Oscillation Solutions Of Third Order Nonlinear Difference Equations With Delay

Dr. P. Mohankumar ${ }^{1}$, V.Ananthan ${ }^{2}$ and A.Ramesh ${ }^{3}$
.1 Professor of Mathematics, Aaarupadaiveedu Institute of Techonology, Vinayaka Mission University, Kanchipuram, Tamilnadu, India
2 Asst.Professor of Mathematics, Aaarupadaiveedu Institute of Techonology, Vinayaka Mission University, Kanchipuram, Tamilnadu, India
${ }^{3}$ Senior Lecturer in Mathematics, District Institute of Education and Training, Uthamacholapuram, Salem-636 010, Tamilnadu India

Abstract

Sufficient conditions for the oscillation of some Third Order nonlinear difference equations of the form $$
\begin{equation*} \Delta\left(\mathrm{r}_{\mathrm{n}} \Delta^{2} \mathrm{x}_{\mathrm{n}}\right)+\mathrm{q}_{\mathrm{n}} f\left(\mathrm{x}_{\mathrm{n}-\tau_{\mathrm{n}}}\right)=0, \mathrm{n}=0,1,2, \ldots . \tag{1} \end{equation*}
$$ where Δ denotes the forward difference operator. $\Delta v_{n}=v_{n+1}-v_{n}\left\{q_{n}\right\}$ is a sequence of real numbers, $\left\{\tau_{n}\right\}$ is a sequence of integers are established.

Keywords: Oscillation, Difference Equations, Neutral, Delay, Schawarz's inequality.
AMS Classification: 39A21

1. Introduction

In this note we consider the nonlinear difference equation of the form

$$
\begin{equation*}
\Delta\left(\mathrm{r}_{\mathrm{n}} \Delta^{2} \mathrm{x}_{\mathrm{n}}\right)+\mathrm{q}_{\mathrm{n}} f\left(\mathrm{x}_{\mathrm{n}-\tau_{\mathrm{n}}}\right)=0, \mathrm{n}=0,1,2, \ldots . \tag{1}
\end{equation*}
$$

where Δ denotes the forward difference operator. $\Delta v_{n}=v_{n+1}-v_{n}\left\{q_{n}\right\}$ is a sequence of real numbers, $\left\{\tau_{n}\right\}$ is a sequence of integers such that
$\left(\mathrm{C}_{1}\right): \lim _{n \rightarrow \infty}\left(n-\tau_{\mathrm{n}}\right)=\infty$, where $\left\{I_{\mathrm{n}}\right\}$ is a sequence of positive numbers and
$\left(\mathrm{C}_{2}\right): \mathrm{R}_{\mathrm{n}}=\sum_{k=0}^{n-1} \frac{1}{r k} \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$.
$\left(\mathrm{C}_{3}\right): f: \mathrm{R} \rightarrow \mathrm{R}$ is a continuous with $u f(u)>0(u \neq 0)$.
By a solution of Equation (1) we mean a sequence (x_{n}) which is defined for $\mathrm{N} \geq \min _{i \geq 0}\left(i-\mathrm{r}_{\mathrm{i}}\right)$ and satisfies Equation (1) for all large n . A nontrivial solution $\left(x_{\mathrm{n}}\right)$ of (1) is said to be oscillatory if for every $\mathrm{n}_{0}>$ 0 there exists $\mathrm{n} \geq \mathrm{n}_{0}$ such $x_{\mathrm{n}} x_{\mathrm{n}+1} \leq 0$. Otherwise it is called non oscillatory.

In several recent papers the oscillatory behaviour of solution of non linear difference equations has been discussed e.g. see [1] - [8]. Our purpose in this paper is to give the sufficient conditions for the oscillation of solutions of Equation (1). The results obtained here extend those in [8].

2. Objective

- To find the Oscillation Solutions of Third Order Nonlinear Difference Equations with Delay

3. Results and Discussion

Theorem.3.1.
Assume that
$\left(\mathrm{C}_{4}\right): \mathrm{q}_{\mathrm{n}} \geq 0$ and $\sum_{n=1}^{\infty} q_{\mathrm{n}}=\infty$,
$\left(\mathrm{C}_{5}\right): \quad \lim _{|\mathrm{u}|} \rightarrow \infty \inf |f(\mathrm{u})|>0$.
Then every solution of equation (1) is oscillatory

Proof:

Assume, that equation (1) has non oscillatory solution $\left\{x_{\mathrm{n}}\right\}$, and we assume that $\left(x_{\mathrm{n}}\right)$ is eventually positive. Then there is a positive integer n_{0} such that

$$
\begin{equation*}
\mathrm{x}_{\mathrm{n}-\tau_{\mathrm{n}}}>0 \text { for } n \geq \mathrm{n}_{0} . \tag{2}
\end{equation*}
$$

From the Equation (1) we have
$\Delta\left(\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}}\right)=-\mathrm{q}_{\mathrm{n}} f\left(\mathrm{x}_{\mathrm{n}-\tau_{\mathrm{n}}}\right) \leq 0, \quad \mathrm{n} \geq \mathrm{n}_{0}$, and so $\left(\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}}\right)$ is an eventually non increasing sequence. We first show that $\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}} \geq 0$ for $\mathrm{n} \geq \mathrm{n}_{0}$

In fact, if there is an $\mathrm{n}_{1} \geq \mathrm{n}_{0}$ such that $\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n} 1}=\mathrm{c}<0$ and $\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}} \leq \mathrm{c}$ for $\mathrm{n} \geq \mathrm{n}_{1}$
that is $\Delta^{2} x_{\mathrm{n}} \leq \frac{c}{r n}$ and
hence $\Delta x_{\mathrm{n}} \leq x_{\mathrm{n} 1}+\mathrm{c} \sum_{k=n 1}^{n-1} \frac{1}{r k}$

$$
x_{\mathrm{n}} \leq \sum_{s=m_{1}}^{m-1} x m_{1}+\mathrm{c} \sum_{s=m_{1}}^{m-1} \sum_{k=n}^{n-1} \frac{1}{r k s}+x_{n_{2}} \text { as } \mathrm{n} \rightarrow \infty, \mathrm{~m} \rightarrow \infty
$$

which contradicts the fact that $\mathrm{x}_{\mathrm{n}}>0$ for $\mathrm{n} \geq \mathrm{n}_{1}$. Hence $\mathrm{r}_{\mathrm{n}} \Delta x_{\mathrm{n}} \geq 0$ for $\mathrm{n} \geq \mathrm{n}_{0}$
Therefore we obtain $x_{\mathrm{n}}-\mathrm{r}_{\mathrm{n}}>0 \Delta^{2} x_{\mathrm{n}} \geq 0 \Delta\left(\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}}\right) \leq 0$ for $\mathrm{n} \geq \mathrm{n}_{0}$
Let $\mathrm{L}=\lim _{n \rightarrow \infty} x_{\mathrm{n}}$
Then $\mathrm{L}>0$ is finite or infinite.

Case 1.

$\mathrm{L}>0$ is finite.
From the continuity of function $f(\mathrm{u})$ we have $\lim _{n \rightarrow \infty} f\left(x_{\mathrm{n}}-\mathrm{r}_{\mathrm{n}}\right)=f(\mathrm{~L})>0$. Thus we may choose a positive integer $\mathrm{n}_{3} \geq \mathrm{n}_{0}$ such that
$f\left(x_{\mathrm{n}}-\mathrm{r}_{\mathrm{n}}\right)>\frac{1}{2} f(\mathrm{~L}) \mathrm{n} \geq \mathrm{n}_{3}$
By substituting (3) into Equation (1) we obtain
$\Delta\left(\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}}\right)+\frac{1}{2} f(\mathrm{~L}) \mathrm{q}_{\mathrm{n}} \leq 0 \mathrm{n} \geq \mathrm{n}_{3}$.
Summing up both sides of (4) from n_{3} to $n\left(\geq n_{3}\right)$,
we obtain $\mathrm{r}_{\mathrm{n}+1} \Delta \mathrm{x}_{\mathrm{n}+1}-r_{n_{3}} \Delta x_{n_{3}}+\frac{1}{2} f(\mathrm{~L}) \sum_{i=n_{3}}^{n} q_{\mathrm{i}} \leq 0$
and so $\quad \frac{1}{2} f(\mathrm{~L}) \sum_{i=n_{3}}^{n} q_{\mathrm{i}} \leq r_{n_{3}} \Delta^{2} x_{n_{3}} \mathrm{n} \geq n_{3} \quad$ contradicts
Case 2.
$\mathrm{L}=\infty$
For this case, from the condition $\left(\mathrm{C}_{1}\right)$
we have $\lim _{n \rightarrow \infty} \inf \left(x_{\mathrm{n}}-\mathrm{r}_{\mathrm{n}}\right)>0$ and so we may choose a positive constant c and a positive integer n_{4} sufficiently large such that
$f\left(x_{\mathrm{n}}-\mathrm{r}_{\mathrm{n}}\right) \geq \mathrm{c}$ for $\mathrm{n} \geq \mathrm{n}_{4}$.
Substituting (5) into Equation (1) we have $\Delta\left(\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}}\right)+\mathrm{cq}_{\mathrm{n}} \leq 0 \mathrm{n} \leq \mathrm{n}_{4}$.
Using the similar argument as that of Case 1 we may obtain a contradiction to the condition $\left(\mathrm{C}_{1}\right)$. This completes the proof.

Theorem 3.2:

Assume, that
$\left(\mathrm{C}_{6}\right): \mathrm{q}_{\mathrm{n}} \geq 0$ and $\sum_{n=0}^{\infty} R_{\mathrm{n}} \mathrm{q}_{\mathrm{n}}=\infty$, then every bounded solution of (1) is oscillatory.

Proof:

Proceeding as in the proof of Theorem 1 with assumption that $\left(x_{\mathrm{n}}\right)$ is a Bounded non oscillatory solution of (1) we get the inequality (4) and so we obtain
$\mathrm{R}_{\mathrm{n}} \Delta\left(\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}}\right)+\frac{1}{2} f(\mathrm{~L}) \mathrm{R}_{\mathrm{n}} \mathrm{q}_{\mathrm{n}} \leq 0 \mathrm{n} \geq \mathrm{n}_{3}$
It is easy to see that
$\mathrm{R}_{\mathrm{n}} \Delta\left(\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}}\right) \geq \Delta\left(\mathrm{R}_{\mathrm{n}} \mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}}\right)-\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}} \Delta \mathrm{R}$
From inequalities (6) and (7) we deduce
$\sum_{k=n 3}^{n} \Delta\left(\mathrm{R}_{\mathrm{k}} \mathrm{r}_{\mathrm{k}} \Delta^{2} x_{\mathrm{k}}\right)-\sum_{k=n 3}^{n} \Delta^{2} x_{\mathrm{k}}+\frac{1}{2} f(\mathrm{~L}) \sum_{k=n 3}^{n} R_{\mathrm{k}} \mathrm{q}_{\mathrm{k}} \leq 0 \mathrm{n} \geq \mathrm{n}_{3}$
which implies $\frac{1}{2} f(\mathrm{~L}) \sum_{k=n_{3}}^{n} R_{\mathrm{k}} \mathrm{q}_{\mathrm{k}} \leq x_{\mathrm{n}+1}+\mathrm{R}_{\mathrm{n} 3} r_{n_{3}} \quad \Delta^{2} x_{n_{3}}-x_{n_{3}} \mathrm{n} \geq n_{3}$ Hence there exists a constant c such that $\sum_{k=n_{3}}^{n} R_{\mathrm{k}} \mathrm{q}_{\mathrm{k}} \leq \mathrm{c}$ for all $\mathrm{n} \geq \mathrm{n}_{3}$. contrary to the assumption of the theorem.

Theorem 3.3: Assume that
$\left(C_{7}\right):\left(n-r_{n}\right)$ is non decreasing, where $r_{n} \in\{0,1,2, \ldots$.$\} , there is a subsequence of \left(r_{n}\right)$,
say $\left(r_{n_{k}}\right)$ such that $r_{n_{k}} \leq 1$ for $\mathrm{k}=0,1,2, \ldots .$,
$\left(\mathrm{C}_{8}\right): \sum_{n=0}^{\infty} q_{\mathrm{n}}=\infty$,
$\left(\mathrm{C}_{9}\right): f$ is non decreasing and there is a nonnegative constant M such that
$\lim _{u \rightarrow 0} \sup \frac{u}{\mathrm{f}(u)}=\mathrm{M}$
Then the difference $\left(\Delta^{2} x_{\mathrm{n}}\right)$ of every solution $\left(x_{\mathrm{n}}\right)$ of Equation (1) oscillates.

Proof:

If not, then Equation (1) has a solution $\left(x_{\mathrm{n}}\right)$ such that its difference $\left(\Delta^{2} x_{\mathrm{n}}\right)$ is non oscillatory. Assume that the sequence ($\Delta^{2} x_{\mathrm{n}}$) is eventually negative.

Then there is positive integer n_{0} such that $\Delta^{2} x_{\mathrm{n}}<0 \mathrm{n}>\mathrm{n}_{0}$. and so $\left(x_{\mathrm{n}}\right)$ decreasing for $\mathrm{n} \geq \mathrm{n}_{0}$ which implies that $\left(x_{\mathrm{n}}\right)$ is also non oscillatory.

Set
$\mathrm{w}_{\mathrm{n}}=\frac{r_{n} \Delta^{2} x_{n}}{f\left(x_{n}-\tau_{n}\right)} \quad \mathrm{n} \geq \mathrm{n}_{1} \geq \mathrm{n}_{0}$. (9) then
$\Delta \mathrm{W}_{\mathrm{n}}=\frac{r_{n+1} \Delta^{2} x_{n+1}}{f\left(x_{n+1}-\tau_{n+1}\right)}-\frac{r_{n} \Delta^{2} x_{n}}{f\left(x_{n}-\tau_{n}\right)}$
$=\frac{\Delta r_{n} \Delta^{2} x_{n}}{f\left(x_{n}-\tau_{n}\right)}+\mathrm{r}_{\mathrm{n}+1} \Delta^{2} x_{\mathrm{n}+1} \frac{f\left(x_{n}-\tau_{n}\right)-f\left(x_{n+1}-\tau_{n+1}\right)}{f\left(x_{n+1}-\tau_{n+1}\right) f\left(x_{n}-\tau_{n}\right)}$.
$\leq \frac{\Delta r_{n} \Delta^{2} x_{n}}{f\left(x_{n}-\tau_{n}\right)}=\mathrm{q}_{\mathrm{n}}, \mathrm{n} \geq \mathrm{n}_{1}$.
Summing up both sides of (10) from n_{1} to n , we have
$\mathrm{w}_{\mathrm{n}+1}-w_{n_{1}} \leq \sum_{i=n_{1}}^{n} q_{\mathrm{i}}$ and, by (vi) we get
$\lim _{n \rightarrow \infty} w_{\mathrm{n}}=-\infty$, \qquad (11) Which implies that eventually
$f\left(x_{\mathrm{n}}-\mathrm{r}_{\mathrm{n}}\right)>0$
and therefore $x_{n}-r_{n}>0$. By (11), we can choose $n_{2}\left(\geq n_{1}\right)$
such that $\mathrm{W}_{\mathrm{n}} \leq-(\mathrm{M}+1), \mathrm{n} \geq \mathrm{n}_{2}$.
$\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}}+(\mathrm{M}+1) f\left(x_{\mathrm{n}}-\mathrm{r}_{\mathrm{n}}\right) \leq 0, \mathrm{n} \geq \mathrm{n}_{2}$.

Set $\lim _{n \rightarrow \infty} x_{\mathrm{n}=\mathrm{L}}$
Then $\mathrm{L} \geq 0$. Now we prove that $\mathrm{L}=0$. If $\mathrm{L}>0$ then we have
$\lim _{n \rightarrow \infty} f\left(\mathrm{x}_{\mathrm{n}}-\upharpoonright_{\mathrm{n}}\right)=f(\mathrm{~L})>0$
By the continuity of $f(\mathrm{u})$. Choosing an n_{3} sufficiently large, such that
$f\left(x_{\mathrm{n}}-\mathrm{r}_{\mathrm{n}}\right)>\frac{1}{2} f(\mathrm{~L}) \mathrm{n} \geq \mathrm{n}_{3}$ \qquad
and substituting (14) into (13) we have
$\Delta^{2} x_{\mathrm{n}}+\frac{1}{2 r n}(\mathrm{M}+1) f(\mathrm{~L}) \leq 0 \mathrm{n} \geq \mathrm{n}_{3}$.
Summing up both sides of (15) from n_{3} to n we get
$x_{\mathrm{n}+1}-x_{n_{3}}+\frac{1}{2}(\mathrm{M}+1) f(\mathrm{~L}) \sum_{i=n_{3}}^{n} \frac{1}{r_{i}} \leq 0$ which implies that $\lim _{n \rightarrow \infty} x_{\mathrm{n}}=-\infty$ This contradicts (12). Hence $\lim _{n \rightarrow \infty} x_{\mathrm{n}}=0$.

By the assumptions we have
$\lim _{n \rightarrow \infty} \sup \frac{x_{n}-\tau_{n}}{f\left(x_{n}-\tau_{n}\right)} \leq \mathrm{M}$. From this we can choose n_{4} such that
$\frac{x_{n}-\tau_{n}}{f\left(x_{n}-\tau_{n}\right)}<\mathrm{M}+1, \mathrm{n} \geq \mathrm{n}_{4}$ That is $x_{\mathrm{n}}-\mathrm{r}_{\mathrm{n}}<(\mathrm{M}+1) f\left(x_{\mathrm{n}}-\mathrm{r}_{\mathrm{n}}\right) \quad \mathrm{n} \geq \mathrm{n}_{4}$ and so from (13) we get
$\mathrm{r}_{\mathrm{n}} \Delta^{2} x_{\mathrm{n}}+x_{\mathrm{n}}-\mathrm{r}_{\mathrm{n}}<0, \mathrm{n} \geq \mathrm{n}_{4}$.
In particular, from (16) for a subsequence (r_{nk}) satisfying the condition (v),

$$
\text { we have } \quad x_{n_{k}+1}-x_{n_{k}}+x_{n_{k}}-r_{n_{k}} \leq r_{n_{k}}\left(x_{n_{k}+1^{-}} x_{n_{k}}\right)+x_{n_{k}}-r_{n_{k}}<0,
$$

for k sufficiently large, which implies that $0<x_{n_{k}+1}+\left(x_{n_{k}}-r_{n_{k}}-x_{n_{k}}\right)<0$ for all large k . This is a contradiction. The case that $\left(\Delta^{2} x_{\mathrm{n}}\right)$ is eventually positive can be treated in a similar fashion and so the proof of Theorem 3.3 is completed.

4. CONCLUSION

The Oscillatory Properties Third Order Nonlinear Neutral Delay Difference Equation it become Oscillate using Schwarz's Inequality

5. REFRERENCES

[1].R.P.Agarwal., Difference equation and inequalities-Theory methods and applications,second edition
[2].R.P.Agarwal, Martin Bohner, said R.Grace, Donal O'Regan.Discrete Oscillation Theory.CMIA Book Series
[3].J.R.Greaf, E.Thandapani: Oscillatory and Asymptotic Behavior of Solutions of Third order Delay Difference Equations, Funkcialaj Ekvocioj, 42(1999):355-369.
[4].B.Selvaraj, I.Mohammed ali jaffer. Oscillation Behavior of certain third order Linear Difference Equations. Far East Journal of Mathematical Sciences, accepted for publication in February, 5(2010).
[5].B.Selvaraj, I.Mohammed ali jaffer. On the Oscillation of the solution to third order difference equations. Journal of Computer and Mathematical Sciences- An International Research Journal. 1(17)(2010):873876.
[6].B.Selvaraj, I.Mohammed ali jaffer. Oscillation Behavior of Certain Third Order Non-linear Difference Equation- S.International Journal of Nonlinear Science.10.(3)(2010):349-358.
[7].E.Thandapani, B.Selvaraj. Oscillatory Behavior of Solutions of Three Dimentional Delay Difference System. Radovi Mathematicki, Vol. 13(2004): pp. 39-52.
[8].P. Mohankumar and A. Ramesh, Oscillatory Behaviour Of The Solution Of The Third Order Nonlinear Neutral Delay Difference Equation Vol. 2 Issue 7, 2013 pp.1162-1164

