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Abstract: In this paper, we formulate a discrete Prey – Predator model and introduce harvesting in prey population. The 

dynamical behavior of the proposed model is investigated through analytical study of the existence of fixed points and their 

stability on prey harvesting. Stability of the discrete system is investigated Numerical simulations are employed to exhibit the 

complex dynamics of the discrete model.  Bifurcation, period doubling and time plot diagrams are plotted to study the behavior 

of the model in selected ranges. 
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INTRODUCTION 

The dynamic behavior of the prey-predator interaction is more complex in nature. Population Dynamics has 

been a prime branch of theoretical ecology. Lotka- Volterra model describes interaction between two species 

in an ecosystem [5]. Holling introduced more realistic prey-predator models with three kinds of functional 

responses for different species to model the phenomena of predation.  Harvesting has an impact on the 

population dynamics of a harvested species [3]. The severity of this impact depends on the nature of the 

implemented harvesting strategy, which may range from extinction to the complete preservation of a 

population. The study of the population dynamics in harvesting is a subject of mathematical bio-economics 

[2,9]. In this paper we consider the effect of constant rate of harvesting on the dynamical behavior of 

interacting species. 

 

DYNAMICAL MODEL AND FIXED POINTS 

Discrete time models give rise to more efficient computational models for numerical simulations and 

they exhibit more complex dynamical behaviors [1,4,7]. In this section, we consider the dynamics of the 

two-species system consisting of one prey and one predator with harvesting on prey population governed by 

the following system of difference equations, 
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where r,a,b and c 0.  Here ( ) and ( )x n y n  denote the  prey-predator density, r is the intrinsic  growth rate 

of the prey, a is the natural death rate of the predator, h is the harvesting constant and  
bx

c x
 is the predation 

term in the sense of Holling [5]. All possible non-negative fixed points are, 
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DYNAMICAL BEHAVIOR OF THE SYSTEM AND STABILITY ANALYSIS 

In this section, we analyze the local stability of the non-negative fixed points. The variational matrix of 

the system (1) at fixed point  ,x y  is 
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The characteristic equation of the Jacobian matrix (2) can be written as 

  2 Tr Det ...(3)J J Jf       

where, 
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system (1) is dissipative dynamical system if Det J 1,  conservative dynamical system if and only if 

Det J 1.  Otherwise, the system (1) undissipated dynamical system [1,6]. 

Proposition 1: The Prey-Predator co-extinction fixed point 0E  is stable if 1 and 1.r h a    

Proof: At 0 ,E  the Jacobian matrix (2) is of the form  0

0
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The corresponding eigenvalues of the Jacobian matrix 0( )J E  are 1 r h    and 2 .a    Fixed 

point 0E  is stable if 
1,2 1.   From this, we obtain 1 and 1,r h a     so that 1 and 1.r h a    Fixed 

point 0E  is unstable if the following conditions hold. 

1. 1 and 1r h a    (Source). 

2.  1 and 1 or 1 and 1r h a r h a       (Saddle). 

3. Either 1 or 1r h a    (Non-hyperbolic). 

 

Proposition 2: The Predator extinction fixed point 1E  is stable if 1 3h r h     and 
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Proof: At 1,E the Jacobian Matrix (2) is of the form  
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Hence the eigenvalues of the above Jacobian matrix  1J E  are  1 2 h r     and 
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Proposition 3:  In this proposition, we discuss the stability of the interior point 2.E  

At 2 ,E  the Jacobian matrix (2) is of the form   11 12
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By (3), the characteristic equation of the Jacobian matrix  2J E  is 
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I.   BIFURCATION ANALYSIS 

In this section, we provide bifurcation diagram and time plots of the system (1) in particular ranges 

which are plotted by using the software MATLAB [8].  

  

         Figure-1                 Figure-2 

The bifurcation diagram is plotted in the range  0 S ,r r r   where bounded solutions can occur. Here 

we fix values 0.01, 1.75, 0.52, 0.01a b c h    and the intrinsic growth rate ‘ r ’ is taken between 2.6 and 

4. Between 0 12.6 and 3.02,r r   stationary regimes should be considered as a periodic-1 period orbit. This 

limit set from 0 1tor r  consists of a single value. At 1 3.02r   a bifurcation occurs and the population density 

oscillates between two values when ‘ r ’ changes from 3.02 to 3.465r r  . So that 1r r , gives birth to a 

periodic-2 period orbit and the bifurcation diagram has two branches. 

 At 2 3.465,r r   the number of bifurcation doubled and there are four branches occurred in the 

bifurcation diagram. So that the population density oscillates between four values. Hence we obtain, a 

periodic-4 period orbit at 3.465r  . At 1 2andr r r r   are the first two members of an infinite series 

where the periodic doubling bifurcation occurred are known as the period-doubling cascade. The bifurcation 

at 3 3.553r  , gives the birth to a periodic-8 period orbit and 4 3.574r   leading to a periodic-16 period orbit 

which is easily seen in the bifurcation figure-2. At 5r r  is hardly visible and the following ones are 

completely indiscernible to the naked eye. For every integer 0,n    the period orbit 2n can be created at 

every period-doubling cascade.  

In figure-2, from left to right, the vertical lines denote the birth of (i) a period-2 orbit (ii) a period-4 

orbit, (iii) a period-8 orbit, (iv) a period-16 orbit and (v) the starting point of a period-3 window. 
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Figure-3 

The period-doubling cascade is one of the best known routes to chaos and it can be observed in many 

low dimensional systems. In figure-3, the large periodic window, which corresponds to the domain of 

stability of a period-3 orbit, is clearly seen to begin at 3.838,r   well inside the chaotic zone. In figure-3, 

we can see that periodic windows are clearly visible to the naked eye only for very low periods.  

 

Figure-4 

Orbit diagram 

In figure-4, we observed that (a) Stationary regime at 2.88r  , (b) Periodic regime of period-1 

(Uniform oscillations) at 3.22r  , (c) Periodic regime of period-3 at 3.5r   (d) Periodic regime of period-7 

at 3.56r   and (e) Non-periodic oscillations occur in chaotic region at 3.77r  . 
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