Path Double Covering Number of a Graph

Gayathri Thiyagarajan ${ }^{1}$, Meena Saravanan ${ }^{2}$
${ }^{1}$ Department of Mathematics, Sri Manakula Vinayagar Engineering College, Puducherry-605 107, India, Email: gayathiyagu@gmail.com
Department of Mathematics, Government Arts and Science College, Chidambaram-608 102, India. Email: meenasaravanan14@gmail.com

Abstract

A path double cover of a graph G is a collection \mathbb{p} of paths in G such that every edge of G belongs to exactly two paths in \mathbb{P}. The minimum cardinality of a path double cover is called the path double covering number of G and is denoted by $\eta_{P D}(G)$.In this paper we determine the exact value of this parameter for several classes of graphs.

Key words: Graphoidal covers; path double covers; path double covering number of a graph; bicyclic graphs.

INTRODUCTION

A graph is a pair $G=(V, E)$, where V is the set of vertices and E is the set of edges. Here we consider only nontrivial,finite, connected undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For graph theoretic terminology we refer to Harary [7].The concept of graphoidal cover was introduced by B.D Acharya and E. Sampathkumar [1] and the concept of acyclic graphoidal cover was introduced by Arumugam and Suresh Suseela [4].The reader may refer [7] and [2] for the terms not defined here.

Let $p=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{r}\right)$ be a path or a cycle in a graph $G=(V, E)$. Then vertices $\left(v_{2}, v_{3}, \ldots, v_{r-1}\right)$ are called internal vertices of P and v_{1} and v_{r} are called external vertices of P. Two paths P and Q of a graph G are said to be internally disjoint if no vertex of G is an internal vertex of both P and Q.If $P=\left(v_{0}, v_{1}, v_{2}, \ldots v_{r}\right)$ and $Q=\left(v_{r}=w_{0}, w_{1}, w_{2}, \ldots, w_{r}\right)$ are two paths in G then the walk obtained by concatenating P and Q at v_{r} is denoted by $P \circ Q$ and the path $\left(v_{r}, v_{r-1}, \ldots, v_{0}\right)$ is denoted by P^{-1}.[3]. Bondy [5] introduced the concept of path double cover of a graph. This was further studied by Hao Li [8].

Definition 1.1[3]: A path double cover (PDC) of a graph G is a collection $叉$ of paths in G such that every edge of G belongs to exactly two paths in \mathbb{P}.

The collection \downarrow may not necessarily consist of distinct paths in G and hence it cannot be treated as a set in the standard sense. For any graph $G=(V, E)$, let \mathbb{P} denote the collection of all paths of length one each path appearing twice in the collection. Clearly \mathbb{P} is a path double of G and hence the set of all path double covers of G is non-empty.

Arumugam and Meena [3] introduced the concept of path double covering number of a graph G.

Definition 1.2[3]: The minimum cardinality of a path double cover of a graph G is called path double covering number of G and is denoted by $\eta_{P D}(G)$

In [9] it has been observed that for any graph $G \eta_{P D}(G) \leq 2 q$ and equality holds if and only if G is isomorphic to $q K_{2}$ and the following results have been proved .

Theorem1.3[3]: Let \mathbb{P} be any path double cover of a graph G. Then $|P|=2 q$ - $i p$ where $i p=\sum_{p \varepsilon P} i(p)$ where $\mathrm{i}(\mathrm{p})$ is the number of internal vertices of \mathbb{P}.

Theorem1.4[3]: $\eta_{P D}=2 q-i$ where $\mathrm{i}=$ maxiP the maximum being taken over all path double covers \mathbb{P} of G Theorem 1.5 [3]: Let G be a graph with $\delta=1$, if there exists a path double cover \mathbb{P} such that every non pendant vertex of G is an internal vertex of $\mathrm{d}(\mathrm{v})$ paths in $\mathbb{\nabla}$ then \mathbb{P} is minimum path double cover and $\eta_{P D}=|P|$

Theorem 1.6 [3]: For any tree $T, \eta_{P D}(T)=n$ where n is the number of pendent vertices of T.
Theorem 1.7 [3]: For any graph $G, \eta_{P D}(T) \geq \Delta$. Further for any tree $T, \eta_{P D}(T)=\Delta$ if and only if T is homeomorphic to a star.

Definition 1.8 [6]: A triangular cactus is a connected graph all of whose blocks are triangles. A triangular snake is a triangular cactus whose block-cutpoint-graph is a path (a triangular snake is obtained from a path $v_{1}, v_{2}, \ldots, v_{n}$ by joining v_{i} and v_{i+1} to a new vertex w_{i} for $\left.i=1,2, \ldots, n-1\right)$.

Definition 1.9 [6]: A double triangular snake consists of two triangular snakes that have a common path. That is a double triangular snake is obtained from a path $v_{1}, v_{2}, \ldots, v_{n}$ by joining v_{i} and v_{i+1} to a new vertex w_{i} for $i=1,2, \ldots, n-1$ and to a new vertex u_{i} for $i=1,2, \ldots, n-1$.

Definition 1.20 [6]: The book B_{m} is the graph $S_{m} \times P_{2}$ where S_{m} is the star with $\mathrm{m}+1$ vertex

Definition 1.21 [6]: A gear graph denoted G_{n} is a graph obtained by inserting an extra vertex between each pair of adjacent vertices on the perimeter of a wheel graph W_{n}. Thus, G_{n} has $2 n+1$ vertices and $3 n$ edges. Gear graphs are examples of square graphs, and play a key role in the forbidden graph characterization of square graphs. Gear graphs are also known as cogwheels and bipartite wheels.

Definition 1.22 [6]: A helm graph, denoted Hn is a graph obtained by attaching a single edge and node to each node of the outer circuit of a wheel graph Wn.

Definition 1.23 [6]: A graph G is called the flower graph with n petals if it has $3 n+1$ vertices which form an n- cycle.

Definition [6]: A shell Sn is the graph obtained by taking $\mathrm{n}-3$ concurrent chords in a cycle Cn on n vertices. The vertex at which all the chords are concurrent is called the apex vertex. The shell is also called fan Fn-1.
i.e.. $S_{n}=F_{n}-1=P_{n}-1+K_{1}$.

Definition 1.24 [6]: The cartesian product of two paths is known as grid graph which is denoted by $P_{m} \times P_{n}$. In particular the graph $L_{n}=P_{n} \times P_{2}$ is known as ladder graph.

Definition 1.25 [6]: A web graph is the graph obtained by joining the pendant vertices of a helm to form a cycle and then adding a single pendant edge to each vertex of this outer cycle.

Theorem 2.1: Let G be a triangular snake graph, then $\eta_{P D}(G)=4$
Proof: Let $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n-1}\right\}, \mathrm{n}$ is odd.
The path double covering of G is as follows.
$P_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$
$P_{2}=\left\{v_{1}, \mathrm{w}_{1}, v_{2}, \mathrm{w}_{2}, \ldots, v_{n-1}, \mathrm{w}_{\mathrm{n}-1}, v_{n}\right\}$
$P=2 P_{1} \cup 2 P_{2}$ is a path double cover of G.
$\eta_{P D}(G) \leq 4=\Delta$
Since $\eta_{P D}(G) \geq \Delta=4$
$\eta_{P D}(G)=\Delta=4$ is a minimum path double covering number of G.

Theorem 2.2: Let G be a triangular cactus graph, then $\eta_{P D}(G)=2 n$, where n is the number of triangles in the graph.
Proof: Let $V(G)=\left\{v_{0}, v_{11}, v_{12}, v_{21}, v_{22}, \ldots, v_{n 1}, v_{n 2}\right\}$
Case1: n is even and $n>4$
The path double covering of G is as follows.
$P_{i}=\left\{v_{i 1}, v_{i 2}, v_{0}, v_{i+12}, v_{i+11}\right\}, i=1,3,5, \ldots, n-1$
$P_{j}=\left\{v_{j+12}, v_{j+11}, v_{0}, v_{j 1}, v_{j 2}\right\} \quad j=1,3,5,7, \ldots, n-1$
$P_{k}=\left\{v_{k 1}, v_{0}, v_{k 2}\right\}, k=1$ to n
$P=\left\{P_{i}\right\} \cup\left\{P_{j}\right\} \cup\left\{P_{k}\right\}$ is a path double cover of G.
$|P|=\frac{n}{2}+\frac{n}{2}+n=2 n$
$\eta_{P D}(G) \leq 2 n=\Delta$
Since $\eta_{P D}(G) \geq \Delta=2 n$
$\eta_{P D}(G)=\Delta=2 n$ is a minimum path double covering number of G.
Case 2: n is odd and $\mathrm{n}>5$
The path double covering of G is as follows.
$P_{1}=\left\{v_{11}, v_{12}, v_{0}, v_{n 1}, v_{n 2}\right\}$
$P_{2}=\left\{v_{21}, v_{22}, v_{0}, v_{n 2}, v_{n 1}\right\}$
$P_{3}=\left\{v_{12}, v_{11}, v_{0}, v_{21}, v_{22}\right\}$
$P_{i}=\left\{v_{i 1}, v_{i 2}, v_{0}, v_{i+1,2}, v_{i+1}, 1\right\}, i=3,5,7, \ldots, n-2$
$P_{j}=\left\{v_{j+1,2}, v_{j+1,1}, v_{0}, v_{j 1}, v_{j 2}\right\}, \mathrm{j}=3,5,7, \ldots, n-2$
$P_{k}=\left\{v_{k 1}, v_{0}, v_{k 2}\right\}, \mathrm{k}=1,2, \ldots, n$
$P=\left\{P_{1}, P_{2}, P_{3}, P_{i}, P_{j}, P_{k}\right\}$ is a path double cover of G .
$|P|=3+\frac{n-1}{2}-1+\frac{n-1}{2}-1+n=2 n$
$\eta_{P D}(G) \leq 2 n=\Delta$
Since $\eta_{P D}(G) \geq \Delta=2 n$
$\eta_{P D}(G)=\Delta=2 n$ is a minimum path double covering number of G.

Theorem 2.3: Let G be a flower graph with n petals then $\eta_{P D}(G)=2 n$
Proof: Let $V(G)=\left\{v_{0}, v_{11}, v_{12}, v_{21}, v_{22}, \ldots, v_{n 1}, v_{n 2}\right\}$
Case1: n is even.
The path double covering of G is as follows.
$P_{i}=\left\{v_{i 1}, v_{i 2}, v_{i 3}, v_{0}, v_{i+13}, v_{i+12}, v_{i+11}\right\} i=1,3,5, \ldots, n-1$
$P_{j}=\left\{v_{i+13}, v_{i+12}, v_{i+11}, v_{0}, v_{i 1}, v_{i 2}, v_{i 3}\right\} i=1,3,5, \ldots, n-1$
$P_{k}=\left\{v_{i 1}, v_{0}, v_{i 3}\right\}, i=1$ to n
$P=\left\{P_{i}, P_{j}, P_{k}\right\}$ is a path double cover of G.
$|P|=n-1+n-1+n=2 n$
$\eta_{P D}(G)=2 n=\Delta$ is a minimum path double covering of G.
Case 2: n is odd.
The path double covering of G is as follows.
$P_{1}=\left\{v_{11}, v_{12}, v_{13}, v_{0}, v_{23}, v_{22}, v_{21}\right\}$
$P_{2}=\left\{v_{n 3}, v_{n 2}, v_{n 1}, v_{0}, v_{21}, v_{22}, v_{23}\right\}$
$P_{3}=\left\{v_{13}, v_{12}, v_{11}, v_{n 3}, v_{n 2}, v_{n 1}\right\}$
$P_{i}=\left\{v_{i 1}, v_{i 2}, v_{i 3}, v_{0}, v_{i+3}, v_{i+2}, v_{i+1}\right\}, i=3,5, \ldots, n-2$
$P_{j}=\left\{v_{i+13} v_{i+12}, v_{i+11}, v_{0}, v_{i 1}, v_{i 2}, v_{i 3}\right\}, i=3,5, \ldots, n-2$
$P_{k}=\left\{v_{i 1}, v_{0}, v_{i 3}\right\}, i=1$ to n
$P=\left\{P_{1}, P_{2}, P_{3}, P_{i}, P_{j}, P_{k}\right\}$ is a path double cover of G.
$|P|=3+\frac{n-1}{2}-1+\frac{n-1}{2}-1+n=2 n$
$\eta_{P D}(G)=2 n=\Delta$ is a minimum path double covering of G.

Theorem 2.4: Let G be a $\mathrm{P}_{\mathrm{m}}\left(\mathrm{QS}_{\mathrm{n}}\right)$ graph. The path double covering of G is $\eta_{P D}(G)=4 n-2$
Proof: Let $V(G)=\left\{v_{1}, \ldots, v_{m}, l_{i 1} \ldots l_{i n}, r_{i 1} \ldots r_{i n}, w_{i 1} \ldots, w_{i n}\right\} i=1$ to n
Case1: n is even.
The path double covering of G is as follows.
$P_{i}=\left\{w_{i n}, r_{i n}, w_{i n-1}, r_{i n-1}, \ldots, w_{i 1}, l_{i 1}, v_{i}, v_{i+1}, l_{i+11}, w_{i+11}, l_{i+12}, w_{i+12}, \ldots, l_{i+1 n}, w_{i+1 n}\right\} i=1$ to $n-1$
$Q_{i}=\left\{w_{i n}, r_{i n}, w_{i n-1}, r_{i n-1}, \ldots, w_{i 1}, r_{i 1}, v_{i}, v_{i+1}, r_{i+1,1}, w_{i+1,1}, r_{i+1,2}, w_{i+1,2}, \ldots, r_{i+1, n}, w_{i+1, n}\right\} i=1$ to $n-1$
$R_{i}=\left\{v_{i}, l_{i 1}, w_{i 1}, l_{i 2}, w_{i 2}, \ldots, l_{\text {in }}, w_{i n}\right\} i=1,2, \ldots, n$
$S_{i}=\left\{v_{i}, r_{i 1}, w_{i 1}, r_{i 2}, w_{i 2}, \ldots, r_{i n}, w_{i n}\right\} \quad i=1,2, \ldots, n$
$\therefore \eta_{P D}(G)=n-1+n-1+2 n=4 n-2$
Case 2: n is odd.
The path double covering of G is as follows.
$P_{i}=\left\{w_{i n}, r_{i n}, w_{i n-1}, r_{i n-1}, \ldots, w_{i 1}, l_{i 1}, v_{i}, v_{i+1}, l_{i+11}, w_{i+11}, l_{i+12}, w_{i+12}, \ldots, l_{i+1 n}, w_{i+1 n}\right\} i=1$ to $n-2$
$Q_{i}=\left\{w_{i n}, r_{i n}, w_{i n-1}, r_{i n-1}, \ldots, w_{i 1}, r_{i 1}, v_{i}, v_{i+1}, r_{i+1,1}, w_{i+1,1}, r_{i+1,2}, w_{i+1,2}, \ldots, r_{i+1, n}, w_{i+1, n}\right\} i=1$ to $n-2$
$R_{i}=\left\{v_{i}, l_{i 1}, w_{i 1}, l_{i 2}, w_{i 2}, \ldots, l_{\text {in }}, w_{i n}\right\} i=1,2, \ldots, n$
$S_{i}=\left\{v_{i}, r_{i 1}, w_{i 1}, r_{i 2}, w_{i 2}, \ldots, r_{i n}, w_{i n}\right\} i=1,2, \ldots, n$
$P_{n-1}=\left\{w_{n n}, l_{n n}, \ldots, w_{n 1}, l_{n 1}, v_{n}, v_{n-1}\right\}$
$Q_{n-1}=\left\{w_{n n}, r_{n n}, \ldots, w_{n 1}, r_{n 1}, v_{n}, v_{n-1}\right\}$
$\therefore \eta_{P D}(G)=n-1+n-1+2 n=4 n-2$
Theorem 2.5: Let G be a $\mathrm{C}_{\mathrm{m}}\left(\mathrm{QS}_{\mathrm{n}}\right)$ graph. The path double covering of G is $\eta_{P D}(G)=4 n$
Proof: Let $V(G)=\left\{v_{1}, \ldots, v_{m}, l_{i 1} \ldots l_{i n}, r_{i 1} \ldots r_{i n}, w_{i 1} \ldots, w_{i n}\right\} i=1$ to n
Case1: n is even.
The path double covering of G is as follows.
$P_{i}=\left\{w_{i n}, r_{i n}, w_{i n-1}, r_{i n-1}, \ldots, w_{i 1}, l_{i 1}, v_{i}, v_{i+1}, l_{i+11}, w_{i+11}, l_{i+12}, w_{i+12}, \ldots, l_{i+1 n}, w_{i+1 n}\right\} i=1$ to $n-1$
$Q_{i}=\left\{w_{i n}, r_{i n}, w_{i n-1}, r_{i n-1}, \ldots, w_{i 1}, r_{i 1}, v_{i}, v_{i+1}, r_{i+1,1}, w_{i+1,1}, r_{i+1,2}, w_{i+1,2}, \ldots, r_{i+1, n}, w_{i+1, n}\right\} i=1$ to $n-1$
$R_{i}=\left\{v_{i}, l_{i 1}, w_{i 1}, l_{i 2}, w_{i 2}, \ldots, l_{i n}, w_{i n}\right\} i=1,2, \ldots, n$
$S_{i}=\left\{v_{i}, r_{i 1}, w_{i 1}, r_{i 2}, w_{i 2}, \ldots, r_{i n}, w_{i n}\right\} i=1,2, \ldots, n$
$P_{n}=\left(v_{1}, v_{n}\right)$
$\psi=\left\{P_{i}, Q_{i}, R_{i}, S_{i}, 2 P_{n}\right\}$
$\therefore \eta_{P D}(G)=n-1+n-1+2 n+2=4 n$
Case 2: n is odd.
The path double covering of G is as follows.
$P_{i}=\left\{w_{i n}, r_{i n}, w_{i n-1}, r_{i n-1}, \ldots, w_{i 1}, l_{i 1}, v_{i}, v_{i+1}, l_{i+11}, w_{i+11}, l_{i+12}, w_{i+12}, \ldots, l_{i+1 n}, w_{i+1 n}\right\} i=1$ to $n-2$
$Q_{i}=\left\{w_{i n}, r_{i n}, w_{\text {in- } 1}, r_{i n-1}, \ldots, w_{i 1}, r_{i 1}, v_{i}, v_{i+1}, r_{i+1,1}, w_{i+1,1}, r_{i+1,2}, w_{i+1,2}, \ldots, r_{i+1, n}, w_{i+1, n}\right\} i=1$ to $n-2$
$R_{i}=\left\{v_{i}, l_{i 1}, w_{i 1}, l_{i 2}, w_{i 2}, \ldots, l_{i n}, w_{i n}\right\} \quad i=1,2, \ldots, n$
$S_{i}=\left\{v_{i}, r_{i 1}, w_{i 1}, r_{i 2}, w_{i 2}, \ldots, r_{i n}, w_{i n}\right\} i=1,2, \ldots, n$
$P_{n-1}=\left\{w_{n n}, l_{n n}, \ldots, w_{n 1}, l_{n 1}, v_{n}, v_{n-1}\right\}$
$Q_{n-1}=\left\{w_{n n}, r_{n n}, \ldots, w_{n 1}, r_{n 1}, v_{n}, v_{n-1}\right\}$
$P_{n}=\left(v_{1}, v_{n}\right)$
$\psi=\left\{P_{i}, Q_{i}, R_{i}, S_{i}, 2 P_{n}\right\}$
$\therefore \eta_{P D}(G)=n-1+n-1+2 n+2=4 n$
Theorem 2.6: Let G be a Ladder graph. The path double covering of G is $\eta_{P D}(G)=3$
Proof: Let $V(G)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}, l_{1}, l_{2}, \ldots, l_{n}\right\}$
The path double covering of G is as follows.
$P_{1}=\left\{\begin{array}{l}l_{1}, u_{1}, u_{2}, l_{2}, l_{3}, u_{3}, u_{4}, \ldots, l_{i-1}, l_{i}, u_{i}, u_{i+1}, \ldots, u_{n}, l_{n}, \text { if } \mathrm{n} \text { is even } \\ l_{1}, u_{1}, u_{2}, l_{2}, l_{3}, u_{3}, u_{4}, \ldots, l_{i-1}, l_{i}, u_{i}, u_{i+1}, \ldots, l_{n}, u_{n}, \text { if } \mathrm{n} \text { is odd }\end{array}\right.$
$P_{2}=\left\{\begin{array}{l}l_{1}, l_{2}, u_{2}, u_{3}, l_{3}, l_{4}, u_{4}, \ldots, l_{n-1}, l_{n}, u_{n}, \text { if } \mathrm{n} \text { is even } \\ l_{1}, u_{1}, u_{2}, l_{2}, l_{3}, u_{3}, u_{4}, \ldots, u_{n-1}, u_{n}, l_{n}, \text { if } \mathrm{n} \text { is odd }\end{array}\right.$
$P_{3}=\left\{u_{n}, u_{n-1}, u_{n-2}, \ldots, u_{2}, u_{1}, l_{1}, l_{2}, \ldots, l_{n-1}, l_{n}\right\}$
$\eta_{P D}(G)=\Delta=3$ is a minimum path double covering of G.
Theorem 2.7: Let G be a fan graph with n vertices. The path double covering of G is $\eta_{P D}(G)=n$
Proof: Let $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
The path double covering of G is as follows.
$P_{1}=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$
$P_{2}=\left\{x_{n} x_{1} x_{2} x_{3} \ldots x_{n-1}\right\}$
$P_{3}=\left\{x_{n-1} x_{n} x_{1}\right\}$
Let $G_{1}=G-\left\{P_{1}, P_{2}, P_{3}\right\}$ is a tree with n-3 pendant vertices.
$\eta_{P D}\left(G_{1}\right)=n-3$
$\eta_{P D}(G)=n-3+3=n$
$\eta_{P D}(G)=\Delta=n$ is a minimum path covering of G.
Theorem 2.8: Let G be a mobius graph. The path double covering of G is $\eta_{P D}(G)=4$
Proof: Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}\right\}$
The path double covering of G is as follows.
$P_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}, w_{n}, w_{n-1}, \ldots, w_{2}, w_{1}\right\}$
$P_{2}=\left\{v_{n}, w_{1}, v_{1}, v_{2}, w_{2}, w_{3}, v_{3}, v_{4}, \ldots, v_{n-1}, w_{n-1}, w_{n}\right\}$
$P_{3}=\left\{v_{1}, w_{1}, w_{2}, v_{2}, v_{3}, \ldots, w_{n-1}, w_{n}\right\}$
$P_{4}=\left\{w_{1}, v_{n}, w_{n}, v_{1}\right\}$
$P=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ is a minimum path covering of G
$\eta_{P D}(G)=4=\Delta$ is a minimum path covering of G.
Theorem 2.9: Let G be a shell graph with n vertices. The path double covering of G is $\eta_{P D}(G)=n$
Proof: Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
The path double covering of G is as follows.
$P_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}\right\}$
$P_{2}=\left\{v_{1}, v_{n}, v_{n-1}, \ldots, v_{3}, v_{2}\right\}$
$P_{3}=\left\{v_{2}, v_{1}, v_{3}\right\}$
$P_{4}=\left\{v_{n}, v_{1}, v_{n-1}\right\}$
$P_{5}=\left\{v_{3}, v_{1}, v_{n-1}\right\}$
$G_{1}=G-\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\}$ is a tree with n-5 pendant vertices.
$\eta_{P D}\left(G_{1}\right)=n-5 \quad$ (By corollary 1.1)
$\eta_{P D}(G)=n-5+5=n \leq \Delta$ is a minimum path covering of G.
Since $\eta_{P D}(G) \geq \Delta=n$
$\therefore \eta_{P D}(G)=\Delta$
Theorem 2.10: Let G be a gear graph with n vertices. The path double covering of G is $\eta_{P D}(G)=n+1$
Proof: Let $V(G)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}\right\}$
The path double covering of G is as follows.
$P_{1}=\left\{v_{0}, v_{1}, t_{1}, v_{2}, t_{2}, v_{3}, t_{3}, \ldots ., v_{n}, t_{n}\right\}$
$P_{2}=\left\{v_{0}, v_{n}, t_{n}, v_{1}, t_{1}, v_{2}, t_{2}, \ldots, v_{n-1}, t_{n-1}\right\}$
$P_{3}=\left\{t_{n-1}, v_{n}, v_{0}, v_{1}, t_{n}\right\}$
$G_{1}=G-\left\{P_{1}, P_{2}, P_{3}\right\}$ is a tree with n-2 pendant vertices.
$\eta_{P D}\left(G_{1}\right)=n-2 \quad$ (By corollary 1.1)
$\eta_{P D}(G)=n-2+3=n+1$ is a minimum path covering of G.
Theorem 2.11: Let G be a web graph with n vertices. Then $\eta_{P D}(G)=n+1$
Proof: Let $V(G)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}\right\}$
Her $w_{1}, w_{2}, \ldots, w_{n}$ are pendant vertices.
v_{i} is adjacent to v_{0} and w_{i}
The path double covering of G is as follows.
$P_{1}=\left\{w_{1}, v_{1}, v_{0}, v_{2}, v_{3}, \ldots, v_{n}, w_{n}\right\}$
$P_{2}=\left\{v_{0}, v_{n}, v_{1}, v_{2}, \ldots, v_{n-1}, w_{\mathrm{n}-1}\right\}$
$P_{3}=\left\{v_{0}, v_{n-1}, v_{n}, v_{1}, v_{2}, w_{2}\right\}$
$P_{4}=\left\{w_{n-1}, v_{n-1}, v_{0}, v_{n}, w_{n}\right\}$
$P_{5}=\left\{w_{2}, v_{2}, v_{0}, v_{1}, w_{1}\right\}$
$G_{1}=G-\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\}$ is a tree with n-4 pendant vertices.
$\eta_{P D}\left(G_{1}\right)=n-4 \quad$ (By corollary 1.1)
$\eta_{P D}(G)=n-4+5=n+1$ is a minimum path covering of G.
Theorem 2.12: Let G be a double triangular snake graph, then $\eta_{P D}(G)=6=\Delta$
Proof: Let $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}, \mathrm{n}$ is odd.
The path double covering of G is as follows.

$$
\begin{aligned}
& P_{1}=\left\{v_{1}, w_{1}, v_{2}, w_{2}, v_{3}, w_{3}, \ldots, v_{n-1}, w_{n-1}, v_{n}\right\} \\
& P_{2}=\left\{v_{1}, \mathbf{u}_{1}, v_{2}, \mathbf{u}_{2}, v_{3}, \mathbf{u}_{3}, \ldots, v_{n-1}, \mathbf{u}_{n-1}, v_{n}\right\} \\
& P_{3}=\left\{v_{1}, w_{1}, v_{2}, v_{3}, w_{3}, v_{4}, \mathrm{v}_{5}, w_{5}, \ldots, w_{n-2}, v_{n-1}, v_{n}\right\} \\
& P_{4}=\left\{v_{1}, \mathbf{u}_{1}, v_{2}, v_{3}, \mathrm{u}_{3}, v_{4}, \mathrm{v}_{5}, \mathrm{u}_{5}, \ldots, \mathrm{u}_{n-2}, v_{n-1}, v_{n}\right\} \\
& P_{5}=\left\{v_{1}, v_{2}, u_{2}, u_{3}, v_{4}, u_{4}, u_{5}, v_{6}, \ldots, v_{n-1}, u_{n-1}, v_{n}\right\} \\
& P_{6}=\left\{v_{1}, v_{2}, w_{2}, v_{3}, v_{4}, w_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}, \ldots, v_{n-1}, w_{n-1}, v_{n}\right\} \\
& \eta_{P D}(G)=\Delta=6 \text { is a minimum path double covering number of G. }
\end{aligned}
$$

Note: Observe that for the following graphs the path double covering number is $\eta_{P D}(G)=\Delta$

1. t-ply
2. Multipleshell
3. Book graph

REFERENCES

1. B.D. Acharya, E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, Indian J.Pure Appl.Math. 1987;18(10): 882-890.
2. S.Arumugam, B.D.Acharya and E.Sampathkumar, Graphoidal covers ofa graph:a creative review,in Proc.National Workshop on Graph theoryand its applications,ManonmaniamSundaranar University,Tirunelveli,Tata McGraw-Hill,New Delhi,(1997),1-28.
3. S.Arumugam and S.Meena, Paths Double Covers of Graphs, Phd Thesis, Manonmaniam Sundaranar University, 2000
4. S.Arumugam and J.Suresh Suseela, Acyclic graphoidal covers and path partitions in a graph, Discrete Math.1998;190:67-77.
5. J. A. Bondy; Perfect path double covers of graphs, Journal of Graph Theory, 1990;14:259-272.
6. Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The electronic Journal of combinatorics, 2013;16:1-308.
7. F.Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
8. Hao Li, Perfect path double covers in every simple graph, Journal of Graph Theory, 1990;14(6):645-650.
