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Abstract: In this paper we established some results on reflexivity and completeness of
normed almost linear space. The reflexivity of a normed almost linear space X with respect
to the sub spaces Wy and Vy are described through some results.
1.Introduction

The notion of almost linear space and normed almost linear space was introduced by
G. Godini [1 - 3]. All spaces involved in this work are over the real field R. Sang Han Lee
[4] introduced the algebraic dual space and algebraic double dual space of the almost linear
space X and define algebraic reflexivity of the almost linear space X. Sung Mo Im and Sang
Han Lee [7] characterizes the reflexivity of normed almost linear space without basis. Sung
Mo Im and Sang Han Lee [9] proved that the dual space X* of a normed almost linear space
is complete. Basing all the above results in this paper we established some results relating to
reflexivity of normed almost linear space X with respect to the sub spaces Wy and Vy of
normed almost linear space X.

2. Preliminaries
Definition 2.1: Let X*={f € X": ||| ||| <o}, then the space X * together with ||| . ||| defined by
Il fll =sup {|f(X)|:]||x]||| <1} is called the dual space of the normed almost linear space X.
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Definition 2.2: The dual space of the dual space X " is called bi-dual space or second dual space
of X and is denoted by X .

Definition 2.3: For every normed almost linear space X, there is a natural map F: X — X
** such that F(x) (f) = f(x), for every x € X and for every f e X * where f:X—>R,FX) €
X** where F(x) : X* — R.

Definition 2.4: The normed almost linear space X is called reflexive when the natural map F: X
— X ** s an isomorphism

Proposition 2.5: Let (X, ||| . |||) be a normed almost linear space. Then for each x € X there
exists f,, € X* such that |||f ||| =1 and £, (x) =|||x]||.m

Proposition 2.6: Let (X, ||| . |||]) be a normed almost linear space. Then for each f € (Wy)* there
exists f; € Wy- such that f;\Wy = f and |||f.]l| = |lIf]l| and f1(v +w) = f(w) for each
vV EVyandw € Wy.m

Proposition 2.7: Let (X, ||| . |||) be a normed almost linear space and split as X =
wWXx+VXx. Then for each fe(V.X)~there exists /1€V.x+such that S1\VX=/f
and [lI£lll = [llf1l].m

Proposition2.8: If a normed almost linear space X is reflexive, then X = Wy + Vy. m
Proposition 2.9: If a normed almost linear space X splits as X = Wy + Vy and f is an almost

linear functional on X'then f € Wy« ifand only if f/Vx = 0. m

Proposition 2.10: If a normed almost linear space X splits as X = Wy + Vy, then

(). Vg isisomorphic with (Vy)**and (ii). Wy« is isomorphic with (Wx)**. m

Proposition 2.11: If wy is one-to-one then | is one-to-one and onto L(X,,(Y;,C;)). And
L(X,(Y,C)) is a normed almost linear space iff L(X;,(Y;,C;)) is a normed almost linear space.
For proof of propositions 2.5 to 2.11 refer [3 — 9]

3. Main results

Theorem 3.1: For any x in a normed almost linear space X, we have

- If () *
el = sup{ <57 f € X, f # 0}
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Proof: For any x € X, by Proposition 2.5, there exists f,, € X* such that |||£,|||[=1 and
foe () = [llxll

So we have ||||] _'lﬁjf |T|| sup{ :{U(jl‘l)l' feEXf+0)

From | £ < AN I, we have sup{'ﬂ;xlf' cfEeEXf # 0} < ||| x|l for each
fex. Hence
IIelll = sup{ =5« £ € X, f # 0}.m

For a normed almost linear space X and f € X*, an equivalent formula for f is

I 11 = sup paj=fx)] = sup 27 (x #0) 3.1

An isomorphism T of a normed almost linear space X onto a normed almost linear space Y is a
bijective linear operator T: X — Y which preserves the norm, that is, for all x € X, |||T (x)||| =
|||x|||- Then X is called isomorphic with Y.

For x € X let Q,. be the functional on X* defined, as in the case of a normed linear space, by
Q:(f) = fFO(f € X7, 3.2

Then @, is an almost linear functional on X* and |[|Q.|l| < [/|xl|-

Hence Q, is an element of X**, by definition of X**. 3.3

This defines a mapping C: X — X** by C(x) = Q,. 3.4

C is called the canonical mapping of X into X™*.

If the canonical mapping C of a normed almost linear space X onto X** defined by (3.1) is an
isomorphism, then X is said to reflexive. m

Theorem 3.2: For a normed almost linear space X, the canonical mapping C defined by (3.4) is a
linear operator and preserves the norm.

Proof: By (3.1) and Theorem (3.1), we have

10:(H) @)l
= = for h x € X.
TR AL = [lx]| for each x

Hence C preserves the norm.

1QxlI= supf+o

Letx,y € X and a € R.
Foreach f € X*, we have Q,.,(f) =f(x +y) = f(x) + f(¥) = Qx(f) + @, (f),
Qax(f) = f(ax) = (aof)(x) = (@0Q,) ().
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Thus C (x+y) = C(x) + C(y) and C (ax) = a o C(x).
Therefore C is a linear operator. m
Theorem 3.3: If a normed almost linear space X splits as X = Wy + Vy, then

Vy+ is isomorphic with (Vy)*and W+ is isomorphic with (Wy)*.
Proof. Since x*\Vy € (Vy)* for each x* € Vy+, we can define an operator
T:Vy- = (Vx)" by T(x*) = x*\Vy for each x* € Vy-. For
x*,y* € Vy~and a, f € R, we have T(axox™ +
Loy*v=aox*+poy*v=x+av+y*LFv=7(x*)av+7(y*)frv=aol (x*))v+(Lol (yv+*)v =aol (x*+
BoT (y*)](v) for each v € Vy.
Hence T is a linear operator.

If x* # y* € Vy+, then x*(v) # y*(v) for some v € Vy.
SoT(x*) # T(y*). Hence T is injective.
For each v* € (Vy)*, there exists x* € V- such that x*\Vy = v* by Proposition 2.5.

Hence T is surjective.

Forany v* € Vy-, [[[v7[I[ 2l v*\Vxlll = [[IT (w)III
Also,ifx =v+weX,veVy,,we Wywith|||x|||< 1, then ||| v|[|< 1 and v'(x) =
v*(v). So we

have [||lv"|ll = sup{lv*(x)| : x € X, [lIX[| = 1} < sup{jv*(v)|: v € Vy, [lIvlll < 1}

= sup {|T(w")W)|: v € Vy, [IMl|< 1} =[IT )|
Hence T preserves the norm. Therefore Vy« is isomorphic with (Vy)*.
Similarly apply Proposition 2.9and Proposition 2.6, we can show that an operator
T Wy - (W), T'(x*) = x"\Wx(x* € Wy~), is an isomorphism. m

Theorem 3.4: If a normed almost linear space X is reflexive, then Vy and Wy are reflexive.
Proof: By Proposition 2.8, X = Wy + Vy since X is reflexive.

Let C: X — X™* be the canonical isomorphism, and let C": Vy — (Vx)** be the canonical mapping.
We will show that C' is bijective. Let v*™* € (Vy)*".
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By theorem3.3, T: Vy- = (Vy)*, T(v*) = v*\Vx (v* € Vy+), is an isomorphism.

Since x*\Vy € (Vx)* for each x* € X*, we can define a functional 7**: X* — R by

v (") = v (x*\Vy) for each x* € X*. Then 7™ € V.

Since C is an isomorphism of X onto X**, there exists v € Vy such that C(v) = v**".
Forthisv € Vy, C'(v) = v*".

Indeed, for each v* € (Vy)*, there exists v* € Vy- such that v*\Vy = v* by Proposition 2.7. So,
we have v**(v*) = v (W \Vy) =" (@) = Cv)(¥") = v*(v) =v*(v) = C"'(v)(V").
Hence C’ is surjective.

If v; # v, inVy, then C(v,) # C(vy) in X** since C is an isomorphism.

Choose f € X*, such that C(v,)(f) # C(vy)(f), i.e., f(vy) # f(vy).

For this f € X™, f\Vx € (Vx)* and f\Vx (v1) # f\Vx (V).

So, we have C'(vy) # C'(v,).

Hence C’ is injective.

Therefore C' is an isomorphism.

Similarly, we can show that Wy is reflexive. m

Theorem 3.5: Let X be a split normed almost linear space as X = Wy + V. If Vi and Wy are
reflexive, then X is reflexive.

Proof: Note that X* = Wy« + Vy and X** = Wy + Vyu.

Let C":Vy - (Vx)™ and C"": Wy — (Wx)™* be the canonical isomorphism,

and let C: X — X™* be the canonical map.

We will show that C is bijective.

Let v** € Vy-. By Proposition 2.11, we have v**(x*) = v**(v™*) for each
X*=v"+w"€X", v E Vi, w" € Wy+. And v**\ Vy+ € (Vy=)".

Recall that T: Vi« —» (Vy)*, T(v*) = v*\Vyx (v* € V), is an isomorphism.

Define a functional v**: (Vx)* = R by v**(v*\Vyx) = v**(v*) for each v\
Vy € (Vy)". Then o™ € (Vy)™".
Since C' is an isomorphism of Vy onto (Vy)**, there exists v € Vy such that C'(v) =v™.

Forthisv € Vy, C(v) = v*.
Indeed, v™*(x*) = v™*(v*) = v \Vy) =C'(v)(w"\Vy) =v"\Vx(v) =v'(v) =x"(v) =
C(v)(x*) foreach x* = v* + w* € X" with v* € Vy+, w* € Wy,
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Similarly, for each w** € Wy, there exists w € Wy such that C(w) = w**.

Hence, for each x™ = v** + w** € X™ with v** € Vy=, w*™ € Wy, there exists
x=v+weXwith veVy, we Wysuchthat C(x) = C(v) + C(w) = v*™ + w* = x™. Hence
C is surjective.

If w; # w,in Wy, then C"”"(w,) # C"(w,) in (Wy)™ since C"' is an isomorphism.

Choose f € (Wy)* such that C""(wy)(f) # C"(wy)(f), i.e., f(wy) # f(wy).

By proposition 2.6, there exists f; € X* such that f;\ Wy = f and ||f1]| = |If]|-

For this f;, we have C(w;)(f1) # C(wy)(f1) since f;(wy) # f1(wy).

Hence C(w,) # C(w,). Similarly C(v,) # C(v,) for v; # v, in Vy.

Therefore C is injective since C is a linear operator and hence X is reflexive m

Lemma 3.6: A normed almost linear space (X,||| . ||[) is complete iff (Ey, || . ||) is @ Banach space
and X; is norm-closed in E.

Proof: Suppose X complete.

Then X, is complete in the || . || of Ex and so closed in Ey.

We show now that Ex is a Banach space.

Let {z,, }n=1 < Ex be a Cauchy sequence.

We can suppose that for each n € N we have || z, - zp4,, || < # for eachp>1
Letz, = x; - y1, X1, Y1 € X;.

Since || z,-z, || < 1/22, there exist x,, y, € X, such that z,-z; = x, - y, and
1%l + 11y I < 1/22.

Then z, = (x;+ x3) — (y1+ y2) Where || x,[|< 1/22, || y, || < 1/27.

By induction on n we find two sequences{ x;},—1, { yi}i=, < X; such that for each neEN we have
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zp= (Xizq %) — i, yi) and for n>2 we have

| x,ll< 1/27%, || yll< 1/27. Foreach ne N, let x,, =
tix € Xpand Ty, = Xin, vi € Xy Clearly {x,,};-, and

{7}z are Cauchy sequences and since X, is complete, there exist X, y € X; such that

lim, Lol >, - X || =0and lim, || 7, -¥ || =0. Thenforz=x-y

€ Ex we have lim,,_,|| z,-2 || =0, i.e., Ex is a Banach space. The converse

part is obvious. m

Theorem 3.7: Let X be a complete normed almost linear space, Y a normed almost linear space

such that w, is one-to-one and ccY a closed convex cone such that L(X,(Y,C)) is a normed almost

linear space. Let {T, },-, be a sequence in L(X,(Y,C)) such that lim,,_, ., py(T,,(X), T(x)) = 0 for

each xe X. Then the sequence{|||T,||[}s=1 is bounded and T € L(X,(Y,C)).

Proof. Since wy is one-to-one and C closed, it is easy to show that T € L(X,(Y,C)).

Now for each x € X, [||x/||<1 we have

TN = [lwy T < lwy (T(X)) - @y (T DI+l @y (T (X)) [l = py (Tn (), T(x)) +
T, )| < py(T,,(X), T(X)) + |||T,||| for each neN, and so if we show that {|||T,,|||}n=1 IS bounded,
then T € L(X,(Y,C)). Since

wy 1S one-to-one, by hypotheses and Proposition 2.11, L(X,,(Y;,C;)) is a normed almost linear
space.
Now wpx v,c)) (Tn) EK, N EN.
Then wyx vy (Tn) / X1 = Ty € L(X1,(Y4,C1)) and wy T, = Ty, N EN.
Hence by hypothesis we have that lim,,_,., py(T,(x) =0 for each x € X..
T(X)) = limy_oo|| wy (T, (X))- lwy (TGO
= lim, || Ty (wx(X))- wy(T(X)) || and so for each ¥ € X, the sequence {T,,(X)}o-,

converges to an element of Y;.

Letz € Ey, z=7; - X, X, € Xq,i=1,2.
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Then {wx v,c)) (Tn) (2)}n=1 converges to an element of Ey.

By Lemma (3.6), Ex is a Banach space.

Hence by Banach- Steinhaus theorem the sequence {[|wy,x,(v,cy)(Tn)l[}n=1 is bounded. Since

loonge. . (Tll = Il Toll for each neN, the sequence {JI{Ty [}y is bounded. m
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