"Reflexivity and completeness of normed almost linear

space"

T. Markandeya Naidu \& Dr. D. Bharathi
Lecturer in Mathematics, P.V.K.N. Govt. College, CHITTOOR, Affiliated to S.V.University,Tirupati. Andhra Pradesh-517002
Email: tmnaidu.maths@yahoo.co.in

Associate professor, Department of Mathematics, S.V.University, TIRUPATI,

Andhra Pradesh-517502
Email: bharathikavali@yahoo.co.in

Abstract: In this paper we established some results on reflexivity and completeness of normed almost linear space. The reflexivity of a normed almost linear space X with respect to the sub spaces W_{X} and V_{X} are described through some results.

1.Introduction

The notion of almost linear space and normed almost linear space was introduced by G. Godini [1-3]. All spaces involved in this work are over the real field \mathbb{R}. Sang Han Lee [4] introduced the algebraic dual space and algebraic double dual space of the almost linear space X and define algebraic reflexivity of the almost linear space X. Sung Mo Im and Sang Han Lee [7] characterizes the reflexivity of normed almost linear space without basis. Sung Mo Im and Sang Han Lee [9] proved that the dual space X^{*} of a normed almost linear space is complete. Basing all the above results in this paper we established some results relating to reflexivity of normed almost linear space X with respect to the sub spaces W_{X} and V_{X} of normed almost linear space X .

2. Preliminaries

Definition 2.1: Let $X^{*}=\left\{f \in X^{\#}:|\|f\||<\infty\right\}$, then the space X^{*} together with $|\|\cdot\||$ defined by $\||f|\|=\sup \{|f(x)|:|\|x\|| \leq 1\}$ is called the dual space of the normed almost linear space X.

Definition 2.2: The dual space of the dual space X^{*} is called bi-dual space or second dual space of X and is denoted by $X^{* *}$.
Definition 2.3: For every normed almost linear space X, there is a natural map F: $X \rightarrow X$
** such that $\mathrm{F}(x)(f)=f(x)$, for every $x \in X$ and for every $f \in X^{*}$ where $\quad f: X \rightarrow \mathbb{R}, \mathrm{~F}(x) \in$ $X^{* *}$ where $\mathrm{F}(x): X^{*} \rightarrow \mathbb{R}$.

Definition 2.4: The normed almost linear space X is called reflexive when the natural map $\mathrm{F}: X$ $\rightarrow X * *$ is an isomorphism
Proposition 2.5: Let $(X,\| \| \cdot \|)$ be a normed almost linear space. Then for each $\quad x \in X$ there exists $f_{x} \in X^{*}$ such that $\left\|\left\|f_{x}\right\|\right\|=1$ and $f_{x}(x)=\|||x| \|$. .
Proposition 2.6: Let $(X,\| \| \cdot \|)$ be a normed almost linear space. Then for each $f \in\left(W_{X}\right)^{*}$ there exists $f_{1} \in W_{X^{*}}$ such that $f_{1} \backslash W_{X}=f$ and $\left\|\left\|f_{1}\right\|\right\|=\|f\| \|$ and $\quad f_{1}(v+w)=f(w)$ for each $v \in V_{X}$ and $w \in W_{X}$.
Proposition 2.7: Let $(X,\| \| \cdot \|)$ be a normed almost linear space and split as $X=$ $W X+V X$. Then for each $f \in(V X) *$ there exists $f 1 \in V X *$ such that and $\left\|\left|f_{1}\| \|=\|f \mid\|\right.\right.$.
Proposition2.8: If a normed almost linear space X is reflexive, then $X=W_{X}+V_{X}$.
Proposition 2.9: If a normed almost linear space X splits as $X=W_{X}+V_{X}$ and f is an almost linear functional on X then $f \in W_{X^{\#}}$ if and only if $f / V_{X}=0$.

Proposition 2.10: If a normed almost linear space X splits as $X=W_{X}+V_{X}$, then (i). $V_{X^{* *}}$ is isomorphic with $\left(V_{X}\right)^{* *}$ and (ii). $W_{X^{* *}}$ is isomorphic with $\left(W_{X}\right)^{* *}$.

Proposition 2.11: If ω_{Y} is one-to-one then I is one-to-one and onto $\mathrm{L}\left(\mathrm{X}_{1},\left(\mathrm{Y}_{1}, \mathrm{C}_{1}\right)\right)$. And $\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C}))$ is a normed almost linear space iff $\mathrm{L}\left(\mathrm{X}_{1},\left(\mathrm{Y}_{1}, \mathrm{C}_{1}\right)\right)$ is a normed almost linear space. For proof of propositions 2.5 to 2.11 refer [3-9]

3. Main results

Theorem 3.1: For any x in a normed almost linear space X, we have
$\|\mid x\| \|=\sup \left\{\frac{|f(x)|}{|f| \mid}: \quad f \in X^{*}, f \neq 0\right\}$.

Proof: For any $x \in X$, by Proposition 2.5 , there exists $f_{x} \in X^{*}$ such that $\left\|f_{x}\right\|=1$ and $f_{x}(x)=\| \| x \|$.
So we have $\left\|x|\||=\frac{\left|f_{x}(x)\right|}{\| \| f_{x}\| \|} \leq \sup \left\{\frac{|f(x)|}{\|f \mid\|}: f \in X^{*}, f \neq 0\right\}\right.$.
From $|f(x)| \leq\||f|\|\| \| x \|$, we have $\sup \left\{\frac{|f(x)|}{|f f| \mid}: f \in X^{*}, f \neq 0\right\} \leq\|| | x\|$ $f \in X^{*}$.

Hence
$\|x \mid\|=\sup \left\{\frac{|f(x)|}{\|f\| \|}: f \in X^{*}, f \neq 0\right\}$.
For a normed almost linear space X and $f \in X^{*}$, an equivalent formula for f is
$\||f|| |=\sup _{\|||X \|=1|}|\mathrm{f}(\mathrm{x})|=\sup \frac{|f(x)|}{| | x| |}(x \neq 0)$
An isomorphism T of a normed almost linear space X onto a normed almost linear space Y is a bijective linear operator $T: X \rightarrow Y$ which preserves the norm, that is, for all $x \in X,\|T(x)\|=$ $\||\mid x \|$.Then X is called isomorphic with Y.
For $x \in X$ let Q_{x} be the functional on X^{*} defined, as in the case of a normed linear space, by
$Q_{x}(f)=f(x)\left(f \in X^{*}\right)$.
Then Q_{x} is an almost linear functional on X^{*} and $\left\|\left\|Q_{x}\right\|\right\| \leq\|x \mid\|$.
Hence Q_{x} is an element of $X^{* *}$, by definition of $X^{* *}$.
This defines a mapping $\mathrm{C}: X \rightarrow X^{* *}$ by $\mathrm{C}(x)=Q_{x}$. 3.4

C is called the canonical mapping of X into $X^{* *}$.
If the canonical mapping C of a normed almost linear space X onto $X^{* *}$ defined by (3.1) is an isomorphism, then X is said to reflexive.
Theorem 3.2: For a normed almost linear space X, the canonical mapping C defined by (3.4) is a linear operator and preserves the norm.

Proof: By (3.1) and Theorem (3.1), we have

$$
\left\|Q_{x}\right\|=\sup _{f \neq 0} \frac{\left|Q_{x}(f)\right|}{\|f\|}=\sup _{f \neq 0} \frac{|f(x)|}{\|f\|}=\|x\| \text { for each } x \in X .
$$

Hence C preserves the norm.
Let $x, y \in X$ and $\alpha \in R$.
For each $f \in X^{*}$, we have $Q_{x+y}(f)=f(x+y)=f(x)+f(y)=Q_{x}(f)+Q_{y}(f)$,

$$
Q_{\alpha x}(f)=f(\alpha x)=(\alpha o f)(x)=\left(\alpha o Q_{x}\right)(f)
$$

Thus $\mathrm{C}(x+y)=\mathrm{C}(x)+\mathrm{C}(y)$ and $\mathrm{C}(\alpha x)=\alpha o \mathrm{C}(x)$.
Therefore C is a linear operator.
Theorem 3.3: If a normed almost linear space X splits as $X=W_{X}+V_{X}$, then $V_{X^{*}}$ is isomorphic with $\left(V_{X}\right)^{*}$ and $W_{X^{*}}$ is isomorphic with $\left(W_{X}\right)^{*}$.
Proof: Since $x^{*} \backslash V_{X} \in\left(V_{X}\right)^{*}$ for each $x^{*} \in V_{X^{*}}$, we can define an operator
$T: V_{X^{*}} \rightarrow\left(V_{X}\right)^{*}$ by $T\left(x^{*}\right)=x^{*} \backslash V_{X}$ for each $x^{*} \in V_{X^{*}}$.
For
$x^{*}, y^{*} \in V_{X^{*}}$ and $\alpha, \beta \in R$, we have $T\left(\alpha o x^{*}+\right.$
$\beta o y * v=\alpha o x *+\beta o y * v=x * \alpha v+y * \beta v=T(x *) \alpha v+T(y *) \beta v=\alpha o T(x *)) v+(\beta o T(y *) v=\alpha o T(x *+$
$\left.\beta o T\left(y^{*}\right)\right](v) \quad$ for each $v \in V_{X}$.
Hence T is a linear operator.
If $x^{*} \neq y^{*} \in V_{X^{*}}$, then $x^{*}(v) \neq y^{*}(v)$ for some $v \in V_{X}$.
So $T\left(x^{*}\right) \neq T\left(y^{*}\right)$. Hence T is injective.
For each $v^{*} \in\left(V_{X}\right)^{*}$, there exists $x^{*} \in V_{X^{*}}$ such that $x^{*} \backslash V_{X}=v^{*}$ by Proposition 2.5.
Hence T is surjective.
For any $v^{*} \in V_{X^{*}},\left\|\left|v^{*}\| \| \geq\right|\right\| v^{*} \backslash V_{X}\| \|=\left\|T\left(v^{*}\right)\right\| \|$.
Also, if $x=v+w \in X, v \in V_{X}, w \in W_{X}$ with $\||x|| | \leq 1$, then $\||v|\| \leq 1$ and $v^{*}(x)=$
$v^{*}(v)$.
So we
have $\left\|\mid v^{*}\right\| \|=\sup \left\{\left|v^{*}(x)\right|: x \in X,\| \| \mathrm{x}\| \| \leq 1\right\} \leq \sup \left\{\left|v^{*}(v)\right|: v \in V_{X},\||v|\| \leq 1\right\}$

$$
=\sup \left\{\left|T\left(v^{*}\right)(v)\right|: v \in V_{X},\|v\| \mid \| \leq 1\right\}=\|\mid\|\left(v^{*}\right) \|
$$

Hence T preserves the norm. Therefore $V_{X^{*}}$ is isomorphic with $\left(V_{X}\right)^{*}$.
Similarly apply Proposition 2.9and Proposition 2.6, we can show that an operator $T^{\prime}: W_{X^{*}} \rightarrow\left(W_{X}\right)^{*}, T^{\prime}\left(x^{*}\right)=x^{*} \backslash W_{X}\left(x^{*} \in W_{X^{*}}\right)$, is an isomorphism.

Theorem 3.4: If a normed almost linear space X is reflexive, then V_{X} and W_{X} are reflexive.
Proof: By Proposition 2.8, $X=W_{X}+V_{X}$ since X is reflexive.
Let $C: X \rightarrow X^{* *}$ be the canonical isomorphism, and let $C^{\prime}: V_{X} \rightarrow\left(V_{X}\right)^{* *}$ be the canonical mapping. We will show that C^{\prime} is bijective. Let $v^{* *} \in\left(V_{X}\right)^{* *}$.

By theorem3.3, $T: V_{X^{*}} \rightarrow\left(V_{X}\right)^{*}, T\left(v^{*}\right)=v^{*} \backslash V_{X}\left(v^{*} \in V_{X^{*}}\right)$, is an isomorphism.
Since $x^{*} \backslash V_{X} \in\left(V_{X}\right)^{*}$ for each $x^{*} \in X^{*}$, we can define a functional $\bar{v}^{* *}: X^{*} \rightarrow R$ by $\bar{v}^{* *}:\left(x^{*}\right)=v^{* *}\left(x^{*} \backslash V_{X}\right)$ for each $x^{*} \in X^{*}$. Then $\bar{v}^{* *} \in V_{X^{* *}}$.

Since C is an isomorphism of X onto $X^{* *}$, there exists $v \in V_{X}$ such that $C(v)=\bar{v}^{* *}$.
For this $v \in V_{X}, C^{\prime}(v)=v^{* *}$.
Indeed, for each $v^{*} \in\left(V_{X}\right)^{*}$, there exists $\bar{v}^{*} \in V_{X^{*}}$ such that $\bar{v}^{*} \backslash V_{X}=v^{*}$ by Proposition 2.7. So, we have $v^{* *}\left(v^{*}\right)=v^{* *}\left(\bar{v}^{*} \backslash V_{X}\right)=\bar{v}^{* *}\left(\bar{v}^{*}\right)=C(v)\left(\bar{v}^{*}\right)=\bar{v}^{*}(v)=v^{*}(v)=C^{\prime}(v)\left(v^{*}\right)$.
Hence C^{\prime} is surjective.
If $v_{1} \neq v_{2}$ in V_{X}, then $C\left(v_{1}\right) \neq C\left(v_{2}\right)$ in $X^{* *}$ since C is an isomorphism.
Choose $f \in X^{*}$, such that $C\left(v_{1}\right)(f) \neq C\left(v_{2}\right)(f)$, i.e., $f\left(v_{1}\right) \neq f\left(v_{2}\right)$.
For this $f \in X^{*}, f \backslash V_{X} \in\left(V_{X}\right)^{*}$ and $f \backslash V_{X}\left(v_{1}\right) \neq f \backslash V_{X}\left(v_{2}\right)$.
So, we have $C^{\prime}\left(v_{1}\right) \neq C^{\prime}\left(v_{2}\right)$.
Hence C^{\prime} is injective.
Therefore C^{\prime} is an isomorphism.
Similarly, we can show that W_{X} is reflexive.
Theorem 3.5: Let X be a split normed almost linear space as $X=W_{X}+V_{X}$. If V_{X} and W_{X} are reflexive, then X is reflexive.

Proof: Note that $X^{*}=W_{X^{*}}+V_{X^{*}}$ and $X^{* *}=W_{X^{* *}}+V_{X^{* *}}$.
Let $C^{\prime}: V_{X} \rightarrow\left(V_{X}\right)^{* *}$ and $C^{\prime \prime}: W_{X} \rightarrow\left(W_{X}\right)^{* *}$ be the canonical isomorphism,
and let $C: X \rightarrow X^{* *}$ be the canonical map.
We will show that C is bijective.
Let $v^{* *} \in V_{X^{* *}}$. By Proposition 2.11, we have $v^{* *}\left(x^{*}\right)=v^{* *}\left(v^{*}\right)$ for each $x^{*}=v^{*}+w^{*} \in X^{*}, v^{*} \in V_{X^{*}}, w^{*} \in W_{X^{*}}$. And $v^{* *} \backslash V_{X^{*}} \in\left(V_{X^{*}}\right)^{*}$.
Recall that $T: V_{X^{*}} \rightarrow\left(V_{X}\right)^{*}, T\left(v^{*}\right)=v^{*} \backslash V_{X}\left(v^{*} \in V_{X^{*}}\right)$, is an isomorphism.
Define a functional $\bar{v}^{* *}:\left(V_{X}\right)^{*} \rightarrow R$ by $\bar{v}^{* *}\left(v^{*} \backslash V_{X}\right)=v^{* *}\left(v^{*}\right)$ for each $V_{X} \in\left(V_{X}\right)^{*}$.Then $\bar{v}^{* *} \in\left(V_{X}\right)^{* *}$.
Since C^{\prime} is an isomorphism of V_{X} onto $\left(V_{X}\right)^{* *}$, there exists $v \in V_{X}$ such that $C^{\prime}(v)=\bar{v}^{* *}$. For this $v \in V_{X}, C(v)=v^{* *}$.
Indeed, $v^{* *}\left(x^{*}\right)=v^{* *}\left(v^{*}\right)=\bar{v}^{* *}\left(v^{*} \backslash V_{X}\right)=C^{\prime}(v)\left(v^{*} \backslash V_{X}\right)=v^{*} \backslash V_{X}(v)=v^{*}(v)=x^{*}(v)=$ $C(v)\left(x^{*}\right)$ for each $x^{*}=v^{*}+w^{*} \in X^{*}$ with $v^{*} \in V_{X^{*}}, w^{*} \in \mathrm{~W}_{X^{*}}$.

Similarly, for each $w^{* *} \in \mathrm{~W}_{X^{* *}}$, there exists $w \in W_{X}$ such that $C(w)=w^{* *}$.
Hence, for each $x^{* *}=v^{* *}+w^{* *} \in X^{* *}$ with $v^{* *} \in V_{X^{* *}}, w^{* *} \in \mathrm{~W}_{X^{* *}}$, there exists
$x=v+w \in X$ with $v \in V_{X}, w \in W_{X}$ such that $C(x)=C(v)+C(w)=v^{* *}+w^{* *}=x^{* *}$. Hence C is surjective.

If $w_{1} \neq w_{2}$ in W_{X}, then $C^{\prime \prime}\left(w_{1}\right) \neq C^{\prime \prime}\left(w_{2}\right)$ in $\left(W_{X}\right)^{* *}$ since $C^{\prime \prime}$ is an isomorphism.
Choose $f \in\left(W_{X}\right)^{*}$ such that $C^{\prime \prime}\left(w_{1}\right)(f) \neq C^{\prime \prime}\left(w_{2}\right)(f)$, i.e., $f\left(w_{1}\right) \neq f\left(w_{2}\right)$.
By proposition 2.6, there exists $f_{1} \in X^{*}$ such that $f_{1} \backslash W_{X}=f$ and $\left\|f_{1}\right\|=\|f\|$.
For this f_{1}, we have $C\left(w_{1}\right)\left(f_{1}\right) \neq C\left(w_{2}\right)\left(f_{1}\right)$ since $f_{1}\left(w_{1}\right) \neq f_{1}\left(w_{2}\right)$.
Hence $C\left(w_{1}\right) \neq C\left(w_{2}\right)$. Similarly $C\left(v_{1}\right) \neq C\left(v_{2}\right)$ for $v_{1} \neq v_{2}$ in V_{X}.

Therefore C is injective since C is a linear operator and hence X is reflexive
Lemma 3.6: A normed almost linear space $(X,\| \| \cdot \|)$ is complete iff $\left(\mathrm{E}_{\mathrm{X}},\|\cdot\|\right)$ is a Banach space and X_{1} is norm-closed in E_{X}.

Proof: Suppose X complete.
Then X_{1} is complete in the $\|\cdot\|$ of E_{X} and so closed in E_{X}.
We show now that E_{X} is a Banach space.
Let $\left\{z_{n}\right\}_{n=1}^{\infty} \subset \mathrm{E}_{\mathrm{X}}$ be a Cauchy sequence.
We can suppose that for each $\mathrm{n} \in \mathrm{N}$ we have $\left\|z_{n}-z_{n+p}\right\|<\frac{1}{2^{n+1}}$ for each $\mathrm{p} \geq 1$
Let $z_{1}=x_{1}-y_{1}, x_{1}, y_{1} \in \mathrm{X}_{1}$.
Since $\left\|z_{2}-z_{1}\right\|<1 / 2^{2}$, there exist $x_{2}, y_{2} \in X_{1}$ such that $z_{2}-z_{1}=x_{2}-y_{2}$ and $\left\|\mathrm{x}_{2}\right\|+\left\|\mathrm{y}_{2}\right\|<1 / 2^{2}$.

Then $\mathrm{z}_{2}=\left(x_{1}+x_{2}\right)-\left(y_{1}+y_{2}\right)$ where $\left\|x_{2}\right\|<1 / 2^{2},\left\|y_{2}\right\|<1 / 2^{2}$.
By induction on n we find two sequences $\left\{x_{i}\right\}_{i=1},\left\{y_{i}\right\}_{i=1}^{\infty} \subset \mathrm{X}_{1}$ such that for each $\mathrm{n} \in \mathrm{N}$ we have
$z_{n}=\left(\sum_{i=1}^{n} x_{i}\right)-\left(\sum_{i=1}^{n} y_{i}\right)$ and
$\left\|x_{n}\right\|<1 / 2^{n},\left\|y_{n}\right\|<1 / 2^{n}$.
For each $\mathrm{n} \in \mathrm{N}$, let $\overline{x_{n}}=$
$\sum_{i=1}^{n} x_{i} \in \mathrm{X}_{1}$ and $\overline{y_{n}}=\sum_{i=1}^{n} y_{i} \in \mathrm{X}_{1}$. Clearly $\left\{\overline{x_{n}}\right\}_{n=1}^{\infty}$ and
$\left\{\overline{y_{n}}\right\}_{n=1}^{\infty}$ are Cauchy sequences and since X_{1} is complete, there exist $\bar{x}, \bar{y} \in X_{1}$ such that $\lim _{n \rightarrow \infty}\left\|\overline{x_{n}}-\bar{x}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|\overline{y_{n}}-\bar{y}\right\|=0$.
$\in \mathrm{E}_{\mathrm{X}}$ we have $\lim _{n \rightarrow \infty}\left\|z_{n}-z\right\|=0$, i.e., E_{X} is a Banach space.
The converse
part is obvious.
Theorem 3.7: Let X be a complete normed almost linear space, Y a normed almost linear space such that ω_{Y} is one-to-one and $c \subset Y$ a closed convex cone such that $\mathrm{L}(X,(Y, C))$ is a normed almost linear space. Let $\left\{\mathrm{T}_{n}\right\}_{n=1}^{\infty}$ be a sequence in $\mathrm{L}(X,(Y, C))$ such that $\lim _{n \rightarrow \infty} \rho_{Y}\left(\mathrm{~T}_{n}(x), \mathrm{T}(x)\right)=0$ for each $x \in \mathrm{X}$. Then the sequence $\left\{\left\|\left\|\mathrm{T}_{n}\right\|\right\|\right\}_{n=1}^{\infty}$ is bounded and $\mathrm{T} \in \mathrm{L}(X,(Y, C))$.

Proof: Since ω_{Y} is one-to-one and C closed, it is easy to show that $\mathrm{T} \in \mathrm{L}(X,(Y, C))$.
Now for each $x \in X,\||\|x \mid\| \leq 1$ we have
$\|\mid \mathrm{T}(x)\|\|=\| \omega_{Y} \mathrm{~T}(x)\|\leq\| \omega_{Y}(\mathrm{~T}(x))-\omega_{Y}\left(\mathrm{~T}_{n}(x)\right)\| \|+\| \| \omega_{Y}\left(\mathrm{~T}_{n}(x)\right)\| \|=\rho_{Y}\left(\mathrm{~T}_{n}(x), \quad \mathrm{T}(x)\right)+$ $\left\|\left\|\mathrm{T}_{n}(x)\right\|\right\| \leq \rho_{Y}\left(\mathrm{~T}_{n}(x), \mathrm{T}(x)\right)+\| \| \mathrm{T}_{n}\| \|$ for each $\mathrm{n} \varepsilon \mathrm{N}$, and so if we show that $\left\{\left\|\left\|\mathrm{T}_{n}\right\|\right\|\right\}_{n=1}^{\infty}$ is bounded, then $\mathrm{T} \in \mathrm{L}(X,(Y, C))$.
ω_{Y} is one-to-one, by hypotheses and Proposition $2.11, \mathrm{~L}\left(X_{1},\left(Y_{1}, C_{1}\right)\right)$ is a normed almost linear space.

Now $\omega_{\mathrm{L}(\mathrm{X},(\mathrm{Y}, \mathrm{C}))}\left(\mathrm{T}_{n}\right) \in \mathrm{K}, \mathrm{n} \in \mathrm{N}$.
Then $\omega_{\mathrm{L}(X,(Y, C))}\left(\mathrm{T}_{n}\right) / X_{1}=\widetilde{\mathrm{T}_{n}} \in \mathrm{~L}\left(X_{1},\left(Y_{1}, C_{1}\right)\right)$ and $\omega_{Y} \mathrm{~T}_{n}=\widetilde{\mathrm{T}_{n}} \omega_{\mathrm{x}}, \mathrm{n} \in \mathrm{N}$.
Hence by hypothesis we have that $\lim _{n \rightarrow \infty} \rho_{Y}\left(\mathrm{~T}_{n}(x)=0\right.$ for each $x \in X$.

$$
\begin{aligned}
\mathrm{T}(x)) & =\lim _{n \rightarrow \infty}\left\|\omega_{Y}\left(\mathrm{~T}_{n}(x)\right)-\right\| \omega_{Y}(\mathrm{~T}(x)) \| \\
& =\lim _{n \rightarrow \infty}\left\|\widetilde{\mathrm{~T}_{n}}\left(\omega_{\mathrm{x}}(\mathrm{x})\right)-\omega_{Y}(\mathrm{~T}(\mathrm{x}))\right\| \text { and so for each } \bar{x} \in \mathrm{X}_{1} \text { the sequence }\left\{\mathrm{T}_{n}(\bar{x})\right\}_{n=1}^{\infty}
\end{aligned}
$$

converges to an element of Y_{1}.
Let $\mathrm{z} \in \mathrm{E}_{\mathrm{X}}, \mathrm{z}=\overline{x_{1}}-\overline{x_{2}}, \overline{x_{\imath}} \in \mathrm{X}_{1}, \mathrm{i}=1,2$.

Then $\left\{\omega_{\mathrm{L}(\mathrm{X}, \mathrm{Y}, \mathrm{C}))}\left(\mathrm{T}_{n}\right)(\mathrm{z})\right\}_{n=1}^{\infty}$ converges to an element of E_{Y}.
By Lemma (3.6), E_{X} is a Banach space.
Hence by Banach- Steinhaus theorem the sequence $\left\{\left\|\omega_{\mathrm{L}(X,(Y, C))}\left(\mathrm{T}_{n}\right)\right\|\right\}_{n=1}^{\infty}$ is bounded. Since $\left\|\omega_{\mathrm{L}(X,(Y, C))}\left(\mathrm{T}_{n}\right)\right\|=\left\|| | \mathrm{T}_{n}\right\|$ for each $\mathrm{n} \in \mathrm{N}$, the sequence $\left\{\left\|\left\|\mathrm{T}_{n}\right\|\right\|\right\}_{n=1}^{\infty}$ is bounded.

4. References:

[1]	G. Godini		An approach to generalizing Banach spaces. Normed almost linear spaces, Proceedings of the $12^{\text {th }}$ winter school on Abstract Analysis. 5 (1984) 33-50.
[2]	G. Godini		On Normed almost linear spaces, Math.Ann. 279 (1988) 449-455.
[3]	G. Godini		Operators in Normed almost linear spaces Proceedings of the $14^{\text {th }}$ winter school on Abstract Analysis (Srni.1986).Suppl. Rend. Circ. Mat. Palermo II. Numero. 14(1987) 309-328.
[4]	Sang Han Lee		Reflexivity of normed almost linear space, comm.korean Math.Soc. 10(1995) 855-866.
[5]	Sung Mo Im and Sang Han Lee		Uniqueness of basis for almost linear space, Bll. korean Math.Soc. 34 (1997) 123-133.
[6]	Sung Mo Im and Sang Han Lee	:	A Metric Induced by a norm on normed almost linear space, Bull. Korean Math. Soc. 34 (1997) 115-125.
[7]	Sung Mo Im and Sang Han Lee		A characterization of reflexivity of normed almost linear space, Comm.KoreanMath.Soc. 12 (1997) 211-219.
[8]	Sang Han Lee and Kil-Woung Jun	:	A Metric on normed almost linear space, Bull. Korean Math.soc. 36 (1999) 379-388.
[9]	Sung Mo Im and Sang Han Lee		Completeness of a normed almost linear space B(X,(Y,C)) Journal of the Chungcheong

			Mathematical Society. 13 (2000) 79-85.
$[10]$	G.Apreutesei	$:$	The Hyperspacial Topologies and Almost linear space. Analele Stiintifice Ale Universitatii ALI.CUZA"Iasi Tomul XLVIII S.I a Mathematica. (2002) 1-16.
$[11]$	G.Apreutesei, Nikoas E.Mastorakis, Anca Croitoru and Alina Gavrilut	$:$On the translation of an almost linear topology, Wseas Transactions on Mathematics.8 (2009) 479- 488.	

