Oscillation Solutions Of Third Order Nonlinear Difference Equations With Delay

Dr. P. Mohankumar¹, V.Ananthan² and A.Ramesh³

¹Professor of Mathematics, Aaarupadaiveedu Institute of Techonology, Vinayaka Mission University, Kanchipuram, Tamilnadu, India 2 Asst.Professor of Mathematics, Aaarupadaiveedu Institute of Techonology, Vinayaka Mission University, Kanchipuram, Tamilnadu, India ³Senior Lecturer in Mathematics, District Institute of Education and Training, Uthamacholapuram,

iematics, District Institute of Education and Training, U Salem-636 010, Tamilnadu India

Abstract

Sufficient conditions for the oscillation of some Third Order nonlinear difference equations of the form

$$\Delta (r_n \Delta^2 x_n) + q_n f (x_{n-\tau_n}) = 0, n = 0, 1, 2, \dots$$
 (1)

where Δ denotes the forward difference operator. $\Delta v_n = v_{n+1} - v_n \{q_n\}$ is a sequence of real numbers, $\{\tau_n\}$ is a sequence of integers are established.

Keywords: Oscillation, Difference Equations, Neutral, Delay, Schawarz's inequality.

AMS Classification: 39A21

1. Introduction

In this note we consider the nonlinear difference equation of the form

$$\Delta (r_n \Delta^2 x_n) + q_n f (x_{n-\tau_n}) = 0, n = 0, 1, 2, \dots$$
 (1)

where Δ denotes the forward difference operator. $\Delta v_n = v_{n+1} - v_n \{q_n\}$ is a sequence of real numbers, $\{\tau_n\}$ is a sequence of integers such that

(C₁): $\lim_{n\to\infty} (n - r_n) = \infty$, where $\{r_n\}$ is a sequence of positive numbers and

(C₂): $R_{n=\sum_{k=0}^{n-1}\frac{1}{rk}} \to \infty \text{ as } n \to \infty.$

(C₃): $f : \mathbb{R} \to \mathbb{R}$ is a continuous with $u f(u) > 0 (u \neq 0)$.

By a solution of Equation (1) we mean a sequence (x_n) which is defined for $N \ge \min_{i\ge 0}(i - r_i)$ and satisfies Equation (1) for all large n. A nontrivial solution (x_n) of (1) is said to be oscillatory if for every $n_0 > 0$ there exists $n \ge n_0$ such $x_n x_{n+1} \le 0$. Otherwise it is called non oscillatory.

In several recent papers the oscillatory behaviour of solution of non linear difference equations has been discussed e.g. see [1] - [8]. Our purpose in this paper is to give the sufficient conditions for the oscillation of solutions of Equation (1). The results obtained here extend those in [8].

2. Objective

• To find the Oscillation Solutions of Third Order Nonlinear Difference Equations with Delay

3. Results and Discussion

Theorem.3.1.

Assume that

(C₄): $q_n \ge 0$ and $\sum_{n=1}^{\infty} q_n = \infty$,

(C₅): $\lim_{|u|} \rightarrow \infty$ inf |f(u)| > 0.

Then every solution of equation (1) is oscillatory

Proof:

Assume, that equation (1) has non oscillatory solution $\{x_n\}$, and we assume that (x_n) is eventually positive. Then there is a positive integer n_0 such that

 $x_{n-\tau_n} > 0 \text{ for } n \ge n_0$ (2)

From the Equation (1) we have

 $\Delta (r_n \Delta^2 x_n) = -q_n f(x_{n-\tau_n}) \le 0, \quad n \ge n_0$, and so $(r_n \Delta^2 x_n)$ is an eventually non increasing sequence. We first show that $r_n \Delta^2 x_n \ge 0$ for $n \ge n_0$

In fact, if there is an $n_1 \ge n_0$ such that $r_n \Delta^2 x_{n1} = c < 0$ and $r_n \Delta^2 x_n \le c$ for $n \ge n_1$

that is
$$\Delta^2 x_n \leq \frac{c}{rn}$$
 and

hence $\Delta x_n \leq x_{n1} + c \sum_{k=n1}^{n-1} \frac{1}{rk}$

 $x_{n} \le \sum_{s=m_{1}}^{m-1} x m_{1} + c \sum_{s=m_{1}}^{m-1} \sum_{k=n}^{n-1} \frac{1}{rks} + x_{n_{2}} \text{as } n \to \infty, m \to \infty$

which contradicts the fact that $x_n \ge 0$ for $n \ge n_1$. Hence $r_n \Delta x_n \ge 0$ for $n \ge n_0$

Therefore we obtain $x_n - r_n > 0 \Delta^2 x_n \ge 0 \Delta (r_n \Delta^2 x_n) \le 0$ for $n \ge n_0$

Let $L = \lim_{n \to \infty} x_n$

Then L > 0 is finite or infinite.

Case 1.

L>0 is finite.

From the continuity of function f(u) we have $\lim_{n\to\infty} f(x_n - r_n) = f(L) > 0$. Thus we may choose a positive integer $n_3 \ge n_0$ such that

 $f(x_n - r_n) > \frac{1}{2} f(L) n \ge n_3$(3)

By substituting (3) into Equation (1) we obtain

Summing up both sides of (4) from n_3 to $n \ (\ge n_3)$,

we obtain $r_{n+1} \Delta x_{n+1} - r_{n_3} \Delta x_{n_3} + \frac{1}{2} f(L) \sum_{i=n_3}^{n} q_i \le 0$

and so $\frac{1}{2} f(\mathbf{L}) \sum_{i=n_3}^{n} q_i \leq r_{n_3} \Delta^2 x_{n_3}$ n $\geq n_3$ contradicts

Case 2.

$$\Gamma = \infty$$

For this case, from the condition (C_1)

we have $\lim_{n\to\infty} inf(x_n - r_n) > 0$ and so we may choose a positive constant c and a positive integer n_4 sufficiently large such that

 $f(x_n - r_n) \ge c \text{ for } n \ge n_4.$ (5)

Substituting (5) into Equation (1) we have $\Delta(r_n \Delta^2 x_n) + cq_n \leq 0 n \leq n_4$.

Using the similar argument as that of Case 1 we may obtain a contradiction to the condition (C_1) . This completes the proof.

Theorem 3.2:

Assume, that

(C₆): $q_n \ge 0$ and $\sum_{n=0}^{\infty} R_n q_n = \infty$, then every bounded solution of (1) is oscillatory.

Proof:

Proceeding as in the proof of Theorem 1 with assumption that (x_n) is a Bounded non oscillatory solution of (1) we get the inequality (4) and so we obtain

$$R_n \Delta (r_n \Delta^2 x_n) + \frac{1}{2} f(L) R_n q_n \le 0 \ n \ge n_3.....(6)$$

It is easy to see that

 $\mathbf{R}_{\mathbf{n}} \Delta(\mathbf{r}_{\mathbf{n}} \Delta^2 x_{\mathbf{n}}) \geq \Delta(\mathbf{R}_{\mathbf{n}} \mathbf{r}_{\mathbf{n}} \Delta^2 x_{\mathbf{n}}) - \mathbf{r}_{\mathbf{n}} \Delta^2 x_{\mathbf{n}} \Delta \mathbf{R}_{\mathbf{n}}.....(7)$

From inequalities (6) and (7) we deduce

$$\sum_{k=n_{3}}^{n} \Delta (\mathbf{R}_{k} \mathbf{r}_{k} \Delta^{2} x_{k}) - \sum_{k=n_{3}}^{n} \Delta^{2} x_{k} + \frac{1}{2} f(\mathbf{L}) \sum_{k=n_{3}}^{n} \mathbf{R}_{k} q_{k} \le 0 \ \mathbf{n} \ge \mathbf{n}_{3}$$

which implies $\frac{1}{2} f(L) \sum_{k=n_3}^n R_k q_k \le x_{n+1} + R_{n3} r_{n_3} \quad \Delta^2 x_{n_3} - x_{n_3} \text{ n} \ge n_3$ Hence there exists a constant c such that $\sum_{k=n_3}^n R_k q_k \le c$ for all $n \ge n_3$. contrary to the assumption of the theorem.

Theorem 3.3: Assume that

(C₇): (n- r_n) is non decreasing, where $r_n \in \{0, 1, 2,\}$, there is a subsequence of (r_n) ,

say (r_{n_k}) such that $r_{n_k} \le 1$ for k = 0,1,2,...,

$$(\mathbf{C}_8): \sum_{n=0}^{\infty} q_n = \infty,$$

(C₉): f is non decreasing and there is a nonnegative constant M such that

$$\lim_{u \to 0} \sup \frac{u}{f(u)} = \mathbf{M}.$$
 (8)

Then the difference $(\Delta^2 x_n)$ of every solution (x_n) of Equation (1) oscillates.

Proof:

If not, then Equation (1) has a solution (x_n) such that its difference $(\Delta^2 x_n)$ is non oscillatory. Assume that the sequence $(\Delta^2 x_n)$ is eventually negative.

Then there is positive integer n_0 such that $\Delta^2 x_n < 0$ n >n₀. and so (x_n) decreasing for $n \ge n_0$ which implies that (x_n) is also non oscillatory.

$$w_{n} = \frac{r_{n}\Delta^{2} x_{n}}{f(x_{n} - \tau_{n})} \quad n \ge n_{1} \ge n_{0}....(9) \text{ then}$$

$$\Delta w_{n} = \frac{r_{n+1}\Delta^{2} x_{n+1}}{f(x_{n+1} - \tau_{n+1})} - \frac{r_{n}\Delta^{2} x_{n}}{f(x_{n} - \tau_{n})}$$

$$= \frac{\Delta r_{n}\Delta^{2} x_{n}}{f(x_{n} - \tau_{n})} + r_{n+1}\Delta^{2} x_{n+1} \frac{f(x_{n} - \tau_{n}) - f(x_{n+1} - \tau_{n+1})}{f(x_{n+1} - \tau_{n+1})f(x_{n} - \tau_{n})}...(10)$$

$$\leq \frac{\Delta r_{n}\Delta^{2} x_{n}}{f(x_{n} - \tau_{n})} = q_{n}, \quad n \ge n_{1}.$$

Summing up both sides of (10) from n_1 to n, we have

 $w_{n+1} - w_{n_1} \leq \sum_{i=n_1}^n q_i$ and, by (vi) we get

$$f(x_n - r_n) > 0$$
(12)

and therefore $x_n - r_n > 0$. By (11), we can choose $n_2 (\ge n_1)$

such that $W_n \leq -(M+1), n \geq n_2$.

 $r_n \Delta^2 x_n + (M+1) f(x_n - r_n) \le 0, \ n \ge n_2....(13)$

Set $\lim_{n\to\infty} x_{n=L}$

Then $L \ge 0$. Now we prove that L = 0. If L > 0 then we have

 $\lim_{n \to \infty} f(\mathbf{x}_n - \mathbf{r}_n) = f(\mathbf{L}) > 0$

By the continuity of f(u). Choosing an n_3 sufficiently large, such that

 $f(x_n - r_n) > \frac{1}{2} f(L) n \ge n_3$ (14)

and substituting (14) into (13) we have

$$\Delta^2 x_n + \frac{1}{2rn} (M+1) f(L) \le 0 \ n \ge n_3.....(15)$$

Summing up both sides of (15) from n_3 to n we get

 $x_{n+1} - x_{n_3} + \frac{1}{2} (M+1) f(L) \sum_{i=n_3}^{n} \frac{1}{r_i} \le 0$ which implies that $\lim_{n \to \infty} x_n = -\infty$ This contradicts (12). Hence $\lim_{n \to \infty} x_n = 0$.

By the assumptions we have

 $\lim_{n\to\infty} \sup \frac{x_n - \tau_n}{f(x_n - \tau_n)} \le M.$ From this we can choose n_4 such that

 $\frac{x_n - \tau_n}{f(x_n - \tau_n)} < M + 1$, $n \ge n_4$ That is $x_n - r_n < (M+1) f(x_n - r_n)$ $n \ge n_4$ and

so from (13) we get

 $r_n \Delta^2 x_n + x_n - r_n < 0, n \ge n_4$(16)

In particular, from (16) for a subsequence (r_{nk}) satisfying the condition (v),

we have $x_{n_k+1} - x_{n_k} + x_{n_k} - r_{n_k} \le r_{n_k} (x_{n_k+1} - x_{n_k}) + x_{n_k} - r_{n_k} < 0,$

for k sufficiently large, which implies that $0 < x_{n_k+1} + (x_{n_k} - r_{n_k} - x_{n_k}) < 0$ for all large k. This is a contradiction. The case that $(\Delta^2 x_n)$ is eventually positive can be treated in a similar fashion and so the proof of Theorem 3.3 is completed.

4. CONCLUSION

The Oscillatory Properties Third Order Nonlinear Neutral Delay Difference Equation it become Oscillate using Schwarz's Inequality

5. REFRERENCES

- [1].R.P.Agarwal., Difference equation and inequalities-Theory methods and applications, second edition
- [2].R.P.Agarwal, Martin Bohner, said R.Grace, Donal O'Regan.Discrete Oscillation Theory.CMIA Book Series
- [3].J.R.Greaf, E.Thandapani: Oscillatory and Asymptotic Behavior of Solutions of Third order Delay Difference Equations, Funkcialaj Ekvocioj, 42(1999):355-369.
- [4].B.Selvaraj, I.Mohammed ali jaffer. Oscillation Behavior of certain third order Linear Difference Equations. Far East Journal of Mathematical Sciences, accepted for publication in February, 5(2010).
- [5].B.Selvaraj, I.Mohammed ali jaffer. On the Oscillation of the solution to third order difference equations.
 Journal of Computer and Mathematical Sciences- An International Research Journal. 1(17)(2010):873-876.
- [6].B.Selvaraj, I.Mohammed ali jaffer. Oscillation Behavior of Certain Third Order Non-linear Difference Equation- S.International Journal of Nonlinear Science.10.(3)(2010):349-358.
- [7].E.Thandapani, B.Selvaraj. Oscillatory Behavior of Solutions of Three Dimentional Delay Difference System. Radovi Mathematicki, Vol. 13(2004): pp. 39-52.
- [8].P. Mohankumar and A. Ramesh, Oscillatory Behaviour Of The Solution Of The Third Order Nonlinear Neutral Delay Difference Equation Vol. 2 Issue 7, 2013 pp.1162-1164