Schultz, Modified Schultz and Hosoya polynomials and their indices in 2, 3dimethyl hexane an isomer of octane

N.K.Raut,
Majalgaon College,Majalgaon (Dist:Beed) India

Abstract

: Let G be a molecular graph. The Schultz and modified Schultz polynomials are defined as $S_{c}(G, x)=1 / 2 \sum_{u, v \subset(G)}(d u+d v) x^{d(u, v)} \quad$ and $\mathrm{S}_{\mathrm{c}}^{*}(\mathrm{G}, \mathrm{x})=1 / 2 \sum_{u, v \subset(G)}(d u d v) \mathrm{x}^{d(u, v)}$

Where du (ordv)denote the degree of the vertex u(orv), respectively. In this paper ,Schultz, Modified Schultz, Hosoya polynomials and their indices for 2,3-dimethyl hexane an isomer of octane are presented.

Keywords: Topological indices, Schultz polynomial, Hosoyapolynomial, molecular graph.

Introduction

Molecular graph is a simple graph representing the carbon -carbon skeleton of an organic molecule (usually hydrocarbons). The vertices of a molecular graph represent the carbon atoms, and the edges carboncarbon bonds [1]. A molecular graph $G(V, E)$ is constructed by representing each atom of molecule by vertex and bonds between by edges. Let $V(G)$ be vertex set and $E(G)$ be the edge set. In chemical graph theory, we have invariants polynomials for any graph, that they have usually integer coefficients. A topological index (or molecular descriptor) is a numerical value associated with chemical constitution for correlation of chemical structure with various physical properties, chemical reactivity. The graph theory has a wide range of applications in engineering, physical, social and biological sciences, linguistics and numerous other areas [2].

A quantitative measure of branching is needful for finding connections between molecular structure and physico - chemical properties of chemical compounds. Isomers are molecules that have the same molecular formula, but a have different arrangement of the atoms in space [3].

The degree is defined as number of edges with that vertex. For a linear graph $G=(V, E)$, the sum of degrees of all vertices is equal to $2 n_{e}$. Where n_{e} is the number of vertices of edges. The degree of vertex equals valence of the corresponding atom. LetV $\in G$ be a graph G. The neighborhood of v is the set of
$N_{G}(V)=\{u \in G \mid v u \in G\}$
The degree of v is the number of its neighbors[4].
$d_{G}(V)=d v=\left|N_{G}(V)\right|$
The Schultz, Modified Schultz polynomial and their indices are defined as $[5,6,7$, 8, and 9],
$S_{c}(G, \mathrm{x})=1 / 2 \quad \sum_{u, v \subset(G)}(d u+d v) x^{d(u, v)}$
$\mathrm{S}_{\mathrm{c}}{ }^{*}(\mathrm{G}, \mathrm{X})=1 / 2 \sum_{u, v \subset(G)}(d u d v) \mathrm{x}^{d(u, v)}$
(2) and
$S_{c}(G, x)=1 / 2 \sum_{u, v \subset(G)}(d u+d v) d(u, v)$
$\mathrm{S}_{\mathrm{c}}{ }^{*}(\mathrm{G}, \mathrm{x})=1 / 2 \sum_{u, v \subset(G)}(d u d v) \mathrm{d}(u, v)$
The Hosoya polynomial and Wiener index are defined as [10, 11, 12, 13, 14, 15],
$H(G, x)=1 / 2 \quad \sum_{v \in V(G)} \sum_{u \in V(G)} x^{d(v, u)}$
$\mathrm{W}(\mathrm{G}, \mathrm{x})=1 / 2 \quad \Sigma_{\mathrm{v} \in \mathrm{V}(G)} \sum_{u \in V(G)} \quad d(v, u)$
In this paper, Schultz polynomial, Modified Schultz polynomial, Hosoya polynomial and their indices for 2,3dimethyl hexane, an isomer of octane are studied.

Results and discussion:

There are eighteen isomers of octane, 2,3-dimethyl hexane ($2,3-\mathrm{dmh}$) is an isomer of octane with molecular formula $\mathrm{C}_{8} \mathrm{H}_{18}$. The degree of vertex $\mathrm{u} \in \mathrm{V}(\mathrm{G})$ is the number of vertices joining to u and denoted by $\mathrm{d}(\mathrm{u})$. The degrees of different vertices of (2,3-dimethyl hexane) are shown in figure (1).

The molecular graph with suppressed hydrogen atoms of 2,3-dimethyl hexane is given in fig.(2)
In this section we compute topologicalindices and their polynomials for $2,3-\mathrm{dmh}$ with formula $\mathrm{C}_{8} \mathrm{H}_{18}$.
Theorem: Let 2,3-dimethyl hexane be an isomer of octane .Then , the Schultz polynomial of 2,3-dmh is equal to
$S_{c}(G, x)=140 x^{1}+224 x^{2}+188 x^{3}+60 x^{4}+22 x^{5}$

The modified Schultz polynomial of 2,3-dmh is equal to
$S_{c}{ }^{*}(G, x)=91 x^{1}+240 x^{2}+15 x^{3}+44 x^{4}+14 x^{5}$
Hosoyapolynomial, $\mathrm{H}(\mathrm{G}, \mathrm{x})=7 \mathrm{x}^{1}+8 \mathrm{x}^{2}+7 \mathrm{x}^{3}+4 \mathrm{x}^{4}+2 \mathrm{x}^{5}$
and then respectively ,the Schultz, Modified Schultz and Wiener indices of 2,3-dmh are equal to
$S_{c}(G)=1502, S_{c}{ }^{*}=862$, and $W(G)=70$
Proof:
Schultz polynomial:
The matrix for $2,3-\mathrm{dmh}$ is given in fig.(3).
Schultz polynomial is computed by adding the entries in upper triangular part of distance matrix of a graph along with number of degrees of u and v-vertices for each of and number of k-element independent edge sets of the graph G. Denoted by $m(G, k)$ the number of k-element independent set of the graph G.

According tofig(1)-(3), the distances $\mathrm{d}(\mathrm{u}, \mathrm{v})$ along with corresponding degrees of
$u, v-v e r t i c e s ~(d u+d v)$ are:
$1(4)+2(3)+3(3)+4(2)+5(2)+2(2)+1(4)+$
$1(6)+2(5)+3(5)+4(4)+1(4)+2(4)+$
$1(5)+2(5)+3(4)+2(4)+1(4)+$
$1(4)+2(3)+3(3)+2(3)+$
$1(3)+4(3)+3(3)+$
$5(2)+4(2)+3(2)$
The Schultz polynomial is $S_{c}(G, x)=140 x^{1}+224 x^{2}+188 x^{3}+60 x^{4}+22 x^{5}$ andthe Schultz index is
$S_{c}(G)=\frac{\partial S c(G, x)}{\partial x} / x=1=140 * 1+224 * 2+188 * 3+60 * 4+22 * 5=1502$.

Modified Schultz polynomial:
Modified Schultz polynomial is computed by adding number of entries in upper triangular part of distance matrix of the graph, $\mathrm{d}(\mathrm{u}, \mathrm{v})$ along with number of degrees of u and v-vertices for number of edges in the graph. The distances in upper triangular part of distance matrix along with corresponding (du dv) degrees are:
$1(3)+2(3)+3(2)+4(2)+5(1)+2(1)+3(1)+$
$1(9)+2(6)+3(6)+4(3)+1(3)+2(3)+$
$1(6)+2(6)+3(3)+2(3)+1(3)+$
$1(4)+2(2)+3(2)+2(2)+$
$1(2)+4(2)+3(2)+$
5(1) $+4(1)+$
3(1).
By equation (2), the modified Schultz polynomial
$S_{c}{ }^{*}(G, x)=91 x^{1}+240 x^{2}+15 x^{3}+44 x^{4}+14 x^{5}$ and
Modified Schultz index
$\mathrm{S}_{\mathrm{c}}{ }^{*}(\mathrm{G})=\frac{\partial S c(G, x)}{\partial x} / \mathrm{x}=1=91 * 1+240 * 2+15^{*} 3+44^{*} 4+14^{*} 5=862$.
Hosoya polynomial:
Hosoya polynomial is computed by adding the entries in upper (or lower) triangular part of distance matrix of a molecular graph. The distanced (u, v) between two vertices u and v is minimum of the lengths of $u-v$ paths of G,that is $d(u, v)$ is the number of edges in a geodesic. $d(G, o)=n, d(G, 1)=e, w h e r e n$-number of edges of vertices in graph G, e-number of edges, $\mathrm{d}(\mathrm{G})$ - topological diameter. Using algorithm [3] and fig. (3), we have
$\left(G_{2,6}, 1\right)=7,\left(G_{2,6}, 2\right)=8,\left(G_{2,6}, 3\right)=7,\left(G_{2,6}, 4\right)=4,\left(G_{2,6}, 5\right)=5$.
The Hosoya polynomial for $2,3-\mathrm{dmh}$ is
$H(G, x)=7 x^{1}+8 x^{2}+7 x^{3}+4 x^{4}+2 x^{5}$. and
Wiener index is equal to:
$\mathrm{W}(\mathrm{G})=\frac{\partial H(G, x)}{\partial x} / \mathrm{x}=1=7 * 1+8 * 2+7 * 3+4 * 4+2 * 5=70$.
That completes the proof.

Conclusion:

In this paper, we count the topological indices and their polynomials of 2,3-dimehyl hexane. These topological indices are useful in studying physico-chemical properties of organic compounds of molecular graph, which have relation with degrees of its vertices.

Fig(1):Molecular graph G of 2,3-dmh

8
with its vertex degrees indicatedFig (2):Molecular graph for 2,3-dmh $\left(\mathrm{G}_{2}, 6\right)$.

	1	2	3	4	5	6	7	8	
1	(0	1	2	3	4	5	2	3	
2	1	0	1	2	3	4	1	2	for 2,3-dmh.
3	2	1	0	1	2	3	2	1	
4	3	2	1	0	1	2	3	2	
5	4	3	2	1	0	1	4	3	
6	5	4	3	2	1	0	5	4	
7	2	1	2	3	4	5	0	3	
8	(3	2	1	2	3	4	3	0	

References:

[1] Ivan Gutman, Degree-based topological indices, Croat.Chem.Acta 86(4) (2013) 351-361.
[2] NarsingDeo,GraphTheory, Prentice-Hall of India,New Delhi (2007) p.3.
[3] K.S. Ahire ,R.B.Sawant, Wiener index and Wiener polynomial in isomers of organic compounds ,Bulletin of the Marathawada Mathematical Society ,Vol.14,no.2,Dec-2013,pp.1-4.
[4] TeroHarju,Graph theory,Dept.ofMaths,University of Turku,FIN-20014 Turkos Finland,2011,pp.06-07.
[5] H.P. Schultz,Topological organic chemistry,1,Graph theory and topological indices of alkanes,J.chem.Inf.Comput.Sci.299(1989).
[6] S.Klavzar,I.Gutman, Wiener number of vertex-weighted graphs and a chemical application,Discrete Appl.Math.80(1997)73-81.
[7] F.Hassani et al, Schultz and Modified Schultz polynomials of C_{100}
Fullerene,MATCH,Commun,Math.Comput.Chem.69(2013)87-92.
[8] M.R.Farahani, Schultz and Modified Schultz polynomials of coronene , Polycyclic aromatic hydrocarbons, International letters of chemistry ,physics and astronomy ,13(1) (2014)I-10,
[9] M.R.Farahani,Hosoya ,Schultz,Modified Schultz polynomials and their indices of benzene molecules, Int.J.of theoretical chemistry, vol.1,No.2,oct.2013,pp.09-16.
[10] H.Hosoya,Discreteappli. Math. 19(1988) 239-257.
[11] A.R.Ashrafi et al , Digest Journal of Nanomaterials and Biostructrures,vol.4,No.2,June-2009,pp.389-393.
[12] H.Hosoya , Bull.Chem.Soc.Jpn.44,(1971),2332-2339.
[13] B.Y.Yang,Y.N.Yeh,Proc.of Second International TaiwanMoscow Algebra workshop , Tainan, (1997) 203226.
[14] B.D.Acharya et al,proc. of the National workshop 1-3 Feb.2010,pub.no.39,pp.9-10.
[15] Q.N.NanHu et al , The matrix expression, topological index and atomic attribute of molecular topological structure , Journal of Data Science 1(2003) 361-389.

