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Abstract 

  Sufficient conditions for the oscillation of some Third Order nonlinear difference equations of the form 

         
                   

                           (1)              

where ∆ denotes the forward difference operator. ∆ vn = vn + 1 – vn  {qn} is a sequence of real numbers, {  } 

is a sequence of integers are established.  
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1. Introduction 

  In this note we consider the nonlinear difference equation of the form 

         
                   

                           (1)              

where ∆ denotes the forward difference operator. ∆ vn = vn + 1 – vn  {qn} is a sequence of real numbers, {  } 

is a sequence   of integers such that      

(C1):             n) = ∞,  where {ґn }is a sequence of   positive numbers and   

(C2):  Rn =  
 

  

   
      → ∞ as   n →∞.    

(C3):  f  :  R →R is a  continuous with u f  (u) > 0 (u ≠0) . 

By a solution of Equation (1) we mean a sequence (xn) which is defined for                ґi) and 

satisfies Equation (1) for all large n.  A nontrivial solution (xn) of (1) is said to be oscillatory if for every n0 > 

0 there exists n ≥ n0  such xn xn+1 ≤ 0. Otherwise it is called non oscillatory. 

In several recent papers the oscillatory behaviour of solution of non linear       difference equations 

has been discussed e.g. see [1] – [8].  Our purpose in this paper is to give the sufficient conditions for the 

oscillation of solutions of Equation (1). The results obtained here extend those in [8]. 
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2. Objective 

 To find the Oscillation Solutions of Third Order Nonlinear Difference Equations with Delay 

3. Results and Discussion  

Theorem.3.1.  

Assume that   

(C4):  qn≥0 and    
   n=∞, 

(C5):   lim|u| →∞ inf |f (u)| > 0. 

   Then every solution of equation (1) is oscillatory 

Proof:   

Assume, that equation (1) has non oscillatory solution {xn}, and we  assume that (xn) is eventually 

positive. Then there is a positive integer  n0 such that  

      
               ............................(2) 

From the Equation (1) we have  

∆ (rn ∆
2
xn) = -qn  f (     

) ≤ 0,   n ≥ n0,   and so (rn ∆
2
xn) is an eventually  non increasing sequence.  We first 

show that  rn ∆
2
xn ≥ 0 for  n ≥ n0 

  In fact, if there is an n1 ≥ n0 such that rn ∆
2
 xn1 = c < 0 and  rn ∆

2
 xn ≤ c for n ≥ n1   

that is  ∆
2
 xn ≤  

 

  
   and   

hence   ∆ xn ≤  xn1 +c  
 

  

   
      

            xn ≤      
    

    + c   
 

   
    

   
   
    

  +    
as n →∞, m→∞ 

 which contradicts the fact that xn >0 for n ≥ n1. Hence rn ∆ xn≥0 for n ≥ n0 

Therefore we obtain  xn – ґn  > 0 ∆
2
 xn ≥ 0 ∆ (rn ∆

2
 xn) ≤ 0 for n ≥ n0  

Let   L =        n 

Then L > 0 is finite or infinite. 

Case 1.  

 L> 0 is finite. 

From the continuity of function f (u) we have        (xn – ґn) = f (L) > 0. Thus we may choose a positive 

integer n3 ≥n0 such that  
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f (xn – ґn) > 
 

 
  f (L) n≥n3.............................(3) 

By substituting (3) into Equation (1) we obtain 

∆(rn ∆
2
 xn) + 

  

 
   f (L) qn  ≤ 0 n ≥ n3.   ................... (4) 

Summing up both sides of (4) from n3 to n ( ≥ n3),  

we obtain  rn+1 ∆ xn+1 –   
  ∆    

 +
 

 
  f (L)   

    i ≤ 0      

and so     
 

 
  f (L)     

    i ≤    
 ∆

2   
  n ≥      contradicts      

 Case 2. 

 L = ∞ 

 For this case, from the condition (C1)  

we have           (xn – ґn) > 0   and so we may choose a positive constant c and a  positive integer n4  

sufficiently large such that 

f (xn- ґn) ≥ c for n ≥ n4. ............................(5) 

Substituting (5) into Equation (1) we have  ∆( rn  ∆
2
xn) +cqn  ≤ 0 n ≤  n4. 

Using the similar argument as that of Case 1 we may obtain a contradiction to the condition (C1). This 

completes the proof. 

 Theorem 3.2:   

Assume, that  

(C6):  qn ≥ 0 and    
   nqn = ∞, then every bounded solution of (1) is oscillatory.   

 Proof:  

Proceeding as in the proof of Theorem 1 with assumption that (xn) is a  Bounded   non oscillatory 

solution of (1) we get the inequality (4) and so we   obtain 

R n ∆ ( rn ∆
2
xn) +

 

 
  f (L)Rnqn ≤ 0 n ≥ n3..............................(6) 

It is easy to see that 

Rn  ∆ (rn  ∆
2
 xn) ≥  ∆( Rnrn  ∆

2
 xn) – rn  ∆

2
 xn  ∆ Rn.......................(7) 

From inequalities (6) and (7) we deduce 

     
      (Rk rk ∆

2
xk) -       

     
2
 xk +

 

 
 f (L)    

    k qk ≤ 0 n ≥ n3 
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which implies    
 

   
  f (L)    

    k qk≤  xn+1 + Rn3       ∆
2   

 –    
 n ≥   Hence        there exists a constant c 

such that      
    k qk ≤ c for all n ≥n3. contrary to the assumption of the theorem. 

Theorem 3.3:  Assume that 

(C7):  (n- ґn) is non decreasing, where  ґn   {0,1,2, ....}, there is a subsequence of (rn),   

           say (   
) such that   

≤ 1 for k = 0,1,2,...., 

(C8):     
   n = ∞, 

 (C9):   f  is non decreasing and there is a nonnegative constant M such that 

           
 

    
 = M....................... (8) 

Then the difference (∆
2
xn) of every solution (xn) of Equation (1) oscillates. 

 Proof:  

If not, then Equation (1) has a solution (xn) such that its difference (∆
2
xn) is non oscillatory. Assume that the 

sequence (∆
2
xn) is eventually   negative. 

Then there is positive integer n0 such that   ∆
2
xn < 0 n >n0. and  so (xn) decreasing for n ≥ n0 which implies 

that (xn) is also non oscillatory.     

  Set 

wn = 
       

          
    n ≥ n1 ≥ n0..............................(9) then    

∆wn = 
     

      

              
   − 

       

          
     

= 
        

          
  +rn+1 ∆

2
xn+1

                         

                       
........................(10) 

 ≤
        

          
  = qn,  n ≥n1. 

Summing up both sides of (10) from n1 to n, we have 

wn+1   –    
≤   

    i   and, by (vi) we get  

        n = − ∞,.............................(11)   Which implies that eventually 

f (xn – ґn) > 0 ..........................(12) 

and therefore xn – ґn > 0. By (11), we can  choose n2 (≥ n1) 

 such that Wn  ≤ - (M+1), n ≥ n2. 

rn∆
2
xn + (M+1) f (xn – ґn) ≤ 0,  n ≥ n2............................(13) 
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Set          n = L 

Then L ≥ 0. Now we  prove that L =0 . If L > 0 then we have 

        (xn – ґn) = f (L) > 0 

By the continuity of  f (u). Choosing an n3 sufficiently large, such that 

f (xn – ґn) > 
 

 
  f (L) n≥n3  .....................................(14) 

and substituting (14) into (13) we have  

∆
2
xn + 

 

   
 (M+1) f (L) ≤ 0 n ≥n3.................................. (15) 

Summing up both sides of (15) from n3 to n we get  

  xn+1 –    
 + 

 

 
 (M +1) f (L)  

 

  

 
    

  ≤ 0   which implies that        n = − ∞ This contradicts (12).  Hence   

       n = 0.   

By the assumptions we have 

             
      

         
 ≤ M.  From this we can choose n4 such that 

      

         
   < M +1  , n ≥ n4   That is  xn  - ґn < (M+1) f (xn – ґn)   n ≥ n4   and 

 so  from (13) we get  

rn ∆
2
 xn + xn – ґn  < 0, n ≥ n4........................(16) 

In particular, from (16) for a subsequence (rnk) satisfying the condition (v),  

  we have           –    
 +      -     ≤      (     -    

) +    
–     < 0, 

  for k sufficiently large, which  implies that 0 <      + (   
 –    

 –    
) < 0 for all large  k. This is a 

contradiction. The case that (∆
2
xn) is eventually positive can be treated in a similar fashion and so the proof 

of Theorem 3.3 is completed. 

 

 

4. CONCLUSION 

The Oscillatory Properties Third Order Nonlinear Neutral Delay Difference Equation it become 

Oscillate using Schwarz’s Inequality  
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