ(title) and φ(author) above.

Let us find φ(cite).

From the expression <!ELEMENT cite (paper*)>, we can

write cite::= <cite;;{paper}>

If we apply the function φ to cite element, we get:

φ(cite)= φ(<cite;;{paper}>)

 =cite(φ ({paper}))= cite({φ (paper)}).

Replacing φ(title), φ(author) and φ(cite), at figure 21, with

their values, we obtain

φ(paper)=paper(φ(D))=

paper(title(<value;varchar; PCDATA_constraint >),

 author(<value;varchar; PCDATA_constraint >),

, [cite({φ (paper)})]).
Figure 22. Value of φ (paper).

We notice that we have found φ(paper) in φ(D). (We

remember that D is a definition for paper element).

IJMCR www.ijmcr.in| 2:7 |July|2014|503-511 | 508

The process halts here because there is no more φ(v) in

φ(D)without recursion or φ(v) different to φ(paper).

Next, we present our algorithm of conversion from XML

model to object-relational model.

4. Algorithm of conversion

Our algorithm of conversion from XML model to object-

relational model, uses CreateObjectType(…) function

(Figure 25Figure 25) that creates an object type image of the

XML element.

This function needs a recursive function named

CreateObjectAttribute(attr(…)) (Figure 23).

4.1.Creation of object attribute

The CreateObjectAttribute function takes an attribute in

argument with a list of items and returns the expression:

<attr; typeOfAttribute; modifiers>.

This expression, as seen before (Figure 6), represents a

definition of an attribute in object-relational model.

This function is based on the values of the function φ

defined above. Its definition is given in the following figure.
Function CreateObjectAttribute (attr(listOfItems)) return

ObjectAttribute ;

y ObjectAttribute ; //y is variable for an object attribute.

i integer initialized by 0;

/*this variable i is for counting the number of attributes which are

added in the case of the alternative which is not

surrounded by an element (for example <!ELEMENT a

(b|c), d>).*/

begin

/*processing of closure*/

1) for each {x(…)} in attr loop /* x is an element*/

2) y= CreateObjectAttribute (x(…));

3) Create a type of nested table named xs (name of x

concatenated to s) based on object type y;

4) Replace {x(…)} in attr by <"xs";xs; constraints_on_x>;

/* therefore "xs" is an attribute of the object-type

attr. The type of this attribute is xs.*/

5) end loop;

6) for each {φ(x)} in attr loop /* x is an element*/

7) If type x is not yet created then

8) Create the object type x as incomplete type; /*

necessary to have recursion*/

9) End if;

10) Create a type of nested table named xs (name of type "x"

concatenated to letter 's') based on ref object type "ref x";

/*(norme sql3)*/

11) Replace in attr, {φ(x)} by <"xs";xs; ' '>;

12) End loop;

13) for each [x(…)] in attr loop /* x is an element*/

14) y= CreateObjectAttribute (x(…));

15) add to y a null constraint;

16) Replace [x(…)] in attr by y;

17) End loop;

18) Loop

19) If each item of listOfItems matches "<…>" then

20) If the attr type is not yet created then

21) Create an object type named attr where each of

 its attributes corresponds to each item of

 listOfItems;

22) End if;

23) Return the object attribute <"attr"; attr;

list_of_item_constraint>;

24) Else //case of alternative with named element (for example

<!ELEMENT a (b|c)>)

25) If each item of listOfItems matches "<…>"

 except one item that matches "+" then

26) If the attr type is not yet created then

27) For each item <x…> in listOfItems loop

28) Create an object type named "x" if

 it’s not created;

29) End loop;

30) Create an object type named attr that has

 an attribute named 'value' with a generic

 type (ANYDATA for example);

31) Add to attr a constraint that limits values

 of the attribute 'value' to objects that are

 instances of types 'x' created by "for each"

 above at lines 28 to 30";

 // we call this constraint: constraint_on_attr;

32) End if;

33) Return the object attribute <"attr"; attr;

 list_of_item_constraint+constraint_on_attr>;

34) Else //case of alternative with unnamed element

 (for example <!ELEMENT a (b|c), d>)

35) i=0;

36) For each item (+,…) in (listOfItems) loop

37) i i+1;

38) Replace, in attr, (+,…) by

 CreateObjectAttribute (_attr_i(+,…));

 //_attr_i is created for alternative.

39) End loop;

40) For each item e(…) in (listOfItems) loop

41) If e(…) doesn’t contain directly any φ then

42) Replace, in attr, e(…) by

CreateObjectAttribute (e(…));

43) Else /*Case of recursive element (direct).*/

44) If e(…) matches e(φ(x)) then

45) Replace, in attr, e(…) by <"e"; ref x;>;

46) /*ref type is a type that allows an

 attribute to contain an object

 reference. */

47) Else /*Case of elements mutually

 recursive.*/

48) If e(…) matches e(…,φ(x),…) then

49) If the x type is not yet created then

50) Create the object type x as

 incomplete type (in order to have

 recursion);

51) End if;

52) Replace φ(x) by <"x";ref x;>;

53) End if;

54) End if;

55) End if;

56) End loop;

57) End if

58) End if;

59) End loop;

End; /*End of function : CreateObjectAttribute */

Figure 23. CreateObjectAttribute Function.

To illustrate the usage of this function, we consider the

example below:
<!ELEMENT paper (title, author, cite?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (fn, ln)>

<!ELEMENT fn (#PCDATA)>

<!ELEMENT ln (#PCDATA)>

<!ELEMENT cite (paper*)>

Figure 24. Example of DTD.

We have at Figure 21 the expression

φ (paper) = paper(φ(title), φ(author),[φ(cite)]).

IJMCR www.ijmcr.in| 2:7 |July|2014|503-511 | 509

In order to apply CreateObjectAttribute function to paper,

we have to find φ(title) , φ(author) and [φ(cite)].

φ(title) (as seen above) is given by

φ (title)=title(<value;varchar; PCDATA_Constraint >).

The element author is defined by

<!ELEMENT author (fn, ln)>.

So

φ(author)=author(φ(fn), φ(ln)).

The element fn is defined by

<!ELEMENT fn (#PCDATA)>

then

φ(fn) =fn(<value;varchar; PCDATA_Constraint >

We can do the same for ln :

φ(ln) =ln(<value;varchar; PCDATA_Constraint >.

Then φ(author) becomes

φ(author)= author(fn(<value;varchar;PCDATA_Constraint

>), ln(<value;varchar; PCDATA_Constraint >)).

The value of [φ(cite)] is [cite({φ (paper)})] (see Figure 22).

We replace φ(title), φ(author) and [φ(cite)] in φ(paper) we

obtain the expression:

φ(paper)=paper(φ(D))=paper(title(<value;varchar;

PCDATA_constraint >),

 author(fn(<value;varchar; PCDATA_Constraint >),

 ln(<value;varchar; PCDATA_Constraint >)),

[cite({φ (paper)})]).

Applying the CreateObjectAttribute function to paper, we

transform recursively:

- title(<value;varchar; PCDATA_Constraint >);

- author(fn(<value;varchar; PCDATA_Constraint >),

 ln(<value;varchar; PCDATA_Constraint >)) and

- [cite({φ (paper)})].

We begin with [cite({φ (paper)})].

To transform [cite({φ (paper)})] by function

CreateObjectAttribute , we use

i. lines between 6 and 12 to eliminate symbols "{" ,

"}" and φ;

ii. lines between 13 an 17 to eliminate symbols "["

and "]".

So, for lines between 6 and 12

- we create an incomplete object type named paper;

- we create a nested table type based on "ref paper"

named papers;

- we replace{φ (paper)} by <"papers";papers;' '>.

After that, we get the expression:

 [cite(<"papers";papers;' '>)].

Furthermore, with lines between 13 and 17, we apply

CreateObjectAttribute(cite(<"papers";papers; ' '>)) that

uses lines between 19 and 23, and returns

 <"cite";cite; null_constraint>

We continue the transformation with the element title. title

as seen earlier has the expression:

 title(<value; varchar; PCDATA_Constraint >).

Since title contains only items that match " <…>", the call

of CreateObjectAttribute(title(<value…>)) uses lines

between 19 and 23, and creates an object type named title

with one attribute named value and returns an object-type

attribute defined by :

 <"title";title; PCDATA_Constraint on "title".value>.

Similarly, for fn and ln element, we obtain the two following

object-type attributes:

<"fn";fn; PCDATA_Constraint on "fn".value>;

<"ln";ln; PCDATA_Constraint on "ln".value>.

Now, search CreateObjectAttribute (author(…)) for the

author element.

We have

φ(author)=author(fn(<value;varchar;

PCDATA_Constraint >),

ln(<value; varchar; PCDATA_Constraint

>)).

In this expression, author has items (fn and ln) that do not

match "<…>".

In that case, to have CreateObjectAttribute (author(…)), we

use lines 40 and 41 and we get

<"fn";fn; PCDATA_Constraint on "fn".value> (obtained by

CreateObjectAttribute(fn(…)))

and

<"ln";ln; PCDATA_Constraint on "ln".value> (obtained by

CreateObjectAttribute(fn(…))).

After this substitution, author become

author(<"fn";fn; PCDATA_Constraint on "fn".value>,

<"ln";ln; PCDATA_Constraint on "ln".value>)

Then, we can now use statements between 19 and 23 lines:

 create an object type named author with attributes

"fn" and "ln";

 return an attribute defined by <"author", author,

fn_constraint + ln_constraint>.

Hence, paper has the expression

paper(<"title";title; PCDATA_Constraint on "title".value>,

<"author", author, fn_constraint + ln_constraint>,

<"cite";cite;null_constraint>).

Finally, we obtain the object type : <"paper"; paper;

constraint_on(title,author,cite)>.

End of example.

Now, let us see how this algorithm works in the case of the

alternative. So, we propose the example below:

<!ELEMENT person (name, (email | phone))>

<!ELEMENT name (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

First, we calculate φ(person).

φ(person)=person(φ (name, (email | phone))>

if we use the algorithm at figure 19, we obtain

person=person(φ (name), φ (email | phone))

that becomes

person=person(name(<value;varchar;

PCDATA_Constraint >),

 (+, email(<value; varchar; PCDATA_Constraint

>),phone(<value; varchar; PCDATA_Constraint >))).

Now, we apply "CreateObjectAttribute" function to "person

(…)":

- by lines 40, 41and 42, we transform name(<…>) to

<"name";name;PCDATA_Constraint on name.value>;

- with lines 34 to 39, we transform (+, email(…), phone(…))

to

_person_1 (+,email(…), phone(…));

- with lines 40 - 42, we obtain :

- for email : <"email"; email; PCDATA_Constraint

on email.value>;

- for phone: <"phone"; phone; PCDATA_Constraint

on phone.value>)>;

Consequently "_person_1" becomes

_person_1(+,<"email"; email; PCDATA_Constraint on

email.value>,

 <"phone"; phone; PCDATA_Constraint on phone.value>);

- with lines 25 to 33 applied to "_person_1" we get

IJMCR www.ijmcr.in| 2:7 |July|2014|503-511 | 510

<"_person_1"; _person_1;

constraints_on_email_phone +

constraint_on_"_person_1">.
and person takes the structure

person (<"name";name; PCDATA_Constraint on

name.value>;

<"_person_1"; _person_1; constraints_on_email_phone

+constraint_on_"_person_1">)

Finally, we apply lines between 19 and 23 to person

obtained above and we get:

<"person"; person; constraints_on_name_phone…>

End of example.

4.2.Creation of objet type associated to XML schema

Now we consider the function CreateObjectType. It takes an

object obtained by applying the function φ to root element

of XML document and returns an object type (UDT) with

constraints. This function applies only to this type of object.

The code of this function is as following:

Function CreateObjectType (Object(listOfItems)) return

ObjectType;

y ObjectAttribute ; /*y is an object attribute variable.*/

Begin

y=CreateObjectAttribute(Object(listOfItems));

/* y has the form <"Object"; Object; Constraints>.*/

return: <Object, Constraints>;

//an object type with its constraints.

End;
Figure 25. CreateObjectType function.

If we apply CreateObjectType to paper below (that we

suppose the root of document):

<"paper"; paper; constraint_on(title,author,cite)>

we obtain the object type

<paper, constraint_on(title,author,cite)>.

Finally, we present the algorithm of conversion.

Algorithm Conversion;

Input : valid XML document with its DTD; Let be E the

root of this document;

Output: an object-relational schema;

Begin

1) Calculate φ(E) using the rules presented above at

figure 17.

2) Let be "E(listOfItems)" this value;

3) Let be <E, Constraints> the object type obtained by

 CreateObjectType(E(listOfItems)); /*algorithm at

figure 24 */

4) Create an object table named "E_Table" with object

type E and constraints defined by E;

 /*" E_Table" is a an object table where we store the

content of the XML document.*/

End; /*end of Conversion*/
Figure 26. Algorithm of Conversion.

Then, as we have seen in the last above algorithm, we finish

the transformation of structure.

The content (values of elements and attributes) of the XML

document will be stored in the object table created by the

last instruction (at line 4) of conversion algorithm (Figure

25). The object type of this table is the root element of the

XML structure or XML document.

Applying this algorithm to the example above "paper"(see

Figure 24), we create an object table named "Paper_Table"

based on object type paper. The table has constraints defined

by constraint_on(title,author,cite). The structure of table can

be similar to the following:

Figure 27. Structure of Paper table.

5. Conclusion

In this paper, we have presented a methodology to transform

hierarchical XML DTD schema into object-relational

schema. This method offers many advantages for of object-

relational database users for storing, manipulating and

retrieving XML document with preserving structural and

some semantic aspects (using constraints). Also with this

method we can retrieve the structure for the initial document

from its transformed object-relational model. Finally,

comparing with others methods, our method integrates XML

elements within few object tables.

References

[1] L. Al-Jadir and F. El-Moukaddem, "F2/XML: Storing

XML Documents in Object Databases," International

Conference on Object Oriented Infomation Systems,

Montpellier, France, 2002.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and J. D.

Ullman, "Compilers Principles, Techniques, & Tools,"

2nd ed, 2007, pp. 116-122,159-163.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and J. D.

Ullman, "Compilers Principles, Techniques, & Tools,"

2nd ed, 2007, pp. 42-50, 197-199, 204-205.

[4] V. Bisova and K. Richta, "Transformation of UML

Models into XML," ADBIS-DASFAA Symposium on

Advances in Databases and Information Systems,

Prague, Czech Republic, 2000.

[5] A. Boccalatte, D. Giglio, and M. Paolucci, "An Object-

Oriented Modeling Approach Based on Entity-

Relationship Diagrams and Petri Nets," IEEE Internal

conference on Systems, Man and Cybernetics,San Diego,

CA, 1998.

[6] T. Bray, Paoli, J., Sperberg-McQueen, and a. M. C. M.,

E., "Extensible Markup Language (XML) 1.0 (Second

Edition)," W3C Recommendation.

http://www.w3.orglTR2OOOlREC- XML-20001006l,

2000/10.

Table of papers:

Paper_Table

this symbol denotes collection

...

...

paper1

paper2

paper3

id:1

authors

title(value):title1

cite

author1

author2

author3

ref paper11

ref paper12

ref paper13

fn(value):fn1

ln(value):ln1

paper4

...

http://www.w3.orgltr2ooolrec-/

IJMCR www.ijmcr.in| 2:7 |July|2014|503-511 | 511

[7] E. Castro, D. Cuadra, and M. Velasco, "From XML to

Relational Models," Informatica, vol. 21(4), pp. 505-519,

2010/12.

[8] T. M. Connolly and C. E. Begg, Database Systems: A

Practical Approach to Design, Implementation, and

Management, 4 ed., 2005.

[9] R. Conrad, D. Scheffner, and J. C. Freytag, "XML

Conceptual Modeling using UML," International

Conference on Conceptual Modeling, Salt Lake City, UT

2000.

[10]C. Coronel, S. Morris, and P. Rob, Database Systems:

Design, Implementation, and Management, 10 ed.:

Cengage Learninig, 2012.

[11]H. Darwen and C. J. Date, "The Third Manfesto,"

SigMOD Record 24(1), pp. 39-49, 1995.

[12]C. J. Date, "Preview of The Third Manifesto," Database

Programming & Design Journal (San Francisco, CA:

Miller Freeman Publications), vol. 11(8), 1998(8).

[13]C. J. Date and H. Darwen, Databases, Types And the

Relational Model: The Third Manifesto, 3 ed.: Addison-

Wesley, 2007.

[14]A. Deutsch, M. Fernandez, and D. Suciu, "Storing

Semistructured Data with STORED," In Proc. of ACM

SIGMOD, Philadelphia, PN, 1999.

[15]A. Duta, B. K., and R. Alhajj, "ConvRel: Relationship

conversion to XML nested structures," in Proceedings of

ACM SIG Symposium on Applied Computing, pp. 698-

702, 2004.

[16]A. Eisenberg and J. Melton, "SQL:1999, formerly

known as SQL3," SIGMOD Record, vol. 28(1), March

1999.

[17]A. Eisenberg, J. Melton, K. G. Kulkarni, J.-E. Michels,

and F. Zemke, "SQL: 2003," SIGMOD Record, vol.

33(1), pp. 119-126, 2004.

[18]A. A. A. El-Aziz and A. Kannan., "Mapping XML

DTDs to Relational Schemas," In Proceedings of the 2nd

International Conference on Computer Communication

and Informatics (ICCCI), pp. 1–7, 10-12, Jan 2012.

[19]H. García-Molina, J. D. Ullman, and J. Widom,

Database Systems :The Complete Book: Prentice Hall,

2002.

[20]G. Gardarin, "Databases," in Databases, Eyrolles, Ed.,

ed, 2001, pp. 442-443.

[21]M. Gogolla, A. K. Huge, and B. Randt, "Stepwise Re-

Engineering and Development of Object-Oriented

Database Schemata," International Workshop on

Database and Expert Systems Applications, Vienna,

Austria, 1998.

[22]J. Hou, Y. Zhang, and Y. Kambayashi, "Object-Oriented

Representation for XML Data," International

Symposium on Cooperative Database Systems for

Advanced Applications, Beijing, China, 2001.

[23]S. Kanagaraj and D. S. Abburu, "Converting Relational

Database Into Xml Document " IJCSI International

Journal of Computer Science Issues, vol. 9(2), pp. 127-

131, 2012/3.

[24]J. Kim, D. Jeong, and D.-K. Baik, "A Translation

Algorithm for Effective RDB-to-XML Schema

Conversion Considering Referential Integrity

Information," Journal of Information Science and

Engineering, vol. 25, pp. 137-166, 2009/1.

[25]D. Lee, M. Mani, and W. W. Chu, "Schema Conversion

Methods between XML and Relational Models,"

Knowledge Transformation for the Semantic Web, IOS

Press, pp. 245-252, 12 2003.

[26]Y. E. Lien, "On the Equivalence of Database Models,"

Journal of the ACM 29, pp. 333–362, 1982.

[27]J. Madhavan, P. A. Berstein, and E. Rahm, "Generic

Schema Matching with Cupid," International Conference

on Very Large Data Bases, Roma, Italy, 2001.

[28]J. Melton, Advanced SQL:1999: Understanding Object-

Relational and Other Advanced Features (The Morgan

Kaufmann Series in Data Management Systems), 2003.

[29]R. J. Miller, L. Haas, and M. A. Hernandez, "Schema

Mapping as Query Discovery," International Conference

on Very Large Data Bases, Cairo, Egypt, 2000.

[30]S. Navathe and R. Elmasri, "Fundamentals of Database

Systems," ed: Addison-Wesley, 2011, pp. 353-413.

[31]S. B. Navathe, "An Intuitive Approach to Normalize

Network Structured Data," International Conference on

Very Large Data Bases, Montreal, Quebec, Canada,

1980.

[32]OPENXML, "Retrieving and Writing XML Data.,"

http://msdn.microsoft.com/library/default.asp?url=/librar

y/en-us/xmlsql/ac_openxml_759d.asp, 2004.

[33]J. Price, "Oracle Database 11g SQL," ed: McGraw -Hill,

2008, pp. 379-473.

[34]J. W. Rahayu, D. Taniar, and E. Pardede, Object-

Oriented Oracle: IRM Press, 2006.

[35]A. Schmit, M. L. Kersten, M. Windhouwer, and F. Wass,

"Efficient Relational Storage and Retrieval of XML

documents," In WebDB (Informal Proceedings), pp. 47-

52, 2000.

[36]J. Shanmugasundaram, I. Tatarinov, E. Shekita, J.

Kiernan, E. Viglas, and J. Naughton, "A General

Technique for Querying XML Documents using a

Relational Database System," SIGMOD, 2001.

[37]J. Shanmugasundaram, K. Tufte, G. He, X. C., D. D.,

and N. J., "Relational databases for querying XML

documents: limitations and opportunities," in: VLDB,

Edinburgh, Scotland, 1999/9.

[38]M. Stonebraker, L. A. Rowe, and M. Hirohama, "The

Implementation of PostGres," IEEE on Knowledge and

Data Engineering, vol. 2, pp. 125-142, Mars 1990.

[39]I. Tatarinov, S. Iglas, D., and V., "Storing and Quering

Ordered XML Using a Relational Database System,"

ACM SIGMOD, Wisconsin, USA, 2002.

[40]M. YoshiKawa and T. Amagasa, "XRel: A Path -based

approach to storage and retrieval of XML documents

using relational databases," ACM Trans. on Internet

Technology 2001.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsql/ac_openxml_759d.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsql/ac_openxml_759d.asp

