GRACEFUL LABELING FOR ONE POINT UNION OF PATH AND BARYCENTRIC SUBDIVISION OF A GRID GRAPH

V J Kaneria, Meera Meghpara H M Makadia

Department of Mathematics, Saurashtra University, RAJKOT-360005.

$$
\mathrm{E}-\mathrm{mail}: \text { kaneria_vinodray_j@yahoo.co.in }
$$

Om Engineering College, JUNAGADH - 362001.
E-mail: meera.meghpara@gmail.com
Govt. Engineering College, RAJKOT-360005.
E-mail: makadia.hardik@yahoo.com

Abstract

In this paper we have obtained some grid related family of connected graceful graphs. We obtained graceful labeling for one point union of path and barycentric subdivision of grid graph.

Key words: Graceful labeling, one point union of path, barycentric subdivision of grid graph.
AMS subject classification number: 05 C 78 .

1 Introduction:

Acharya and Gill [1] have investigated graceful labeling for the grid graph $\left(P_{n} \times P_{m}\right)$. Kaneria and Makadia [4] discussed gracefulness of $\left(P_{n} \times P_{m}\right) \cup\left(P_{r} \times P_{s}\right),\left(P_{n} \times P_{m}\right) \cup\left(P_{r} \times\right.$ $\left.P_{s}\right) \cup C_{2 f+3}$, tensor product $P_{2}\left(T_{p}\right) P_{n}$ and star of cycle $C_{n}^{*}(n \equiv 0(\bmod 4))$. For a dynamic survey on graph labeling one can refer to Gallian [2].

We begin with a simple undirected finite graph $G=(V, E)$ on p vertices and q edges. For all terminology and notations we follows Harary [3]. First of all we shall recall some definitions which are useful for this paper.

Definition-1.1: A function f is called graceful labeling of a graph $G=(V, E)$ if $f: V \rightarrow$ $\{0,1, \ldots, q\}$ is injective and the induced function $f^{*}: E \rightarrow\{1,2, \ldots, q\}$ defined as $f^{*}(e)=$ $|f(u)-f(v)|$ is bijective for every edge $e=(u, v) \in E$. A graph G is called graceful graph if it admits a graceful labeling.
Definition-1.2: A graph G obtained by replacing each edge of $k_{1, t}$ by a path P_{n} of length n on
$n+1$ vertices is called one point union for t copies of path P_{n}. We shall denote such graph G by P_{n}^{t}.
Definition-1.3: If every edge a graph G is subdivided by a new vertex then the resulting graph is called barycentric subdivision of graph G. In other word barycentric subdivision is the graph obtained by inserting a new vertex of degree 2 into every edge of the original graph G.

In this paper we have discussed graceful labeling for barycentric subdivision of the grid graph $\left(P_{n} \times P_{m}\right)$ and P_{n}^{t}, one point union of t copies of path P_{n}.

2 Main Results:

Theorem- 2:1: Barycentric subdivision of $\left(P_{n} \times P_{m}\right)$ is graceful.
Proof: Let G be a graph obtained by barycentric subdivision for $\left(P_{n} \times P_{m}\right)$. We know that the number of vertices for $\left(P_{n} \times P_{m}\right)$ is $p=m n$ and the number of edges $q=2 m n-(m+n)$. Also we see that the number of vertices for G is $P=|V(E)|=p+q$ and the number of edges $Q=$ $|E(G)|=2 q$.

Let $u_{i, j}(j=1,2, \ldots, 2 n-1, i=1,2, \ldots, m)$ be the vertices for vertical edges in G and $v_{i, j}(j=1,3, \ldots, 2 n-1, i=1,2, \ldots, m-1)$ be the vertices which divide to the horizontal edges in G. We define labeling function $f: V(G) \rightarrow\{0,1, \ldots, Q\}$ as follow.

$$
\begin{array}{rlrl}
f\left(u_{i, j}\right) & =Q-(i-1) n-\frac{j-1}{2} \\
& =(i-1)(3 n-2)+\frac{j-2}{2}, & & \forall i-1,2, \ldots, m, \quad \forall j=1,3, \ldots, 2 n-1 \\
f\left(v_{i, j}\right) & =(3 n-2) i-j, & & \forall i-1,2, \ldots, m, \quad \forall j=2,4, \ldots, 2 n-2 ; \\
& & \forall j=1,3, \ldots, 2 n-1 .
\end{array}
$$

Above labeling pattern give rise graceful labeling to the graph G and so it is a graceful graph.
Illustration- 2:2: Barycentric subdivision of $\left(P_{3} \times P_{4}\right)$ and its graceful labeling shown In figure-1.

Theorem -2:3: $\quad P_{n}^{t}$, one point union of path P_{n} on $n+1$ vertices is graceful.
Proof: Let G be a graph obtained by replacing each edge of $K_{1, t}$ by a path P_{n} of length n. Let v_{0} be the central vertex for P_{n}^{t} and $v_{i, j}(1 \leq i \leq t, 1 \leq j \leq n)$ be the consecutive vertices of each branch of P_{n}^{t} from v_{0}.

To define labeling function $f: V(G) \rightarrow\{0,1, \ldots, q\}$, where $q=t n$,, we shall take following four cases.

Case-I: t and n both are even

$$
\begin{aligned}
f\left(v_{1, j}\right) & =q-\left(\frac{n-j}{2}\right), & & \forall j=2,4, \ldots, n \\
& =\left(\frac{n-1-j}{2}\right), & & \forall j=1,3, \ldots, n-1 ;
\end{aligned}
$$

$$
\begin{aligned}
& f\left(v_{0}\right)=f\left(v_{1,2}\right)-1 ; \\
& f\left(v_{2, j}\right)=f\left(v_{1,1}\right)+\left(\frac{j+1}{2}\right), \quad \forall j=1,3, \ldots, n-1 \\
& =f\left(v_{0}\right)-\frac{j}{2}, \quad \forall j=2,4, \ldots, n \text {; } \\
& f\left(v_{i, j}\right)=f\left(v_{i-1, n-1}\right)+\left(\frac{n+2-j}{2}\right), \forall i=3,5, \ldots, t-1, \quad \forall j=2,4, \ldots, n \\
& =f\left(v_{i-1, n}\right)-\left(\frac{n+1-j}{2}\right), \quad \forall i=3,5, \ldots, t-1, \quad \forall j=1,3, \ldots, n-1 \\
& =f\left(v_{i-1,2}\right)+\left(\frac{j+1}{2}\right), \quad \forall i=4,6, \ldots, t, \quad \forall j=1,3, \ldots, n-1 \\
& =f\left(v_{i-1,1}\right)-\left(\frac{j}{2}\right), \quad \forall i=4,6, \ldots, t, \quad \forall j=2,4, \ldots, n \text {. }
\end{aligned}
$$

Case -II: t is even and n is odd

$$
\begin{aligned}
f\left(v_{1, j}\right) & =q-\left(\frac{n-j}{2}\right), & & \forall j=1,3, \ldots, n \\
& =\left(\frac{n-1-j}{2}\right), & & \forall j=2,4, \ldots, n-1 ; \\
f\left(v_{0}\right) & =f\left(v_{1,2}\right)+1 ; & & \\
f\left(v_{2, j}\right) & =f\left(v_{1,1}\right)-\left(\frac{j+1}{2}\right), & & \forall j=1,3, \ldots, n \\
& =f\left(v_{0}\right)+\frac{j}{2}, & & \forall j=2,4, \ldots, n-1 ; \\
f\left(v_{i, j}\right) & =f\left(v_{i-1, n-1}\right)+\left(\frac{n+2-j}{2}\right), & & \forall i=3,5, \ldots, t-1, \forall j=1,3, \ldots, n \\
& =f\left(v_{i-1, n}\right)-\left(\frac{n+1-j}{2}\right), & & \forall i=3,5, \ldots, t-1, \forall j=2,4, \ldots, n-1 \\
& =f\left(v_{i-1,2}\right)-\left(\frac{j+1}{2}\right), & & \forall i=4,6, \ldots, t, \quad \forall j=1,3, \ldots, n \\
& =f\left(v_{i-1,1}\right)+\left(\frac{j}{2}\right), & & \forall i=4,6, \ldots, t, \quad \forall j=2,4, \ldots, n-1 .
\end{aligned}
$$

Case-III: t and n both are odd

$$
\begin{aligned}
f\left(v_{1, j}\right) & =q-\left(\frac{n-j}{2}\right), & & \forall j=1,3, \ldots, n \\
& =\left(\frac{n-1-j}{2}\right), & & \forall j=2,4, \ldots, n-1 ; \\
f\left(v_{0}\right) & =f\left(v_{1,2}\right)+1 ; & & \forall j=1,3, \ldots, n \\
f\left(v_{2, j}\right) & =f\left(v_{1,1}\right)-\left(\frac{j+1}{2}\right), & & \forall j=2,4, \ldots, n-1 ; \\
& =f\left(v_{0}\right)+\frac{j}{2}, & & \forall i=3,5, \ldots, t, \quad \forall j=1,3, \ldots, n \\
f\left(v_{i, j}\right) & =f\left(v_{i-1, n-1}\right)+\left(\frac{n+2-j}{2}\right), & & \forall i=3,5, \ldots, t, \quad \forall j=2,4, \ldots, n-1 \\
& =f\left(v_{i-1, n}\right)-\left(\frac{n+1-j}{2}\right), & & \forall i=4,6, \ldots, t-1, \forall j=1,3, \ldots, n \\
& =f\left(v_{i-1,2}\right)-\left(\frac{j+1}{2}\right), & & \forall i=4,6, \ldots, t-1, \forall j=2,4, \ldots, n-1 . \\
& =f\left(v_{i-1,1}\right)+\left(\frac{j}{2}\right), & & \forall i
\end{aligned}
$$

Case-IV: t is odd and n is even

$$
\begin{aligned}
f\left(v_{0}\right) & =0 ; & & \\
f\left(v_{1, j}\right) & =q-\left(\frac{j-1}{2}\right), & & \forall j 1,3, \ldots, n-1 \\
& =\left(\frac{j}{2}\right), & & \forall j=2,4, \ldots, n ; \\
f\left(v_{2, j}\right) & =f\left(v_{1, n}\right)+\left(\frac{n+1-j}{2}\right), & & \forall i=1,3, \ldots, n-1 \\
& =f\left(v_{1, n-1}\right)-\left(\frac{n+2-j}{2}\right), & & \forall j=2,4, \ldots, n \\
f\left(v_{i, j}\right) & =f\left(v_{i-1,1}\right)+\left(\frac{j}{2}\right), & & \forall i=3,5, \ldots, t, \quad \forall j=2,4, \ldots, n \\
& =f\left(v_{i-1,2}\right)-\left(\frac{j+1}{2}\right), & & \forall i=3,5, \ldots, t, \quad \forall j=1,3, \ldots, n-1 \\
& =f\left(v_{i-1, n}\right)+\left(\frac{n+1-j}{2}\right), & & \forall i=4,6, \ldots, t-1, \quad \forall j=1,3, \ldots, n-1
\end{aligned}
$$

$$
=f\left(v_{i-1, n-1}\right)-\left(\frac{n+2-j}{2}\right), \quad \forall i=4,6, \ldots, t-1, \quad \forall j=2,4, \ldots, n .
$$

Above labeling pattern give rise graceful labeling to the graph P_{n}^{t} and so it is a graceful graph.

Illustration-2.4: P_{4}^{5} and its graceful labeling shown in figure-2.

Figure - 2
One point union of five copies of P_{4} and its graceful I abeling.

3 Concluding Remarks:

Here we have given graceful labeling to barycentric subdivision of ($P_{n} \times P_{m}$) and P_{n}^{t}, one point union of path. The results obtained here are new and of very general. This work contributes two results to the families of graceful labeling. The labeling pattern is demonstrated by means of illustrations.

Acknowledgement: The authors of this paper would like to thanks the reviewers for their valuable suggestions.

References

[1] B. D. Acharya and M. K. Gill, On the index of gracefulness of a graph and the gracefulness of two-dimensional square lattice graphs, Indian J. Math., 23, 1981, 8194.
[2] J. A. Gallian, The Electronics Journal of Combinatorics, 19, \#DS6(2013).
[3] F. Harary, Graph theory Addition Wesley, Massachusetts, 1972.
[4] V. J. Kaneria and H. M. Makadia, Some graceful graphs, J. of Maths. Research CCSE 4,(2012),54-58.

