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ABSTRACT 

 The vertex cover Polynomial of a graph G of order  n  has been already introduced in [3].  It is 

defined as the polynomial, C (G, x) =
|v (G)|

i = β(G)
 c (G, i)xi , where c (G , i) is the number of vertex covering sets of  

G  of size i and (G) is the vertex covering number of G.  In this paper, we derived a formula for finding the 

vertex cover polynomial of the KnK2. 
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Introduction 1:  

Let  G = (V, E) be a simple graph.  For any vertex v V, the open neighborhood of is the set  N(v) 

= {uV/uv E} and the closed neighborhood of v isthe set                  N[v] = N(v){v}. For a set S V, 

the open neighborhood of S is N(S) = 
v  S

N(v) and the closed neighborhood of S is  N[S] = N (S) S.  A set  

S V is a vertex covering of G if  every edge uv E is adjacent to at least one vertex in S.  The vertex 

covering number (G) is the minimum cardinality of the vertex covering sets in G.  A vertex covering set 

with cardinality (G) is called a - set.  Let  C (G , i)  be the family of vertex covering sets of G with 

cardinality  i  and let   c(G , i) = C(G, i)  The polynomial,  C(G, x) = 
|v (G)|

i = β(G)
 c (G , i) x i is defined as the vertex cover 

polynomial of G.  In [3], many properties of the vertex cover polynomials have been studied. 

2. Vertex Cover Polynomial: 

Definition: 2.1 
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 A graph G is said to be Complete if and only if every pair of vertices of G are adjacent in G. A 

Complete graph with n- vertices  is denoted by Kn. 

 The  graph Kn  K2 is obtained by two copies of Kn and the corresponding vertices are connected by 

spokes. The graph Kn  K2  is represented in figure (i) as follows: 

 

       (Figure 1) 

Theorem : 2.2 

The vertex cover polynomial of Kn  K2 is  C(Kn  K2, x ) = x
2n-2 

[ x
2
 + 2nx + n(n – 1)]. 

Proof :  

Let the vertices of G = Kn  K2 be denoted by { u1, u2,.  . . . .un, v1, v2,. .  . .vn}. Let          S1 = {u1, u2, 

. .  . .un} and S2 = {v1, v2, .. . . vn }. The maximum independent sets of G are                 Sij =   {ui, vj}where i 

j ,  i = 1, 2 . . .n, j = 1, 2 . . .n. 

Therefore, the minimum covering sets of G are  

(S1  S2)  - Sij i = 1, 2, . . . .n, j = 1, 2 . . .n 

Therefore, the cardinality of minimum vertex covering set is 2n-2.  

Since the number of maximum independent sets is equal to the number of minimum covering of G, 

for each vertex ui  S1, there are n – 1 elements vj, j = 1, 2, . . .n, i  j are independent to ui. 

Therefore, there are n(n – 1) minimum vertex covering sets with cardinality 2n-2.  

Therefore, c(Kn  K2 , 2n - 2 ) = n (n – 1). 

The vertex covering sets with cardinality  2n - 1 are  S1 S2 – {vj} for j = 1. . .. n and                      S1 

S2 – {ui}for j=1. . .. n. 

Therefore, the number of vertex covering sets with cardinality 2n – 1 is                  c(Kn  K2 ,   2n - 1 

) = 2n, and the vertex covering set with cardinality 2n is S1 S2. 

Therefore, c(Kn  K2 , 2n  ) = 1 

Therefore, the vertex Cover polynomial is 

c(Kn  K2 , x ) = n (n – 1) x
2n-2 

+ 2n x
2n-1 

+ x
2n 

 

         = x
2n-2 

[ x
2
 + 2nx + n(n – 1)] 
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Lemma : 2.3 

 The coefficients of the vertex cover polynomial c(Kn  K2 , 2n2)  are connected by the relation  

c(Kn  K2 , 2n  2 ) = c(Kn-1  K2 , 2n  4 ) + c(Kn-1  K2 , 2n  3 ). 

Proof: 

 

R.H.S  = c(Kn-1  K2 , 2n 4 ) + c(Kn-1  K2 , 2n 3 ) 

= (n – 1) (n – 2) + 2 (n – 1)      [  by theorem 2.2] 

= (n – 1) [ n – 2 + 2] 

= n (n – 1) 

= c(Kn1  K2 , 2n2 ) 

Theorem : 2.4 

 The roots of the vertex cover polynomial of Kn  K2 are  real. 

Proof: 

  By theorem 2.3 the vertex cover polynomial of  Kn  K2 is  

C(Kn  K2 , x ) =  x
2n-2 

[ x
2
 + 2nx + n(n – 1)]. 

Therefore, C(Kn  K2 , x ) =0 

  x
2n-2 

[ x
2
 + 2nx + n(n – 1)] = 0 

  x
2
 + 2nx + n(n – 1)  = 0 

This is a quadratic equation in n 

with a = 1; b = 2n and c . 

We have (2n)
2
  4n (n – 1),  n 3.  

That is, b
2  


  
4ac. 

Therefore, the roots of the vertex cover polynomial of Kn  K2   are always real. 

 

Theorem : 2.5 

 The non – zero roots of the vertex cover polynomial of Kn  K2    are   – n   n . 

Proof : 

 By theorem 2.3, the vertex Cover polynomial of Kn  K2   is  

x 
2n-2

 [ x
2
 + 2nx + n(n – 1)] 

Its roots are given by x 
2n-2

 [ x
2
 + 2nx + n(n – 1)] = 0 

 x
2
 + 2nx + n(n – 1) = 0 

         x =  
2 2n  (2n) 4n (n 1)

2
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=  
 2n  4n

2

 
 

= – n   n . 

Hence the result. 
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