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Abstract 

A prime cordial labeling of a graph G with the vertex set V(G) is a bijection  

f: V(G)→{1, 2, 3, ............... │V(G)│} such that each edge uv is assigned the label 1 if gcd(f(u), f(v)) = 1 

and 0 if gcd(f(u), f(v)) > 1 then the number of edges labeled with 0 and the number of edges labeled with 1 

differ by atmost 1. A graph which admits a prime cordial labeling is called a prime cordial graph. In this 

paper we prove that  

Y-tree and X-tree are prime cordial. 
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1. Introduction 

We consider a finite, connected undirected graph G=(V(G), E(G)). For standard 

terminology and notations we follow Bondy J.A and Murthy USR [4]. In this section we 

provide brief summary of definition and the required information for our investigation. 

The graph labeling is an assignment of numbers to the vertices or edges or both 

subject to certain condition(s). If the domain of the mapping is the set of vertices (edges) 

then the labeling is called a vertex labeling (edge labeling) 

 Many types of labeling schemes have been introduced so far and explored as well by 

many researchers. Graph labelings have enromous applications within mathematics as well 
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as to several areas of computer science and communication networks. According to Beineke 

and Hegde [3] graph labeling serves as a frontier between number theory and structure of 

graphs. Various applications of graph labeling have been studied by Yegnanaryanan and 

Vaidhyanathan [16]. For a dynamic survey on various graph labeling problems along with an 

extensive bibliography we refer to Gallian [5]. 

The study of prime numbers is of great importance as prime numbers are scattered and 

there are arbitrarily large gaps in the sequence of prime numbers. The notion of prime 

labeling was originated by Entringer and was introduced by Tout et al. [7]. 

After this many researchers have explored the notion of prime labeling for various 

graphs. Vaidya and Prajapati [13,14] have investigated many results on prime labeling. Same 

authors [15] have discussed prime labeling in the context of duplication of graph elements. 

Motivated through the concepts of prime labeling and cordial labeling a new concept termed 

as a prime cordial labeling was introduced by Sundaram et al. [6] which contains blend of 

both the labelings. 

Definition: 1.1 

A prime cordial labeling of a graph G with vertex set V(G) is a bijection f: V(G) → 

{1, 2,  ............... │V│} and the induced function f* : E (G) → {0,1} is defined by  

f*(e:uv) = 1,    if gcd (f(u), f(v))=1 

     = 0,    otherwise 

the number of edges having label 0, and the number of edges having label 1, differ by atmost 

1. A graph which admits prime cordial labeling is called a prime cordial graph. 

Sundaram et. al [6] have investigated several results on prime cordial labeling. Prime 

cordial labeling for some cycle related graphs have been discussed by Vaidya and Vihol [8]. 

Prime cordial labeling in the context of some graph operations have been discussed by 

Vaidya and Vihol [9] and Vaidya and Shah [10,11]. Vaidya and Shah [11] have proved that 

the wheel graph Wn admits prime cordial labeling for n ≥ 8 while same authors in [12] have 

discussed prime cordial labeling for some wheel related graphs. Babitha and Babuji [2] have 
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exhibited prime cordial labeling for some cycle related graphs and discussed the duality of 

prime cordial labeling. The same authors in [1] have investigated some characterization of 

prime cordial graphs and derived various methods to construct large prime cordial graph 

using existing prime cordial graphs.  

Definition: 1.2 

Y-tree is the tree obtained by taking three paths of same length and identifying one 

end point of each path. In otherwords Y – tree is got by sub division of K1,3 n times. 

Definition: 1.3 

X-tree is the graph obtained by taking five paths P1, P2, P3, P4 and P5 of same length 

and identifying the end vertices of P1, P2, P3 and then identifying the other end vertex of P3 

with the end vertices of P4 and P5. 

In this paper we prove that star K1,n for n even, X-tree and Y-tree are prime cordial. 

 

2. Main Results 

Theorem: 2.1 

K1,n is prime cordial  if n is even and n ≠  0 (mod 4), n ≥ 4 

Proof: 

Let V (K1,n) = {c, v1, v2, ....... vn} 

E(K1,n) = {c vi  / 1 ≤  i ≤  n} 

Define a labeling f: V (K1,n) →{1, 2, ....... n+1} by 

f(c)  = n, 

f(vi)  = i      for  1 ≤  n – 1 

f(vn) =  n+1 

Then   gcd (f(c), f(vi)) = (n, i) = 1    if i is odd. 

  ≠ 1    if i is even 
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 gcd (f(c), f(vn)) = (n, n+1) = 1 

Thus K1,n is prime cordial. 

Theorem: 2.2 

Y-tree is prime cordial for all  n ≥ 4 

Proof: 

Let V(G) = {u1, u2, ............ un-1, 

  v1, v2, ........... vn-1, 

  un=vn=w1, w2,......wn} 

and E(G)  =    { ui ui+1│1≤  i ≤  n – 1  } 

     { vi vi+1 │1≤  i ≤  n – 1  } 

      {wi wi+1│1≤  i ≤  n – 1  }  

 

 

Case (i):   n is even 

Define a labeling f: v(G) →{1, 2, .................. 3n-2}by 

f(ui)  = 2i-1       for  1≤  i ≤  n – 1 

f(vi)  = 2i          for  1≤  i ≤  n – 1 

f(wi)  = 2n + (2i-2)     for  1≤  i ≤  n/2 

f(wn) = 3n - 3, 

f(wn-i)  = f(wn) – 2i    for  1≤  i ≤  n/2 

Case (ii):   n is odd and n+1 ≡ 0 (mod 3) 

Define a labeling f: V(G) →{1, 2, .................. 3n-2}by 

f(ui) = 2i-1     for  1≤  i ≤  n – 1 

f(vi) = 2i         for 1≤  i ≤  in – 1 

f(wi) = 2n + (2i - 2)     for 1≤  i ≤  n/2 – 1 

f(wn) = 3n – 2, 

f(wn - i) = f(wn) - 2i    for 1≤  i ≤  n/2 
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and then interchange the labels of wn-2 and w n/2 +1 

Case (iii):   n is odd and n+1 ≡ 0 (mod 3) 

Define a labeling f: V(G) →{1, 2, .................. 3n-2}by 

f(ui) = 2i-1      for 1≤  i ≤  n – 1 

f(vi) = 2i         for 1≤  i ≤  n – 1 

f(wi) = 2n + (2i - 2)     for 1≤  i ≤  n/2 – 1 

f(wn) = 3n  - 2, 

f(wn - i) = f(wn) - 2i     for 1≤  i ≤  n/2 

 In all the above cases │ef (0) – ef (1) │< 1.  

Hence Y tree is prime cordial. 

Theorem: 2.3 

X-tree is prime cordial for all n > 9 except n = 3
p
 where p is odd. 

Proof: 

Let V(G) = {u1, u2, ... un-1, un+1, un+2,... u2n-1, 

  v1, v2, ... vn-1, vn+1, vn+2,... v2n-1, 

  un= vn= w1, w2, ...wn= u2n= v2n} 

and E (G) =        { ui ui+1│1≤  i ≤  n – 1  and  n+1 ≤ i ≤ 2n } 

             { vi vi+1│1≤  i ≤  n – 1   and  n+1 ≤ i ≤ 2n } 

             { wi wi+1│1≤  i ≤  n – 1  }  

Case (i) :    n is even 

Define a labeling f: V(G) →{1, 2, .................. 5n - 4}  by 

f(ui) = 2i-1      for 1≤  i ≤  n – 1 

f(vi) = 2i         for 1≤  i ≤  n – 1 

f(wi) = 2n + (2i - 2)     for 1≤  i ≤  n/2 

f(wn) = 3n – 3, 

f(wn - i) = f(wn) - 2i    for 1≤  i ≤  n/2 - 1 

f(vn + 1) = 3n,  
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f(vi) = f(vi - 1) + 2     for  n+2 < i < 2n - 1 

f(un + 1) = 3n – 1, 

f(ui) = f(ui - 1) + 2     for  n+2 < i < 2n - 1 

Case (ii):   If n is odd, n>9, n+1  0 (mod 3) and n+1 ≡ 0 (mod 10)  

Define a labeling f: V(G) →{1, 2, .................. 5n - 4} 

f(ui) = 2i-1       for 1≤  i ≤  n – 1 

f(vi) = 2i         for 1≤  i ≤  n – 1 

f(wi) = 2n + (2i - 2)       for 1≤  i ≤  n/2 

f(wn) = 3n – 2, 

f(wn - i) = f(wn) - 2i      for 1≤  i ≤  n/2 

f(vn+1) = 3n -1, 

f(vi) = f(vi-1) + 2       for n + 2 < i < 2n-1 

f(un+1) = 3n, 

f(ui) = f(ui - 1) + 2      for n + 2 <  i < 2n - 1       

Case (iii)     :  If n is odd, n>9,  n+1≡ 0 (mod 3) and n+1   0 (mod 10)  

In the labeling defined in case (ii) interchange the labels of wn-2 and wn/2+2 

Case (iv)    :  n is odd and n ≡ 0 (mod 3) 

Define a labeling f: V(G) →{1, 2, .................. 5n - 4} 

f(ui) = 2i - 1    for 1≤  i ≤  n – 1 

f(vi) = 2i       for 1≤  i ≤  n – 1 

f(wi) = 2n + (2i - 2)    for 1 ≤  i ≤  n/2 

f(wn) = 3n -2, 

f(wn-i) = f(wn) - 2i      for 1≤  i ≤  n/2 

f(vn+1) = 3n – 1, 

f(vi) = f(vi-1) + 2       for n + 2 < i <2n - 1 

f(un + 1) = 3n, 
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f(ui) = f(ui - 1) + 2     for n + 2 <  i  < 2n - 1 

and then interchange the labels of wn-2 and w[n/2]+1  

In all the above cases │ef (0) – ef (1) │< 1. 

Hence X-tree is prime cordial 

Remark: 2.4 

X-tree is not a prime cordial if n = 3
p 
where p is odd or if n < 8. 

Conclusion: 

Here we investigate new results on prime cordial labeling for star K1,n (n is even) X-

tree and Y-tree. It is possible to investigate similar results for other graph families. There is a 

scope to obtain similar results corresponding to  

Example: 1 

Y-tree is prime cordial when n = 6 (even) 
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Example : 2 

Y-tree is prime cordial when n = 5 

(odd) 
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Example: 3  

X-tree is prime cordial, n = 10 (even) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: 4 
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X-tree is prime cordial, n = 9 (odd) 
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