Path Double Covering Number of a Graph

Gayathri Thiyagarajan¹, Meena Saravanan²

¹Department of Mathematics, Sri Manakula Vinayagar Engineering College, Puducherry-605 107, India, Email: gayathiyagu@gmail.com Department of Mathematics, Government Arts and Science College, Chidambaram-608 102, India. Email: meenasaravanan14@gmail.com

ABSTRACT

A path double cover of a graph *G* is a collection p of paths in *G* such that every edge of *G* belongs to exactly two paths in p. The minimum cardinality of a path double cover is called the path double covering number of *G* and is denoted by $\eta_{PD}(G)$. In this paper we determine the exact value of this parameter for several classes of graphs.

Key words: Graphoidal covers; path double covers; path double covering number of a graph; bicyclic graphs.

INTRODUCTION

A graph is a pair G = (V, E), where V is the set of vertices and E is the set of edges. Here we consider only nontrivial, finite, connected undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For graph theoretic terminology we refer to Harary [7]. The concept of graphoidal cover was introduced by B.D Acharya and E. Sampathkumar [1] and the concept of acyclic graphoidal cover was introduced by Arumugam and Suresh Suseela [4]. The reader may refer [7] and [2] for the terms not defined here.

Let $p = (v_1, v_2, v_3, ..., v_r)$ be a path or a cycle in a graph G = (V, E). Then vertices $(v_2, v_3, ..., v_{r-1})$ are called internal vertices of P and v_1 and v_r are called external vertices of P. Two paths P and Q of a graph G are said to be internally disjoint if no vertex of G is an internal vertex of both P and Q. If $P = (v_0, v_1, v_2, ..., v_r)$ and $Q = (v_r = w_0, w_1, w_2, ..., w_r)$ are two paths in G then the walk obtained by concatenating P and Q at v_r is denoted by $P \circ Q$ and the path $(v_r, v_{r-1}, ..., v_0)$ is denoted by P^{-1} .[3]. Bondy [5] introduced the concept of path double cover of a graph. This was further studied by Hao Li [8]. **Definition 1.1**[3]: A path double cover (PDC) of a graph G is a collection (P) of paths in G such that every edge of G belongs to exactly two paths in (P).

The collection \mathcal{P} may not necessarily consist of distinct paths in *G* and hence it cannot be treated as a set in the standard sense. For any graph G = (V, E), let \mathcal{P} denote the collection of all paths of length one each path appearing twice in the collection. Clearly \mathcal{P} is a path double of *G* and hence the set of all path double covers of G is non-empty.

Arumugam and Meena [3] introduced the concept of path double covering number of a graph G.

Definition 1.2[3]: The minimum cardinality of a path double cover of a graph G is called path double covering number of G and is denoted by $\eta_{PD}(G)$

In [9] it has been observed that for any graph $G \eta_{PD}(G) \le 2q$ and equality holds if and only if G is isomorphic to qK_2 and the following results have been proved.

Theorem1.3[3]: Let \mathcal{P} be any path double cover of a graph G. Then |P| = 2q - ip where $ip = \sum_{p \in P} i(p)$ where i(p) is the number of internal vertices of \mathcal{P} .

Theorem1.4[3]: $\eta_{PD} = 2q - i$ where i = maxiP the maximum being taken over all path double covers P of G

Theorem 1.5 [3]: Let *G* be a graph with $\delta = 1$, if there exists a path double cover p such that every non pendant vertex of *G* is an internal vertex of d(v) paths in p then p is minimum path double cover and $\eta_{PD} = |P|$

Theorem 1.6 [3]: For any tree T, $\eta_{PD}(T) = n$ where n is the number of pendent vertices of T.

Theorem 1.7 [3]: For any graph G, $\eta_{PD}(T) \ge \Delta$. Further for any tree T, $\eta_{PD}(T) = \Delta$ if and only if T is homeomorphic to a star.

Definition 1.8 [6]: A triangular cactus is a connected graph all of whose blocks are triangles. A triangular snake is a triangular cactus whose block-cutpoint-graph is a path (a triangular snake is obtained from a path $v_1, v_2, ..., v_n$ by joining v_i and v_{i+1} to a new vertex w_i for i = 1, 2, ..., n-1).

Definition 1.9 [6]: A double triangular snake consists of two triangular snakes that have a common path. That is a double triangular snake is obtained from a path $v_1, v_2, ..., v_n$ by joining v_i and v_{i+1} to a new vertex w_i for i = 1, 2, ..., n-1 and to a new vertex u_i for i = 1, 2, ..., n-1.

Definition 1.20 [6]: The book B_m is the graph $S_m \times P_2$ where S_m is the star with m + 1 vertex

Definition 1.21 [6]: A gear graph denoted G_n is a graph obtained by inserting an extra vertex between each pair of adjacent vertices on the perimeter of a wheel graph W_n . Thus, G_n has 2n+1 vertices and 3n edges. Gear graphs are examples of square graphs, and play a key role in the forbidden graph characterization of square graphs. Gear graphs are also known as cogwheels and bipartite wheels.

Definition 1.22 [6]: A helm graph, denoted Hn is a graph obtained by attaching a single edge and node to each node of the outer circuit of a wheel graph Wn.

Definition 1.23 [6]: A graph G is called the flower graph with n petals if it has 3n+1 vertices which form an n- cycle.

Definition [6]: A shell Sn is the graph obtained by taking n-3 concurrent chords in a cycle Cn on n vertices. The vertex at which all the chords are concurrent is called the apex vertex. The shell is also called fan Fn-1.

i.e.. $S_n = F_n - 1 = P_n - 1 + K_1$.

Definition 1.24 [6]: The cartesian product of two paths is known as grid graph which is denoted by $P_m \times P_n$. In particular the graph $L_n = P_n \times P_2$ is known as ladder graph.

Definition 1.25 [6]: A web graph is the graph obtained by joining the pendant vertices of a helm to form a cycle and then adding a single pendant edge to each vertex of this outer cycle.

Theorem 2.1: Let G be a triangular snake graph, then $\eta_{PD}(G) = 4$ **Proof:** Let $V(G) = \{v_1, v_2, v_3, \dots, v_n, w_1, w_2, \dots, w_{n-1}\}$, n is odd. The path double covering of G is as follows. $P_1 = \{v_1, v_2, v_3, \dots, v_n\}$ $P_2 = \{v_1, w_1, v_2, w_2, \dots, v_{n-1}, w_{n-1}, v_n\}$ $P = 2P_1 \cup 2P_2$ is a path double cover of G. $\eta_{PD}(G) \le 4 = \Delta$ Since $\eta_{PD}(G) \ge \Delta = 4$ $\eta_{PD}(G) = \Delta = 4$ is a minimum path double covering number of G. **Theorem 2.2:** Let G be a triangular cactus graph, then $\eta_{PD}(G) = 2n$, where n is the number of triangles in the graph.

Proof: Let $V(G) = \{v_0, v_{11}, v_{12}, v_{21}, v_{22}, \dots, v_{n1}, v_{n2}\}$ **Case1:** n is even and n > 4The path double covering of G is as follows. $P_i = \{v_{i1}, v_{i2}, v_0, v_{i+12}, v_{i+11}\}, i = 1, 3, 5, ..., n-1$ $P_{i} = \left\{ v_{i+12}, v_{i+11}, v_{0}, v_{i1}, v_{i2} \right\} \quad j = 1, 3, 5, 7, \dots, n-1$ $P_{k} = \{v_{k1}, v_{0}, v_{k2}\}, k = 1 \text{ to } n$ $P = \{P_i\} \cup \{P_i\} \cup \{P_k\}$ is a path double cover of G. $|P| = \frac{n}{2} + \frac{n}{2} + n = 2n$ $\eta_{PD}(G) \le 2n = \Delta$ Since $\eta_{PD}(G) \ge \Delta = 2n$ $\eta_{PD}(G) = \Delta = 2n$ is a minimum path double covering number of G. **Case 2:** n is odd and n > 5The path double covering of G is as follows. $P_1 = \{v_{11}, v_{12}, v_0, v_{n1}, v_{n2}\}$ $P_2 = \{v_{21}, v_{22}, v_0, v_{n2}, v_{n1}\}$ $P_{3} = \{v_{12}, v_{11}, v_{0}, v_{21}, v_{22}\}$ $P_i = \{v_{i1}, v_{i2}, v_0, v_{i+1,2}, v_{i+1}, 1\}, i = 3, 5, 7, \dots, n-2$ $P_{i} = \{v_{i+1,2}, v_{i+1,1}, v_{0}, v_{i1}, v_{i2}\}, j = 3, 5, 7, \dots, n-2$ $P_{k} = \{v_{k1}, v_{0}, v_{k2}\}, k = 1, 2, ..., n$ $P = \{P_1, P_2, P_3, P_i, P_i, P_k\}$ is a path double cover of G. $|P| = 3 + \frac{n-1}{2} - 1 + \frac{n-1}{2} - 1 + n = 2n$ $\eta_{PD}(G) \le 2n = \Delta$ Since $\eta_{PD}(G) \ge \Delta = 2n$ $\eta_{PD}(G) = \Delta = 2n$ is a minimum path double covering number of G.

Theorem 2.3: Let G be a flower graph with n petals then $\eta_{PD}(G) = 2n$

Proof: Let $V(G) = \{v_0, v_{11}, v_{12}, v_{21}, v_{22}, ..., v_{n1}, v_{n2}\}$ Case1: n is even. The path double covering of G is as follows. $P_i = \{v_{i1}, v_{i2}, v_{i3}, v_0, v_{i+13}, v_{i+12}, v_{i+11}\}i = 1,3,5,...,n-1$ $P_j = \{v_{i+13}, v_{i+12}, v_{i+11}, v_0, v_{i1}, v_{i2}, v_{i3}\}i = 1,3,5,...,n-1$ $P_k = \{v_{i1}, v_0, v_{i3}\}, i = 1 \text{ to } n$ $P = \{P_i, P_j, P_k\}$ is a path double cover of G. |P| = n - 1 + n - 1 + n = 2n

 $\eta_{PD}(G) = 2n = \Delta$ is a minimum path double covering of G.

Case 2: n is odd.

The path double covering of G is as follows.

$$\begin{split} P_{1} &= \left\{ v_{11}, v_{12}, v_{13}, v_{0}, v_{23}, v_{22}, v_{21} \right\} \\ P_{2} &= \left\{ v_{n3}, v_{n2}, v_{n1}, v_{0}, v_{21}, v_{22}, v_{23} \right\} \\ P_{3} &= \left\{ v_{13}, v_{12}, v_{11}, v_{n3}, v_{n2}, v_{n1} \right\} \\ P_{i} &= \left\{ v_{i1}, v_{i2}, v_{i3}, v_{0}, v_{i+3}, v_{i+2}, v_{i+1} \right\}, i = 3, 5, \dots, n-2 \\ P_{j} &= \left\{ v_{i+13} v_{i+12}, v_{i+11}, v_{0}, v_{i1}, v_{i2}, v_{i3} \right\}, i = 3, 5, \dots, n-2 \\ P_{k} &= \left\{ v_{i1}, v_{0}, v_{i3} \right\}, i = 1 \text{ to } n \\ P &= \left\{ P_{1}, P_{2}, P_{3}, P_{i}, P_{j}, P_{k} \right\} \text{ is a path double cover of G } . \\ |P| &= 3 + \frac{n-1}{2} - 1 + \frac{n-1}{2} - 1 + n = 2n \\ \eta_{PD}(G) &= 2n = \Delta \text{ is a minimum path double covering of G.} \end{split}$$

Theorem 2.4: Let G be a $P_m(QS_n)$ graph. The path double covering of G is $\eta_{PD}(G) = 4n-2$

Proof: Let $V(G) = \{v_1, ..., v_m, l_{i_1} ... l_{i_n}, r_{i_1} ..., r_{i_n}, w_{i_1} ..., w_{i_n}\}$ i = 1 to n

Case1: n is even.

The path double covering of G is as follows.

 $P_{i} = \left\{ w_{in}, r_{in}, w_{in-1}, r_{in-1}, \dots, w_{i1}, l_{i1}, v_{i}, v_{i+1}, l_{i+11}, w_{i+11}, l_{i+12}, w_{i+12}, \dots, l_{i+1n}, w_{i+1n} \right\} i = 1 \text{ to } n-1$ $Q_{i} = \left\{ w_{in}, r_{in}, w_{in-1}, r_{in-1}, \dots, w_{i1}, r_{i1}, v_{i}, v_{i+1}, r_{i+1,1}, w_{i+1,1}, r_{i+1,2}, w_{i+1,2}, \dots, r_{i+1,n}, w_{i+1,n} \right\} i = 1 \text{ to } n-1$ $R_{i} = \left\{ v_{i}, l_{i1}, w_{i1}, l_{i2}, w_{i2}, \dots, l_{in}, w_{in} \right\} i = 1, 2, \dots, n$ $S_{i} = \left\{ v_{i}, r_{i1}, w_{i1}, r_{i2}, w_{i2}, \dots, r_{in}, w_{in} \right\} i = 1, 2, \dots, n$ $\therefore \eta_{PD} (G) = n-1+n-1+2n = 4n-2$

Case 2: n is odd.

The path double covering of G is as follows.

 $P_{i} = \left\{ w_{in}, r_{in}, w_{in-1}, r_{in-1}, \dots, w_{i1}, l_{i1}, v_{i}, v_{i+1}, l_{i+11}, w_{i+11}, l_{i+12}, w_{i+12}, \dots, l_{i+1n}, w_{i+1n} \right\} i = 1 \text{ to } n-2$ $Q_{i} = \left\{ w_{in}, r_{in}, w_{in-1}, r_{in-1}, \dots, w_{i1}, r_{i1}, v_{i}, v_{i+1}, r_{i+1,1}, w_{i+1,1}, r_{i+1,2}, w_{i+1,2}, \dots, r_{i+1,n}, w_{i+1,n} \right\} i = 1 \text{ to } n-2$ $R_{i} = \left\{ v_{i}, l_{i1}, w_{i1}, l_{i2}, w_{i2}, \dots, l_{in}, w_{in} \right\} i = 1, 2, \dots, n$ $S_{i} = \left\{ v_{i}, r_{i1}, w_{i1}, r_{i2}, w_{i2}, \dots, r_{in}, w_{in} \right\} i = 1, 2, \dots, n$ $P_{n-1} = \left\{ w_{nn}, l_{nn}, \dots, w_{n1}, l_{n1}, v_{n}, v_{n-1} \right\}$ $Q_{n-1} = \left\{ w_{nn}, r_{nn}, \dots, w_{n1}, r_{n1}, v_{n}, v_{n-1} \right\}$ $\therefore \eta_{PD} \left(G \right) = n - 1 + n - 1 + 2n = 4n - 2$

Theorem 2.5: Let G be a $C_m(QS_n)$ graph. The path double covering of G is $\eta_{PD}(G) = 4n$

Proof: Let
$$V(G) = \{v_1, ..., v_m, l_{i1} ... l_{in}, r_{i1} ... r_{in}, w_{i1} ..., w_{in}\}$$
 $i = 1 \text{ to } n$

Case1: n is even. The path double covering of G is as follows. $P_{i} = \left\{ w_{in}, r_{in}, w_{in-1}, r_{in-1}, \dots, w_{i1}, l_{i1}, v_{i}, v_{i+1}, l_{i+11}, w_{i+11}, l_{i+12}, w_{i+12}, \dots, l_{i+1n}, w_{i+1n} \right\} i = 1 \text{ to } n-1$ $Q_{i} = \left\{ w_{in}, r_{in}, w_{in-1}, r_{in-1}, \dots, w_{i1}, r_{i1}, v_{i}, v_{i+1}, r_{i+1,1}, w_{i+1,1}, r_{i+1,2}, w_{i+1,2}, \dots, r_{i+1,n}, w_{i+1,n} \right\} i = 1 \text{ to } n-1$ $R_{i} = \left\{ v_{i}, l_{i1}, w_{i1}, l_{i2}, w_{i2}, \dots, l_{in}, w_{in} \right\} i = 1, 2, \dots, n$ $S_{i} = \left\{ v_{i}, r_{i1}, w_{i1}, r_{i2}, w_{i2}, \dots, r_{in}, w_{in} \right\} i = 1, 2, \dots, n$ $P_{n} = \left(v_{1}, v_{n} \right)$ $\psi = \left\{ P_{i}, Q_{i}, R_{i}, S_{i}, 2P_{n} \right\}$ $\therefore \eta_{PD} \left(G \right) = n - 1 + n - 1 + 2n + 2 = 4n$

Case 2: n is odd.

The path double covering of G is as follows.

$$P_{i} = \left\{ w_{in}, r_{in}, w_{in-1}, r_{in-1}, \dots, w_{i1}, l_{i1}, v_{i}, v_{i+1}, l_{i+11}, w_{i+11}, l_{i+12}, w_{i+12}, \dots, l_{i+1n}, w_{i+1n} \right\} i = 1 \text{ to } n-2$$

$$Q_{i} = \left\{ w_{in}, r_{in}, w_{in-1}, r_{in-1}, \dots, w_{i1}, r_{i1}, v_{i}, v_{i+1}, r_{i+1,1}, w_{i+1,1}, r_{i+1,2}, w_{i+1,2}, \dots, r_{i+1,n}, w_{i+1,n} \right\} i = 1 \text{ to } n-2$$

$$R_{i} = \left\{ v_{i}, l_{i1}, w_{i1}, l_{i2}, w_{i2}, \dots, l_{in}, w_{in} \right\} i = 1, 2, \dots, n$$

$$S_{i} = \left\{ v_{i}, r_{i1}, w_{i1}, r_{i2}, w_{i2}, \dots, r_{in}, w_{in} \right\} i = 1, 2, \dots, n$$

$$P_{n-1} = \left\{ w_{nn}, l_{nn}, \dots, w_{n1}, l_{n1}, v_{n}, v_{n-1} \right\}$$

$$Q_{n-1} = \left\{ w_{nn}, r_{nn}, \dots, w_{n1}, r_{n1}, v_{n}, v_{n-1} \right\}$$

$$P_{n} = \left(v_{1}, v_{n} \right)$$

$$\psi = \left\{ P_{i}, Q_{i}, R_{i}, S_{i}, 2P_{n} \right\}$$

$$\therefore \eta_{PD} \left(G \right) = n - 1 + n - 1 + 2n + 2 = 4n$$

Theorem 2.6: Let G be a Ladder graph. The path double covering of G is $\eta_{PD}(G) = 3$

Proof: Let $V(G) = \{u_1, u_2, u_3, ..., u_n, l_1, l_2, ..., l_n\}$ The path double covering of G is as follows. $P_1 = \begin{cases} l_1, u_1, u_2, l_2, l_3, u_3, u_4, ..., l_{i-1}, l_i, u_i, u_{i+1}, ..., u_n, l_n, \text{if n is even} \\ l_1, u_1, u_2, l_2, l_3, u_3, u_4, ..., l_{i-1}, l_i, u_i, u_{i+1}, ..., l_n, u_n, \text{if n is odd} \end{cases}$

 $P_{2} = \begin{cases} l_{1}, l_{2}, u_{2}, u_{3}, l_{3}, l_{4}, u_{4}, \dots, l_{n-1}, l_{n}, u_{n}, \text{ if n is even} \\ l_{1}, u_{1}, u_{2}, l_{2}, l_{3}, u_{3}, u_{4}, \dots, u_{n-1}, u_{n}, l_{n}, \text{ if n is odd} \end{cases}$

$$P_3 = \{u_n, u_{n-1}, u_{n-2}, \dots, u_2, u_1, l_1, l_2, \dots, l_{n-1}, l_n\}$$

 $\eta_{PD}(G) = \Delta = 3$ is a minimum path double covering of G.

Theorem 2.7: Let G be a fan graph with n vertices. The path double covering of G is $\eta_{PD}(G) = n$ **Proof:** Let $V(G) = \{x_1, x_2, ..., x_n\}$ The path double covering of G is as follows. $P_1 = \{x_1, x_2, ..., x_n\}$

$$P_{1} = \{x_{n}x_{1}x_{2}x_{3}...x_{n-1}\}$$

$$P_{2} = \{x_{n}x_{1}x_{2}x_{3}...x_{n-1}\}$$

$$P_{3} = \{x_{n-1}x_{n}x_{1}\}$$
Let $C = C$ (P, P, P) is a tree with $p, 2$ pendent vertices

Let $G_1 = G - \{P_1, P_2, P_3\}$ is a tree with n-3 pendant vertices.

 $\eta_{PD}(G_1) = n - 3$ $\eta_{PD}(G) = n - 3 + 3 = n$

 $\eta_{PD}(G) = \Delta = n$ is a minimum path covering of G.

Theorem 2.8: Let G be a mobius graph. The path double covering of G is $\eta_{PD}(G) = 4$

Proof: Let $V(G) = \{v_1, v_2, \dots, v_n, w_1, w_2, \dots, w_n\}$ The path double covering of G is as follows.

$$\begin{split} P_1 &= \left\{ v_1, v_2, \dots, v_{n-1}, v_n, w_n, w_{n-1}, \dots, w_2, w_1 \right\} \\ P_2 &= \left\{ v_n, w_1, v_1, v_2, w_2, w_3, v_3, v_4, \dots, v_{n-1}, w_{n-1}, w_n \right\} \\ P_3 &= \left\{ v_1, w_1, w_2, v_2, v_3, \dots, w_{n-1}, w_n \right\} \\ P_4 &= \left\{ w_1, v_n, w_n, v_1 \right\} \\ P &= \left\{ P_1, P_2, P_3, P_4 \right\} \text{ is a minimum path covering of G} \\ \eta_{PD} \left(G \right) &= 4 = \Delta \quad \text{is a minimum path covering of G}. \end{split}$$

Theorem 2.9: Let G be a shell graph with n vertices. The path double covering of G is $\eta_{PD}(G) = n$

Proof: Let
$$V(G) = \{v_1, v_2, \dots, v_n\}$$

The path double covering of G is as follows.
 $P_1 = \{v_1, v_2, \dots, v_{n-1}, v_n\}$
 $P_2 = \{v_1, v_n, v_{n-1}, \dots, v_3, v_2\}$
 $P_3 = \{v_2, v_1, v_3\}$
 $P_4 = \{v_n, v_1, v_{n-1}\}$
 $P_5 = \{v_3, v_1, v_{n-1}\}$
 $G_1 = G - \{P_1, P_2, P_3, P_4, P_5\}$ is a tree with n-5 pendant vertices.
 $\eta_{PD}(G_1) = n - 5$ (By corollary 1.1)
 $\eta_{PD}(G) = n - 5 + 5 = n \le \Delta$ is a minimum path covering of G.

Since $\eta_{PD}(G) \ge \Delta = n$

$$\therefore \eta_{PD}(G) = \Delta$$

Theorem 2.10: Let G be a gear graph with n vertices. The path double covering of G is $\eta_{PD}(G) = n+1$

Proof: Let
$$V(G) = \{v_0, v_1, v_2, ..., v_n, w_1, w_2, ..., w_n\}$$

The path double covering of G is as follows.

$$P_{1} = \{v_{0}, v_{1}, t_{1}, v_{2}, t_{2}, v_{3}, t_{3}, \dots, v_{n}, t_{n}\}$$

$$P_{2} = \{v_{0}, v_{n}, t_{n}, v_{1}, t_{1}, v_{2}, t_{2}, \dots, v_{n-1}, t_{n-1}\}$$

$$P_{3} = \{t_{n-1}, v_{n}, v_{0}, v_{1}, t_{n}\}$$

$$G_{1} = G - \{P_{1}, P_{2}, P_{3}\} \text{ is a tree with n-2 pendant vertices.}$$

 $\eta_{PD}(G_1) = n - 2$ (By corollary 1.1)

 $\eta_{PD}(G) = n - 2 + 3 = n + 1$ is a minimum path covering of G.

Theorem 2.11: Let G be a web graph with n vertices. Then $\eta_{PD}(G) = n+1$

Proof: Let $V(G) = \{v_0, v_1, v_2, ..., v_n, w_1, w_2, ..., w_n\}$ Her $w_1, w_2, ..., w_n$ are pendant vertices. v_i is adjacent to v_0 and w_i The path double covering of G is as follows. $P_1 = \{w_1, v_1, v_0, v_2, v_3, ..., v_n, w_n\}$ $P_2 = \{v_0, v_n, v_1, v_2, ..., v_{n-1}, w_{n-1}\}$ $P_3 = \{v_0, v_{n-1}, v_n, v_1, v_2, w_2\}$ $P_4 = \{w_{n-1}, v_{n-1}, v_0, v_n, w_n\}$ $P_5 = \{w_2, v_2, v_0, v_1, w_1\}$ $G_1 = G - \{P_1, P_2, P_3, P_4, P_5\}$ is a tree with n-4 pendant vertices. $\eta_{PD}(G) = n - 4$ (By corollary 1.1) $\eta_{PD}(G) = n - 4 + 5 = n + 1$ is a minimum path covering of G.

Theorem 2.12: Let G be a double triangular snake graph, then $\eta_{PD}(G) = 6 = \Delta$

Proof: Let $V(G) = \{v_1, v_2, v_3, ..., v_n, w_1, w_2, ..., w_n, u_1, u_2, ..., u_n\}$ n is odd.

The path double covering of G is as follows.

 $P_{1} = \{v_{1}, w_{1}, v_{2}, w_{2}, v_{3}, w_{3}, \dots, v_{n-1}, w_{n-1}, v_{n}\}$ $P_{2} = \{v_{1}, u_{1}, v_{2}, u_{2}, v_{3}, u_{3}, \dots, v_{n-1}, u_{n-1}, v_{n}\}$ $P_{3} = \{v_{1}, w_{1}, v_{2}, v_{3}, w_{3}, v_{4}, v_{5}, w_{5}, \dots, w_{n-2}, v_{n-1}, v_{n}\}$ $P_{4} = \{v_{1}, u_{1}, v_{2}, v_{3}, u_{3}, v_{4}, v_{5}, u_{5}, \dots, u_{n-2}, v_{n-1}, v_{n}\}$ $P_{5} = \{v_{1}, v_{2}, u_{2}, u_{3}, v_{4}, u_{4}, u_{5}, v_{6}, \dots, v_{n-1}, u_{n-1}, v_{n}\}$ $P_{6} = \{v_{1}, v_{2}, w_{2}, v_{3}, v_{4}, w_{4}, v_{5}, v_{6}, \dots, v_{n-1}, w_{n-1}, v_{n}\}$ $\eta_{PD}(G) = \Delta = 6 \text{ is a minimum path double covering number of G.$

Note: Observe that for the following graphs the path double covering number is $\eta_{PD}(G) = \Delta$

- 1. t-ply
- 2. Multipleshell
- 3. Book graph

REFERENCES

 B.D. Acharya, E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, Indian J.Pure Appl.Math. 1987;18(10): 882-890.

- S.Arumugam, B.D.Acharya and E.Sampathkumar, Graphoidal covers of a graph: a creative review, in Proc.National Workshop on Graph theoryand its applications, ManonmaniamSundaranar University, Tirunelveli, Tata McGraw-Hill, New Delhi, (1997), 1-28.
- 3. S.Arumugam and S.Meena, Paths Double Covers of Graphs, Phd Thesis, Manonmaniam Sundaranar University, 2000
- 4. S.Arumugam and J.Suresh Suseela, Acyclic graphoidal covers and path partitions in a graph, Discrete Math.1998;190:67-77.
- 5. J. A. Bondy; Perfect path double covers of graphs, Journal of Graph Theory, 1990;14:259–272.
- Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The electronic Journal of combinatorics, 2013;16:1-308.
- 7. F.Harary, Graph Theory, Addison-Wesley, Reading , MA, 1969.
- 8. Hao Li, Perfect path double covers in every simple graph, Journal of Graph Theory, 1990;14(6):645–650.