Some Generalizations of Differential Polynomials of Meromorphic Functions

T. Lowha
Assistant Professor, Dept. of Mathematics, Sarsuna Collge
Kolkata - 700061, West Bengal, India
Email : t.lowha@gmail.com
Corresponding Author: T.LOWHA
Address:Flat-A2;31/2 Middle road;
Santoshpur; Kolkata-700075
West Bengal; India.

Abstract

In this paper, we prove two theorems on differential polynomials of meromorphic functions sharing a non zero polynomial which generalize a result of Xiao-Min Li and Ling Gao[4]. Also we prove two theorems of differential polynomials of meromorphic functions sharing $(1,2)$ and $(1,1)$ which ultimately generalize two results of Jin-Dong Li[7].

2000 Mathematics Subject Classification : 30D35.
Keywords and Phrases: Meromorphic function, shared values, differential polynomials, uniqueness.

1. Introduction:

Let f be a non constant meromorphic fuction. This always means that f is defined in the whole complex plane. For standard notations of the Nevanlinna theory such as $T(r, f), N(r, f), S(r, f)$ etc., we refer to [1, 2].

Let f and g be two such meromorphic fuctions. Let c be a finite complex number. We say that f and g share the same value c CM(counting multiplicity) if $f-c$ and $g-c$ have the same zeros with the same multiplicities. Similarly we say that f and g share c IM(ignoring multiliplicities)if $f-c$ and $g-c$ have the same zeros ignoring multiplicities. Also if $\frac{1}{f}$ and $\frac{1}{g}$ share 0 CM (resp. IM), we say that f and g share ∞ CM(resp. IM).

Definition 1.1 [3] : Let k be any positive integer and f be a meromorphic function. Then for any $a \in C \bigcup\{\infty\}$, the notation $N_{k)}(r, a ; f)$ means the counting function of those a-points of f (counting
multiplicities) whose multiplicity are not greater than k and $\bar{N}_{k)}(r, a ; f)$ means the counting function of those a-points of f whose multiplicities are not greater than k, where each a point is counted only once. Similarly, we denote $N_{(p}(r, a ; f)$ to mean the counting function of those a-points of f (counting multiplicities) whose multiplicities are not smaller than p and also denote $N_{(p}(r, a ; f)$ to mean the counting function of those a-points of f whose multiplicities are not smaller than p, where each a - point is counted only once.

Definition 1.2[4]: Let a be any value in the extended complex plane, and let k be any arbitrary non negative integer. We define

$$
\delta_{k}(a ; f)=1-\limsup _{r \rightarrow \infty} \frac{N_{k}(r, a ; f)}{T(r, a ; f)} .
$$

Definition 1.3[7] Let k be a non negative integer or infinity. For any complex number $a \in C \cup\{\infty\}$, we denote $E_{k}(a, f)$ as the set of all a-points of f , where an a-point of multiplicity p is counted p times if $p \leq k$ and $\mathrm{k}+1$ times if $\mathrm{p}>\mathrm{k}$. If $\mathrm{E}_{\mathrm{k}}(\mathrm{a}, \mathrm{f})=\mathrm{E}_{\mathrm{k}}(\mathrm{a}, \mathrm{g})$, one says that f, g share the value a with weight k. We say f, g share (a, k) this means that f, g share the value a with weight k . Then it is clear that if f, g share (a, k) then f, g share (a, q) for all integers q with $0 \leq q \leq k$.

In 2010, Xiao-Min Li and Ling Gao [4] proved the following theorem.
Theorem 1.4[4]: Let f and g be two transcendental meromorphic functions, let $P \neq 0$ be a polynomial and $n \geq 15$ be an integer. If $\left(f^{n}(f-1)\right)^{\prime}-P \quad$ and $\left(g^{n}(g-1)\right)^{\prime}-P \quad$ share 0 CM and $\Theta(\infty, f)>\frac{2}{n}$ then $\mathrm{f}=$ g.

In 2011, Jin-Dong Li[7], proved the following theorems.

Theorem 1.5[7]: Let $f(z)$ and $g(z)$ be two non constant meromorphic functions and let n , k be two positive integers with $n>3 k+11$. If $\Theta(\infty, f)>\frac{2}{n},\left[f^{n}(z)(f(z)-1)\right]^{(k)}$ and $\left[g^{n}(z)(g(z)-1)\right]^{(k)}$ share (1, 2) then $f(z)=g(z)$ or $\left[f^{n}(z)(f(z)-1)\right]^{(k)} \cdot\left[g^{n}(z)(g(z)-1]^{(k)} \equiv 1\right.$.

Theorem 1.6[7]: Let $f(z)$ and $g(z)$ be two non constant meromorphic functions and let n, k be two positive integers with $n>5 k+14$. If $\Theta(\infty, f)>\frac{2}{n},\left[f^{n}(z)(f(z)-1)\right]^{(k)}$ and $\left[g^{n}(z)(g(z)-1)\right]^{(k)}$ share $(1,1)$ then $f(z)=g(z)$ or $\left[f^{n}(z)(f(z)-1]^{(k)} \cdot\left[g^{n}(z)(g(z)-1]^{(k)} \equiv 1\right.\right.$
In this paper, we have studied the behavior of certain weighted sharing of non linear differential polynomials generated by a transcendental meromorphic functions as well as the behavior of certain non linear differential polynomials generated by a transcendental meromorphic functions sharing one point CM. In fact, we offer certain new theorems, the above mentioned theorems follows as a consequence from our new theorems.

2. Main Theorems

In this section, we will prove the following four theorems :

Theorem 2.1: Let f and g be two transcendental meromorphic functions, let $\mathrm{n}>17$ be a positive integer and n is not divisible by 2 and let $P \neq 0$ be a polynomial. If $\left[f^{n}\left(f^{2}-1\right)\right]^{\prime}-P$ and $\left[g^{n}\left(g^{2}-1\right)\right]^{\prime}-P$ share 0 CM then, $f=g$.

Theorem 2.2: Let f and g be two transcendental meromorphic functions, let $\mathrm{n}>3 \mathrm{~m}+11$ be a positive integer where $\mathrm{m}>2$ is also a positive integer and n is not divisible by m and let $P \neq 0$ be a polynomial. If $\left[f^{n}\left(f^{m}-1\right)\right]^{\prime}-P$ and $\left[g^{n}\left(g^{m}-1\right)\right]^{\prime}-P$ share 0 CM , then $f=g$.

Theorem 2.3: Let f and g be two non constant meromorphic function and let n, m and k be three positive integers with $\mathrm{n}>3 \mathrm{~m}+3 \mathrm{k}+8$. If $\left(f^{n}\left(f^{m}-1\right)\right)^{(k)}$ and $\left(g^{n}\left(g^{m}-1\right)\right)^{(k)}$ share $(1,2)$ then $f=g$ or $\left[f^{n}\left(f^{m}-1\right)\right]^{(k)} \cdot\left[g^{n}\left(g^{m}-1\right)\right]^{(k)} \equiv 1$.

Theorem 2.4: Let f and g be two non constant meromorphic function and let n, m and k be three positive integers with $\mathrm{n}>4 \mathrm{~m}+5 \mathrm{k}+10$. If $\left(f^{n}\left(f^{m}-1\right)\right)^{(k)}$ and $\left(g^{n}\left(g^{m}-1\right)\right)^{(k)}$ share $(1,1)$ then $f=g$ or $\left[f^{n}\left(f^{m}-1\right)\right]^{(k)} \cdot\left[g^{n}\left(g^{m}-1\right)\right]^{(k)} \equiv 1$.

Before proving the theorems, we state some existing results in the form of lemmas, which will be used in the sequel.

Lemma 2.5[4] : Let f and g be two transcendental meromorphic functions such that $f^{(k)}-P$ and $g^{(k)}-P$ share 0 CM , where k is a positive integer, $P \neq 0$ is a polynomial. If
$\Delta_{1}=(k+2) \Theta(\infty, f)+2 \Theta(\infty, g)+\theta(0, f)+\theta(0, g)+\delta_{k+1}(0, f)+\delta_{k+1}(0, g)>k+7$
and
$\Delta_{2}=(k+2) \Theta(\infty, g)+2 \Theta(\infty, f)+\theta(0, g)+\theta(0, f)+\delta_{k+1}(0, g)+\delta_{k+1}(0, f)>k+7$
Then either $\mathrm{f}^{(\mathrm{k})} \mathrm{g}^{(\mathrm{k})}=\mathrm{P}^{2}$ or $\mathrm{f}=\mathrm{g}$.
Lemma 2.6[6] : Let f be a transcendental meromorphic function and $P(f)=a_{n} f^{n}+\ldots+a_{2} f^{2}+a_{1} f^{1}+a_{0}$ Then $T(r, P(f)=n T(r, f)+0(1)$.

Lemma 2.7[7]: Let f and g be two non constant meromorphic functions and let $k(\geq 1), l(\geq 1)$ be two positive integers. Suppose that $\mathrm{f}^{(\mathrm{k})}$ and $\mathrm{g}^{(\mathrm{k})}$ share ($1, l$).
(i) If $l=2$ and
$\Delta_{1}=(k+2) \Theta(\infty, g)+2 \Theta(\infty, f)+\theta(0, f)+\theta(0, g)+\delta_{k+1}(0, f)+\delta_{k+1}(0, g)>k+7 \quad$ then either $f^{(k)} g^{(k)} \equiv 1$ or $f \equiv g$.
(ii) If $l=1$ and
$\Delta_{2}=(k+3) \Theta(\infty, f)+(k+2) \Theta(\infty, g)+\Theta(0, f)+\Theta(0, g)+2 \delta_{k+1}(0, f)+\delta_{k+1}(0, g)>2 k+9$
then either $f^{(k)} g^{(k)} \equiv 1$ or $f \equiv g$.

Proof of Theorem 2.1: Let $F=f^{n}\left(f^{2}-1\right)$ and $G=g^{n}\left(g^{2}-1\right)$
and let
$\Delta_{1}=3 \Theta(\infty, F)+2 \Theta(\infty, G)+\Theta(0, F)+\Theta(0, G)+\delta_{2}(0, F)+\delta_{2}(0, G)$
and
$\Delta_{2}=3 \Theta(\infty, F)+2 \Theta(\infty, F)+\Theta(0, G)+\Theta(0, F)+\delta_{2}(0, G)+\delta_{2}(0, F)$

Now,

$$
\begin{aligned}
\Theta(0, F) & =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{F}\right)}{T(r, F)} \\
& =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{2}-1}\right)}{(n+2) T(r, f)} \\
& =1-\lim _{r \rightarrow \infty} \sup \frac{3 T(r, f)}{(n+2) T(r, f)} \\
& =\frac{n-1}{n+2}
\end{aligned}
$$

and

$$
\begin{aligned}
\Theta(\infty, F) & =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, F)}{T(r, F)} \\
& =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, f)}{(n+2) T(r, f)} \\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{T(r, f)}{(n+2) T(r, f)} \\
& =\frac{n-1}{n+2}
\end{aligned}
$$

Similarly, $\Theta(0, G) \geq \frac{n+1}{n+2}$ and $\Theta(\infty, G) \geq \frac{n+1}{n+2}$
Now,
$\delta_{2}(0, F)=1-\limsup _{r \rightarrow \infty} \frac{N_{2}\left(r, \frac{1}{F}\right)}{T(r, F)}$

$$
\begin{aligned}
& =1-\limsup _{r \rightarrow \infty} \frac{N_{2}\left(r, \frac{1}{f^{n}\left(f^{2}-1\right)}\right)}{T(r, F)} \\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{2 \bar{N}\left(r, \frac{1}{f}\right)+N\left(r,\left(r, \frac{1}{f^{2}-1}\right)\right.}{(n+2) T(r, f)} \\
& \geq 1-\frac{4 T(r, f)}{(n+2) T(r, f)} \\
& =\frac{n-2}{n+2}
\end{aligned}
$$

Similarly, $\delta_{2}(0, G) \geq \frac{n-3}{n+2}$.
Therefore,

$$
\begin{aligned}
\Delta_{1} & \geq 5 \frac{n+1}{n+2}+2 \frac{n-1}{n-2}+2 \frac{n-2}{n+2} \\
& =\frac{9 n-1}{n+2} \\
& =9-\frac{19}{n+2} \\
& >8 \text { if } n>17
\end{aligned}
$$

Similarly, $\Delta_{2}>8$ ifn >17
Now since f and g are transcendental meromorphic functions, so F and G are transcendental meromorphic functions.
From the conditions that $F^{\prime}-P$ and $G^{\prime}-P$ share $0 C M$ together with $\Delta_{1}>8$ and $\Delta_{2}>8$ and the lemma(2.5), we get either $F^{\prime} G^{\prime}=P^{2}$ or $F=G$. We discuss the following two cases :

Case I: Suppose $F^{\prime} G^{\prime}=P^{2}$.
i.e., $\left[f^{n}\left(f^{2}-1\right)\right]^{\prime}\left[g^{n}\left(g^{2}-1\right)\right]^{\prime}=P^{2}$
i.e., $f^{n-1}\left(f^{2}-\frac{n}{n+2}\right) f^{\prime} g^{n-1}\left(g^{2}-\frac{n}{n+2}\right) g^{\prime}=\frac{p^{2}}{(n+2)^{3}}$

Let $z_{0} \notin\{z: P(z)=0\}$ be a point such that $f^{2}\left(z_{0}\right)=\frac{n}{n+2}$, with multiplicity p . Then z_{0} is a pole of g with multiplicity q (say).

Therefore, $p+p-1=n q-q+2 q+q+1$
i.e., $2 p-1=(n+2) q+1 \geq(n+3)$
i.e., $p \geq \frac{n+4}{2}$

Again let $z_{1} \notin\{z: P(z)=0\}$ be a zero of f with multiplicity r then z_{1} be a pole of g with multiplicity s(say).

Therefore, $n r-r+r-1=n s-s+2 s+s+1$
i.e., $2 s=n(r-s)-2 \geq(n-2)$

So, $s \geq \frac{n-2}{2}$.
So, $n r=(n+2) s+2 \geq \frac{(n+2)(n-2)}{2}+2=\frac{n^{2}-4+4}{2}$
Therefore, $r \geq \frac{n}{2}$
Now, any pole of g must be either a zero of f or points for which $f^{2}-\frac{n}{n+2}=0$ or a zero of f^{\prime} (consider those zeros for which f is not zero or $\pm \sqrt{\frac{n}{n+2}}$).
So,

$$
\begin{aligned}
\bar{N}(r, g) & \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-\sqrt{\frac{n}{n+2}}}\right)+\bar{N}\left(r, \frac{1}{f+\sqrt{\frac{n}{n+2}}}\right)+\bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right) \\
& \leq \frac{2}{n} N\left(r, \frac{1}{f}\right)+\frac{2}{n+4} N\left(r, \frac{1}{f-\sqrt{\frac{n}{n+2}}}+\frac{2}{n+4} N\left(r, \frac{1}{f+\sqrt{\frac{n}{n+2}}}\right)+\bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)\right. \\
& \leq\left(\frac{2}{n}+\frac{4}{n+4}\right) T(r, f)+\bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)
\end{aligned}
$$

where $\bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)$ refers to those zeros of f^{\prime} which occur at points other than roots of the equation $f\left(f^{2}-\frac{n}{n+2}\right)=0$
Now, from the second fundamental theorem, we have
$2 T(r, g) \leq \bar{N}\left(r, \frac{1}{g}\right)+\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g-\sqrt{\frac{n}{n+2}}}\right)+\bar{N}\left(r, \frac{1}{g+\sqrt{\frac{n}{n+2}}}-\bar{N}_{0}\left(r, \frac{1}{g^{\prime}}\right)+S(r, g)\right.$
i.e. $2 T(r, g) \leq \frac{2}{n} N\left(r, \frac{1}{g}\right)+\left(\frac{2}{n}+\frac{4}{n+4}\right) T(r, f)+\left(\frac{2}{n+4}\right) N\left(r, \frac{1}{g-\sqrt{\frac{n}{n+2}}}\right)+\left(\frac{2}{n+4}\right)$
$N\left(r, \frac{1}{g+\sqrt{\frac{n}{n+2}}}\right)+\overline{N_{0}}\left(r, \frac{1}{f^{\prime}}\right)-\overline{N_{0}}\left(r, \frac{1}{g^{\prime}}\right)+S(r, g)$
So, $\left(2-\frac{2}{n}-\frac{4}{n+4}\right) T(r, g) \leq\left(\frac{2}{n}+\frac{4}{n+4}\right) T(r, f)+\bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)-\bar{N}_{0}\left(r, \frac{1}{g^{\prime}}\right)+S(r, g)$

Similarly we get
$\left(2-\frac{2}{n}-\frac{4}{n+4}\right) T(r, f) \leq\left(\frac{2}{n}+\frac{4}{n+4}\right) T(r, g)+\bar{N}_{0}\left(r, \frac{1}{g^{\prime}}\right)-\bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)$
Adding these two, we get
$\left(2-\frac{4}{n}-\frac{8}{n+4}\right)\{T(r, f)+T(r, g)\} \leq S(r, f)+S(r, g)$
Which is a contradiction for given n.

Case II : Suppose F $=$ G.
i.e., $f^{n}\left(f^{2}-1\right)=g^{n}\left(g^{2}-1\right)$

Let $h=\frac{g}{f}$
If possible, suppose that h is a non constant. From equation (1) we have,
$f^{2}=\frac{h^{n}-1}{h^{n+2}-1}$
Now we assume that $h^{n} \neq 1$ for otherwise we have trivial solution. So we must assume that n is not divisible by 2 . By simple calculation it can be shown that the number of common zeros of $h^{n}-1$ and $h^{n+2}-1$ is at most 2 and hence $h^{n+2}-1$ has at least n zeros which are not the zeros of $h^{n}-1$. We denote these n zeros by $\mathrm{a}_{\mathrm{p}}, \mathrm{p}=1,2, \ldots \ldots$.n.. Now f^{2} can not have any simple pole and hence we conclude that $\mathrm{h}-\mathrm{a}_{\mathrm{p}}=0$ has no simple root for $\mathrm{p}=1,2, \ldots \ldots \mathrm{n}$. Hence $\Theta\left(a_{p} ; h\right) \geq \frac{1}{2}$ for $\mathrm{p}=1,2, \ldots \ldots, \mathrm{n}$ which is not possible for given n . This means that our assumption that h is non constant, is wrong. Therefore h is constant. Now if $h \neq 1$, this means f will become a constant, which is clearly not the case. So $h=1$ and hence $\mathrm{f}=\mathrm{g}$. This completes the proof.

Proof of Theorem 2.2: Let $F=f^{n}\left(f^{m}-1\right)$ and $G=g^{n}\left(g^{m}-1\right)$ and let
$\Delta_{1}=3 \Theta(\infty, F)+2 \Theta(\infty, G)+\Theta(0, F)+\Theta(0, G)+\delta_{2}(0, F)+\delta_{2}(0, G)$
and
$\Delta_{2}=3 \Theta(\infty, G)+2 \Theta(\infty, F)+\Theta(0, G)+\Theta(0, F)+\delta_{2}(0, F)+\delta_{2}(0, G)+\delta_{2}(0, F)$
Now,

$$
\begin{aligned}
\Theta(0, F) & =1-\underset{r \rightarrow \infty}{\lim \sup } \frac{\bar{N}\left(r, \frac{1}{F}\right)}{T(r, F)} \\
& =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{m}-1}\right)}{(n+m) T(r, f)} \\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{(m+1) T(r, f)}{(n+m) T(r, f)} \\
& =\frac{n-1}{n+m}
\end{aligned}
$$

and,

$$
\begin{aligned}
\Theta(\infty, F) & =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, F)}{T(r, F)} \\
& =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, F)}{(n+m) T(r, f)} \\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{T(r, f)}{(n+m) T(r, f)} \\
& =1-\frac{1}{n+m} \\
& =\frac{n+m-1}{n+m}
\end{aligned}
$$

and

$$
\begin{aligned}
\delta_{2}(0, F) & =1-\limsup _{r \rightarrow \infty} \frac{N_{2}\left(r, \frac{1}{F}\right)}{T(r, F)} \\
& =1-\limsup _{r \rightarrow \infty} \frac{N_{2}\left(r, \frac{1}{f^{n}\left(f^{m}-1\right.}\right)}{T(r, F)} \\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{2 \bar{N}\left(r+\frac{1}{f}\right)+N\left(r, \frac{1}{f^{m}-1}\right)}{(n+m) T(r, f)} \\
& \geq 1-\frac{(m+2) t(r, f)}{(n+m) T(r, f)} \\
& =\frac{n-2}{n+m}
\end{aligned}
$$

Applying similar logic, we have
$\Theta(0, G)=\frac{n-1}{n+m}$
$\Theta(\infty, G)=\frac{n+m-1}{n+m}$
and $\Theta(0, G)=\frac{n-2}{n+m}$
Now putting these values in (2), we get

$$
\begin{align*}
\Delta_{1} & \geq 5 \frac{n+m-1}{n+m}+2 \frac{n-1}{n+m}+2 \frac{n-2}{n+m} \\
& =\frac{9 n+5 m-11}{n+m} \\
& >8 \text { if } n>3 m+11 \tag{4}
\end{align*}
$$

Similarly we get from (3)
$\Delta_{2}>8$ if $n>3 m+11$

Now since f and g are transcendental meromorphic functions, so F and G are transcendental meromorphic functions.
From the condition that $F^{\prime}-P$ and $F^{\prime}-G$ share 0 CM , together with the inequality (4) and (5) and the lemma (2.5), we get either $F^{\prime} G^{\prime}=P^{2}$ or $\mathrm{F}=\mathrm{G}$. We discuss the following two cases :
Case I: Suppose that $F^{\prime} G^{\prime}=P^{2}$
i.e., $\left[f^{n}\left(f^{m}-1\right)\right]^{\prime}\left[g^{n}\left(g^{m}-1\right]^{\prime}=P^{2}\right.$

Now, $\left[f^{n}\left(f^{m}-1\right)\right]^{\prime}=(n+m) f^{n-1}\left(f^{m}-\frac{n}{n+m}\right) f^{\prime}$
and $\left[g^{n}\left(g^{m}-1\right)\right]^{\prime}=(n+m) g^{n-1}\left(g^{m}-\frac{n}{n+m}\right) g^{\prime}$
Putting these two values in equation (6), we get
$f^{n-1}\left(f^{m}-\frac{n}{n+m}\right) f^{\prime} \cdot g^{n-1}\left(g^{m}-\frac{n}{n+m}\right) g^{\prime}=\frac{P^{2}}{(n+m)^{2}}$
Let $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \ldots, z_{m} \notin\{z: P(z)=0\}$ be points such that $f^{m}\left(z_{i}\right)=\frac{n}{n+m}$ for $\mathrm{i}=1,2, \ldots \mathrm{~m}$ and also let the multiplicity of z_{1} is p . Then z_{1} is a pole of g of multiplicity q (say).

Therefore,

$$
\begin{aligned}
p+p-1 & =n p-q+m q+q+1 \\
2 p & =(n+m) q+2 \geq(n+m)+2 \\
p & \geq \frac{n+m+2}{2}
\end{aligned}
$$

Hence, $\Theta\left(z_{1}, f\right) \geq 1-\frac{2}{n+m+2}$
Similarly,
$\Theta\left(z_{2}, f\right) \geq 1-\frac{2}{n+m+2}$
", , ,, , , ,, , ,
",",",",",",
", ,»,",",»,

And $\Theta\left(z_{m}, f\right) \geq 1-\frac{2}{n+m+2}$
Adding we get, $\Theta\left(z_{1}, f\right)+\ldots \ldots .+\Theta\left(z_{m}, f\right) \geq m-\frac{2 m}{n+m+5}>2$
if $\mathrm{n}>3 \mathrm{~m}+11$ and $\mathrm{m}>2$ where n and m are both integers, which is impossible.
So, $F^{\prime} G^{\prime} \neq P^{2}$

Case II: Suppose F = G.
i.e., $\left[f^{n}\left(f^{m}-1\right)=g^{n}\left(g^{m}-1\right)\right.$

Let $h=\frac{g}{f}$ If possible suppose that h is non constant. Then it follows from equation (7) that,
$f^{m}=\frac{h^{n}-1}{h^{n+m}-1}$.

Now we assume that $h^{n} \neq 1$ for otherwise we have trivial solution. So we must assume that n is not divisible by m. By simple calculation it can be shown that the number of common zeros of $h^{n}-1$ and $h^{n+m}-1$ is at most m and hence $h^{n+m}-1$ has at least n zeros which are not the zeros of $h^{n}-1$. We denote these n zeros by $\mathrm{a}_{\mathrm{p}}, \mathrm{p}=1,2, \ldots \ldots$...

Now, f^{m} can not have any simple pole and hence we conclude that $\mathrm{h}-\mathrm{a}_{\mathrm{p}}=0$ has no simple root for $\mathrm{p}=$ $1,2, \ldots \ldots$.n. where $a_{p}=\exp \left(\frac{2 \pi i p}{n+m}\right)$. Hence $\Theta\left(a_{p} ; h\right) \geq \frac{1}{2}$ for $\mathrm{p}=1,2, \ldots ., \mathrm{n}$ which is impossible for given n . Therefore h is a constant. if $h \neq 1$, it follows that f is a constant, which is a absurd. So $\mathrm{h}=1$ and hence $\mathrm{f}=$ g. This proves the theorem.

Remark 2.8: The Theorem (1.4) follows from the Theorem (2.2) as a particular case if we take $m=1$.
Proof of Theorem 2.3: Let $\mathrm{F}(\mathrm{z})=\mathrm{f}^{\mathrm{n}}\left(\mathrm{f}^{\mathrm{m}}-1\right)$ and $\mathrm{G}(\mathrm{z})=\mathrm{g}^{\mathrm{n}}\left(\mathrm{g}^{\mathrm{m}}-1\right)$.
Also let
$\Delta_{1}=2 \Theta(\infty, F)+(k+2) \Theta(\infty, G)+\Theta(0, F)+\Theta(0, G)+\delta_{k+1}(0, F)+\delta_{k+1}(0, G)$

Now,
$\Theta(0, F)=1-\lim _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{F}\right)}{T(r, F)}$

$$
=1-\lim _{r \rightarrow \infty} \sup \frac{\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{m}-1}\right)}{T(r, f)}
$$

$$
\geq 1-\limsup _{r \rightarrow \infty} \frac{(1+m) T(r, f)}{(n+m) T(r, f)}
$$

$$
=\frac{n-1}{n+m}
$$

and,

$$
\begin{aligned}
\Theta(\infty, F) & =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, F)}{T(r, F)} \\
& =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, f)}{T(r, F)} \\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{T(r, f)}{(n+m) T(r, f)} \\
& =\frac{n+m-1}{n+m}
\end{aligned}
$$

Similarly, $\Theta(0, G) \geq \frac{n-1}{n+m}$ and $\Theta(\infty, G) \geq \frac{n+m-1}{n+m}$
And

$$
\begin{aligned}
\delta_{k+1}(0, F) & =1-\limsup _{r \rightarrow \infty} \frac{N_{k+1}\left(r, \frac{1}{F}\right)}{T(r, F)} \\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{(k+1) \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{m}-1}\right)}{(n+m) T(r, f)} \\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{(k+1+m) T(r, f)}{(n+m) T(r, f)} \\
& =\frac{n-k-1}{n+m}
\end{aligned}
$$

Similarly, $\delta_{k+1}(0, G) \geq \frac{n-k-1}{n+m}$
So,

$$
\begin{aligned}
\Delta_{1} & \geq 2 \frac{n+m-1}{n+m}+(k+2) \frac{n+m-1}{n+m}+2 \frac{n-1}{n+m}+2 \frac{n-k-1}{n+m} \\
& =\frac{(k+4)(n+m-1)+2(n-1)+2(n-k-1)}{(n+m)}
\end{aligned}
$$

$$
\begin{aligned}
& =(k+8)-\frac{4 m+3 k+8}{n+m} \\
& >(k+7) \text { if } n+m>4 m+3 k+8 \text { i.e. } n>3 m+3 k+8
\end{aligned}
$$

Now, $F^{(k)}$ and $G^{(k)}$ share (1,2) together with the condition that $\Delta_{1}>k+7$ and the lemma (2.7) that either $F^{(k)} \cdot G^{(k)}=1$ or $F=G$.
Now we discuss the following two cases:
Case I: $\mathrm{F}^{(\mathrm{k})} \cdot \mathrm{G}^{(\mathrm{k})}=1$ that is $\left[\mathrm{f}^{\mathrm{n}}\left(\mathrm{f}^{\mathrm{m}}-1\right)\right]^{(\mathrm{k})} \cdot\left[\mathrm{g}^{\mathrm{n}}\left(\mathrm{g}^{\mathrm{m}}-1\right)\right]^{(\mathrm{k})}=1$
Case II: $\mathrm{F}=\mathrm{G}$ that is $\mathrm{f}^{\mathrm{n}}\left(\mathrm{f}^{\mathrm{m}}-1\right)=\mathrm{g}^{\mathrm{n}}\left(\mathrm{g}^{\mathrm{m}}-1\right)$
Let $h=\frac{g}{f}$. If possible suppose that h is not a constant. We have
$f^{m}=\frac{h^{n}-1}{h^{n+m}-1}$

We assume that $h^{n} \neq 1$ for otherwise we have trivial solution. So we must assume that n is not divisible by 2 . By simple calculation it can be shown that the number of common zeros of $h^{n}-1$ and $h^{n+m}-1$ is at most m and hence $h^{n+m}-1$ has at least n zeros which are not the zeros of $h^{n}-1$. We denote these n zeros by $\mathrm{a}_{\mathrm{p}}, \mathrm{p}=1$, 2 , \qquad n. Since $\mathrm{f}^{\mathrm{m}}(\mathrm{m}>1)$ has no simple pole, it follows that $\mathrm{h}-\mathrm{a}_{\mathrm{p}}=0$ has no simple root for $\mathrm{p}=$ $1,2, \ldots, \mathrm{n}$. Hence $\Theta\left(a_{p} ; h\right) \geq \frac{1}{2}$ for $\mathrm{p}=1,2, \ldots \ldots \ldots$, n . Which is impossible. Therefore h is a constant. If $h_{\neq 1}$, it follows that f is a constant, which is not the case. So $\mathrm{h}=1$ and therefore $\mathrm{f}=\mathrm{g}$.

This proves the theorem.

Remark 2.9: The Theorem (1.5) follows from the Theorem (2.3) as a particular case if we take $m=1$.
Proof of Theorem 2.4: Let $F=f^{n}\left(f^{m}-1\right)$ and $G=g^{n}\left(g^{m}-1\right)$
Also let,
$\Delta_{2}=(k+3) \Theta(\infty, F)+(k+2) \Theta(\infty, G)+\Theta(0, F)+\Theta(0, G)+2 \delta_{k+1}(0, F)+\delta_{k+1}(0, G)$
As in the previous theorem, we have
$\Theta(\infty, F) \geq \frac{n+m+1}{n+m}, \Theta(\infty, G) \geq \frac{n+m-1}{n+m}$
$\Theta(0, F) \geq \frac{n-1}{n+m}, \Theta(0, G) \geq \frac{n-1}{n+m}$
$\delta_{k+1}(0, F) \geq \frac{n-k-1}{n+m}, \delta_{k+1}(0, F) \geq \frac{n-k-1}{n+m}$,

So,

$$
\begin{aligned}
\Delta_{2} & \geq(k+3) \frac{n+m-1}{n+m}+(k+2) \frac{n+m-1}{n+m}+2 \frac{n-1}{n+m}+3 \frac{n-k-1}{n+m} \\
& =\frac{(2 k+5)(n+m-1)+2(n-1)+3(n-k-1)}{n+m}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(2 k+10)(n+m)-5 m-5 k-10}{n+m} \\
& =2 k+10-\frac{5 m+5 k+10}{n+m} \\
& >2 k+9 \text { if } n+m>5 m+5 k+10 \text { i.e., } n>4 m+5 k+10
\end{aligned}
$$

Now, $\mathrm{F}^{(\mathrm{k})}$ and $\mathrm{G}^{(\mathrm{k})}$ share $(1,1)$ together with condition that $\Delta_{2}>2 \mathrm{k}+9$ and the lemma (2.7) that either $\mathrm{F}^{(\mathrm{k})} \mathrm{G}^{(\mathrm{k})}=1$ or $\mathrm{F}=\mathrm{G}$.
The remaining proof is similar to the proof of the Theorem (2.3).

Remark 2.10: The Theorem (1.6) follows from the Theorem (2.4) as a particular case if we take $m=1$.

CONFLICT OF INTEREST : None

References

[1] Hayman W. K., Meromorphic functions, Oxford Mathematical Monographs Clarendon Press,Oxford,1964.
[2] Yang L., Value distribution theory,Springer-verlag,Berlin, 1993.
[3] Alzahary T. C et.al. Yi H.X., weighted sharing three values and uniqueness of meromorphic functions, J. Math. AnaI.295(2004) ,no.1,247-257.
[4] Li X-M., et.al. Gao L., Meromorphic functions sharing a nonzero polynomial CM, Bull. Korean Math. Soc.47(2010) ,No.2,319-339.
[5] Fang M. L, et.al. Hong W., A unicity theorem for entire functions concerning differential polynomials, Indian J .Pure Appl.Math.32(2001) ,No.9,1343-1348.
[6] Yang C.C., On deficiencies of differential polynomials II, Math.Z.125(1972),107-112.
[7] Li J-D., Uniqueness of meromorphic functions and differential polynomials, International Journal of mathematics and Mathematical Sciences, Volume 2011, Artical ID514218.

