[Volume 2 issue 10 October 2014] Page No.603-711 ISSN :2320-7167

"Reflexivity and completeness of normed almost linear

space"

T. Markandeya Naidu & Dr. D. Bharathi

Lecturer in Mathematics, P.V.K.N. Govt. College, CHITTOOR, Affiliated to S.V.University,Tirupati. Andhra Pradesh-517002 Email: <u>tmnaidu.maths@yahoo.co.in</u>

Associate professor, Department of Mathematics, S.V.University, TIRUPATI, Andhra Pradesh-517502 Email: <u>bharathikavali@yahoo.co.in</u>

Abstract: In this paper we established some results on reflexivity and completeness of normed almost linear space. The reflexivity of a normed almost linear space X with respect to the sub spaces W_X and V_X are described through some results.

1.Introduction

The notion of almost linear space and normed almost linear space was introduced by G. Godini [1 - 3]. All spaces involved in this work are over the real field \mathbb{R} . Sang Han Lee [4] introduced the algebraic dual space and algebraic double dual space of the almost linear space X and define algebraic reflexivity of the almost linear space X. Sung Mo Im and Sang Han Lee [7] characterizes the reflexivity of normed almost linear space without basis. Sung Mo Im and Sang Han Lee [9] proved that the dual space X^* of a normed almost linear space is complete. Basing all the above results in this paper we established some results relating to reflexivity of normed almost linear space X with respect to the sub spaces W_X and V_X of normed almost linear space X.

2. Preliminaries

Definition 2.1: Let $X^* = \{ f \in X^# : |||f||| < \infty \}$, then the space X^* together with $||| \cdot |||$ defined by $|||f||| = \sup \{ |f(x)| : |||x||| \le 1 \}$ is called the dual space of the normed almost linear space X.

Definition 2.2: The dual space of the dual space X^* is called bi-dual space or second dual space of *X* and is denoted by X^{**} .

Definition 2.3: For every normed almost linear space *X*, there is a natural map $F: X \to X$ ** such that F(x)(f) = f(x), for every $x \in X$ and for every $f \in X$ * where $f: X \to \mathbb{R}$, $F(x) \in X$ ** where $F(x): X^* \to \mathbb{R}$.

Definition 2.4: The normed almost linear space *X* is called reflexive when the natural map F: $X \rightarrow X^{**}$ is an isomorphism

Proposition 2.5: Let $(X, ||| \cdot |||)$ be a normed almost linear space. Then for each $x \in X$ there exists $f_x \in X^*$ such that $|||f_x||| = 1$ and $f_x(x) = |||x|||$.

Proposition 2.6: Let $(X, ||| \cdot |||)$ be a normed almost linear space. Then for each $f \in (W_X)^*$ there exists $f_1 \in W_{X^*}$ such that $f_1 \setminus W_X = f$ and $|||f_1||| = |||f|||$ and $f_1(v + w) = f(w)$ for each $v \in V_X$ and $w \in W_X$.

Proposition 2.7: Let $(X, ||| \cdot |||)$ be a normed almost linear space and split as X = WX + VX. Then for each $f \in (VX) *$ there exists $f1 \in VX *$ such that $f1 \setminus VX = f$ and $|||f_1||| = |||f|||.$

Proposition2.8: If a normed almost linear space X is reflexive, then $X = W_X + V_X$.

Proposition 2.9: If a normed almost linear space *X* splits as $X = W_X + V_X$ and f is an almost linear functional on X then $f \in W_{X^{\#}}$ if and only if $f/V_X = 0$.

Proposition 2.10: If a normed almost linear space X splits as $X = W_X + V_X$, then

(i). $V_{X^{**}}$ is isomorphic with $(V_X)^{**}$ and (ii). $W_{X^{**}}$ is isomorphic with $(W_X)^{**}$.

Proposition 2.11: If ω_Y is one-to-one then I is one-to-one and onto $L(X_1, (Y_1, C_1))$. And

L(X,(Y,C)) is a normed almost linear space iff $L(X_1,(Y_1,C_1))$ is a normed almost linear space. For proof of propositions 2.5 to 2.11 refer [3-9]

3. Main results

Theorem 3.1: For any x in a normed almost linear space X, we have

$$|||x||| = \sup\{\frac{|f(x)|}{||f||}: f \in X^*, f \neq 0\}.$$

Proof: For any $x \in X$, by Proposition 2.5, there exists $f_x \in X^*$ such that $|||f_x|||=1$ and $f_x(x) = |||x|||$. So we have $|||x||| = \frac{|f_x(x)|}{|||f_x|||} \le \sup\{\frac{|f(x)|}{|||f|||} : f \in X^*, f \neq 0\}$. From $|f(x)| \le |||f||| |||x|||$, we have $\sup\{\frac{|f(x)|}{||f||} : f \in X^*, f \neq 0\} \le |||x|||$ for each $f \in X^*$. Hence $|||x||| = \sup\{\frac{|f(x)|}{|||f|||} : f \in X^*, f \neq 0\}$.

For a normed almost linear space X and $f \in X^*$, an equivalent formula for f is

$$|||f||| = \sup_{|||\mathbf{x}|||=1} |f(\mathbf{x})| = \sup_{||\mathbf{x}||=1} \frac{|f(\mathbf{x})|}{||\mathbf{x}||} \quad (\mathbf{x} \neq 0)$$
3.1

An isomorphism *T* of a normed almost linear space *X* onto a normed almost linear space *Y* is a bijective linear operator $T: X \to Y$ which preserves the norm, that is, for all $x \in X$, |||T(x)||| = |||x|||. Then *X* is called isomorphic with *Y*.

For $x \in X$ let Q_x be the functional on X^* defined, as in the case of a normed linear space, by $Q_x(f) = f(x)(f \in X^*).$ 3.2

Then Q_x is an almost linear functional on X^* and $|||Q_x||| \le |||x|||$.

Hence Q_x is an element of X^{**} , by definition of X^{**} . 3.3

This defines a mapping $C: X \to X^{**}$ by $C(x) = Q_x$. 3.4

C is called the canonical mapping of X into X^{**} .

If the canonical mapping C of a normed almost linear space X onto X^{**} defined by (3.1) is an isomorphism, then X is said to reflexive.

Theorem 3.2: For a normed almost linear space *X*, the canonical mapping C defined by (3.4) is a linear operator and preserves the norm.

Proof: By (3.1) and Theorem (3.1), we have

$$||Q_x|| = \sup_{f \neq 0} \frac{|Q_x(f)|}{||f||} = \sup_{f \neq 0} \frac{|f(x)|}{||f||} = ||x|| \text{ for each } x \in X.$$

Hence C preserves the norm.

Let $x, y \in X$ and $\alpha \in R$.

For each $f \in X^*$, we have $Q_{x+y}(f) = f(x+y) = f(x) + f(y) = Q_x(f) + Q_y(f)$, $Q_{\alpha x}(f) = f(\alpha x) = (\alpha o f)(x) = (\alpha o Q_x)(f)$. Thus C (x+y) = C(x) + C(y) and C $(\alpha x) = \alpha \circ C(x)$.

Therefore C is a linear operator. ■

Theorem 3.3: If a normed almost linear space X splits as $X = W_X + V_X$, then

 V_{X^*} is isomorphic with $(V_X)^*$ and W_{X^*} is isomorphic with $(W_X)^*$.

Proof: Since $x^* \setminus V_X \in (V_X)^*$ for each $x^* \in V_{X^*}$, we can define an operator

 $T: V_{X^*} \to (V_X)^*$ by $T(x^*) = x^* \setminus V_X$ for each $x^* \in V_{X^*}$. For

 $x^*, y^* \in V_{X^*}$ and $\alpha, \beta \in R$, we have

 $\beta oy * v = \alpha ox * + \beta oy * v = x * \alpha v + y * \beta v = T(x*)\alpha v + T(y*)\beta v = \alpha oT(x*))v + (\beta oT(y*)v = \alpha oT(x* + \beta oT(y^*)](v)$ for each $v \in V_X$.

 $T(\alpha o x^* +$

So we

Hence T is a linear operator.

If $x^* \neq y^* \in V_{X^*}$, then $x^*(v) \neq y^*(v)$ for some $v \in V_X$.

So $T(x^*) \neq T(y^*)$. Hence T is injective.

For each $v^* \in (V_X)^*$, there exists $x^* \in V_{X^*}$ such that $x^* \setminus V_X = v^*$ by Proposition 2.5.

Hence T is surjective.

For any $v^* \in V_{X^*}$, $|||v^*||| \ge ||| v^* \setminus V_X ||| = |||T(v^*)|||.$

Also, if $x = v + w \in X$, $v \in V_X$, $w \in W_X$ with $||| x ||| \le 1$, then $||| v ||| \le 1$ and $v^*(x) =$

$$v^*(v)$$

have $|||v^*||| = \sup\{|v^*(x)| : x \in X, |||x||| \le 1\} \le \sup\{|v^*(v)| : v \in V_X, |||v||| \le 1\}$

$$= \sup \{ |T(v^*)(v)| : v \in V_X, |||v||| \le 1 \} = |||T(v^*)|||$$

Hence T preserves the norm. Therefore V_{X^*} is isomorphic with $(V_X)^*$.

Similarly apply Proposition 2.9and Proposition 2.6, we can show that an operator

 $T': W_{X^*} \to (W_X)^*, T'(x^*) = x^* \setminus W_X(x^* \in W_{X^*})$, is an isomorphism.

Theorem 3.4: If a normed almost linear space X is reflexive, then V_X and W_X are reflexive.

Proof: By Proposition 2.8, $X = W_X + V_X$ since X is reflexive.

Let $C: X \to X^{**}$ be the canonical isomorphism, and let $C': V_X \to (V_X)^{**}$ be the canonical mapping. We will show that C' is bijective. Let $v^{**} \in (V_X)^{**}$. By theorem3.3, $T: V_{X^*} \to (V_X)^*$, $T(v^*) = v^* \setminus V_X(v^* \in V_{X^*})$, is an isomorphism. Since $x^* \setminus V_X \in (V_X)^*$ for each $x^* \in X^*$, we can define a functional $\bar{v}^{**}: X^* \to R$ by $\bar{v}^{**}: (x^*) = v^{**}(x^* \setminus V_X)$ for each $x^* \in X^*$. Then $\bar{v}^{**} \in V_{X^{**}}$. Since *C* is an isomorphism of *X* onto *X*^{**}, there exists $v \in V_X$ such that $C(v) = \bar{v}^{**}$. For this $v \in V_X$, $C'(v) = v^{**}$. Indeed, for each $v^* \in (V_X)^*$, there exists $\bar{v}^* \in V_{X^*}$ such that $\bar{v}^* \setminus V_X = v^*$ by Proposition 2.7. So, we have $v^{**}(v^*) = v^{**}(\bar{v}^* \setminus V_X) = \bar{v}^{**}(\bar{v}^*) = C(v)(\bar{v}^*) = \bar{v}^*(v) = v^*(v) = C'(v)(v^*)$. Hence *C'* is surjective. If $v_1 \neq v_2$ in V_X , then $C(v_1) \neq C(v_2)$ in X^{**} since *C* is an isomorphism.

Choose $f \in X^*$, such that $\mathcal{C}(v_1)(f) \neq \mathcal{C}(v_2)(f)$, i.e., $f(v_1) \neq f(v_2)$.

For this $f \in X^*$, $f \setminus V_X \in (V_X)^*$ and $f \setminus V_X (v_1) \neq f \setminus V_X (v_2)$.

So, we have $C'(v_1) \neq C'(v_2)$.

Hence C' is injective.

Therefore C' is an isomorphism.

Similarly, we can show that W_X is reflexive.

Theorem 3.5: Let X be a split normed almost linear space as $X = W_X + V_X$. If V_X and W_X are reflexive, then X is reflexive.

Proof: Note that $X^* = W_{X^*} + V_{X^*}$ and $X^{**} = W_{X^{**}} + V_{X^{**}}$.

Let $C': V_X \to (V_X)^{**}$ and $C'': W_X \to (W_X)^{**}$ be the canonical isomorphism,

and let $C: X \to X^{**}$ be the canonical map.

We will show that *C* is bijective.

Let $v^{**} \in V_{X^{**}}$. By Proposition 2.11, we have $v^{**}(x^*) = v^{**}(v^*)$ for each $x^* = v^* + w^* \in X^*, v^* \in V_{X^*}, w^* \in W_{X^*}$. And $v^{**} \setminus V_{X^*} \in (V_{X^*})^*$. Recall that $T: V_{X^*} \to (V_X)^*, T(v^*) = v^* \setminus V_X$ ($v^* \in V_{X^*}$), is an isomorphism. Define a functional $\bar{v}^{**}: (V_X)^* \to R$ by $\bar{v}^{**}(v^* \setminus V_X) = v^{**}(v^*)$ for each $v^* \setminus V_X \in (V_X)^*$. Since C' is an isomorphism of V_X onto $(V_X)^{**}$, there exists $v \in V_X$ such that $C'(v) = \bar{v}^{**}$.

For this $v \in V_X$, $C(v) = v^{**}$.

Indeed, $v^{**}(x^*) = v^{**}(v^*) = \bar{v}^{**}(v^* \setminus V_X) = C'(v)(v^* \setminus V_X) = v^* \setminus V_X(v) = v^*(v) = x^*(v) = C(v)(x^*)$ for each $x^* = v^* + w^* \in X^*$ with $v^* \in V_{X^*}, w^* \in W_{X^*}$.

Similarly, for each $w^{**} \in W_{X^{**}}$, there exists $w \in W_X$ such that $C(w) = w^{**}$.

Hence, for each $x^{**} = v^{**} + w^{**} \in X^{**}$ with $v^{**} \in V_{X^{**}}$, $w^{**} \in W_{X^{**}}$, there exists $x = v + w \in X$ with $v \in V_X$, $w \in W_X$ such that $C(x) = C(v) + C(w) = v^{**} + w^{**} = x^{**}$. Hence *C* is surjective.

If $w_1 \neq w_2$ in W_X , then $C''(w_1) \neq C''(w_2)$ in $(W_X)^{**}$ since C'' is an isomorphism.

Choose $f \in (W_X)^*$ such that $\mathcal{C}''(w_1)(f) \neq \mathcal{C}''(w_2)(f)$, i.e., $f(w_1) \neq f(w_2)$.

By proposition 2.6, there exists $f_1 \in X^*$ such that $f_1 \setminus W_X = f$ and $||f_1|| = ||f||$.

For this f_1 , we have $C(w_1)(f_1) \neq C(w_2)(f_1)$ since $f_1(w_1) \neq f_1(w_2)$.

Hence $C(w_1) \neq C(w_2)$. Similarly $C(v_1) \neq C(v_2)$ for $v_1 \neq v_2$ in V_X .

Therefore C is injective since C is a linear operator and hence X is reflexive \blacksquare

Lemma 3.6: A normed almost linear space $(X, ||| \cdot |||)$ is complete iff $(E_X, || \cdot ||)$ is a Banach space and X_1 is norm-closed in E_X .

Proof: Suppose X complete.

Then X_1 is complete in the $\| \cdot \|$ of E_X and so closed in E_X .

We show now that E_X is a Banach space.

Let $\{z_n\}_{n=1}^{\infty} \subset E_X$ be a Cauchy sequence.

We can suppose that for each $n \in N$ we have $|| z_n - z_{n+p} || < \frac{1}{2^{n+1}}$ for each $p \ge 1$

Let $z_1 = x_1 - y_1, x_1, y_1 \in X_1$.

Since $||z_2 - z_1|| < 1/2^2$, there *exist* $x_2, y_2 \in X_1$ such that $z_2 - z_1 = x_2 - y_2$ and

 $||x_2|| + ||y_2|| < 1/2^2.$

Then $z_2 = (x_1 + x_2) - (y_1 + y_2)$ where $||x_2|| < 1/2^2$, $||y_2|| < 1/2^2$.

By induction on n we find two sequences $\{x_i\}_{i=1}, \{y_i\}_{i=1}^{\infty} \subset X_1$ such that for each $n \in \mathbb{N}$ we have

 $\begin{aligned} z_n &= (\sum_{i=1}^n x_i) - (\sum_{i=1}^n y_i) \text{ and} & \text{for } n \geq 2 \text{ we have} \\ \|x_n\| &< 1/2^n, \|y_n\| &< 1/2^n. & \text{For each } n \in \mathbb{N}, \text{ let } \overline{x_n} = \\ \sum_{i=1}^n x_i \in X_1 \text{ and } \overline{y_n} &= \sum_{i=1}^n y_i \in X_1. & \text{Clearly } \{\overline{x_n}\}_{n=1}^\infty \text{ and} \\ \{\overline{y_n}\}_{n=1}^\infty \text{ are Cauchy sequences and since } X_1 \text{ is complete, there exist } \overline{x}, \ \overline{y} \in X_1 \text{ such that} \\ \lim_{n \to \infty} \|\overline{x_n} - \overline{x}\| &= 0 \text{ and } \lim_{n \to \infty} \|\overline{y_n} - \overline{y}\| = 0. & \text{Then for } z = \overline{x} - \overline{y} \\ \in \mathbb{E}_X \text{ we have } \lim_{n \to \infty} \|z_n - z\| = 0, \text{ i.e., } \mathbb{E}_X \text{ is a Banach space.} & \text{The converse} \\ \text{part is obvious.} \blacksquare \end{aligned}$

Theorem 3.7: Let X be a complete normed almost linear space, Y a normed almost linear space such that ω_Y is one-to-one and $c \subset Y$ a closed convex cone such that L(X,(Y,C)) is a normed almost linear space. Let $\{T_n\}_{n=1}^{\infty}$ be a sequence in L(X,(Y,C)) such that $\lim_{n\to\infty} \rho_Y(T_n(x), T(x)) = 0$ for each $x \in X$. Then the sequence $\{|||T_n|||\}_{n=1}^{\infty}$ is bounded and $T \in L(X,(Y,C))$.

Proof: Since ω_Y is one-to-one and C closed, it is easy to show that $T \in L(X, (Y, C))$.

Now for each $x \in X$, $|||x||| \le 1$ we have

 $|||T(x)||| = ||\omega_{Y}T(x)|| \le ||\omega_{Y}(T(x)) - \omega_{Y}(T_{n}(x))||| + ||| \omega_{Y}(T_{n}(x)) ||| = \rho_{Y}(T_{n}(x), T(x)) + |||T_{n}(x)||| \le \rho_{Y}(T_{n}(x), T(x)) + |||T_{n}||| \text{ for each } n \in \mathbb{N}, \text{ and so if we show that } \{|||T_{n}|||\}_{n=1}^{\infty} \text{ is bounded,}$ then $T \in L(X, (Y, C)).$ Since

 ω_Y is one-to-one, by hypotheses and Proposition 2.11, L($X_1, (Y_1, C_1)$) is a normed almost linear space.

Now $\omega_{L(X,(Y,C))}(T_n) \in K, n \in N$.

Then $\omega_{L(X,(Y,C))}(T_n) / X_1 = \widetilde{T_n} \in L(X_1,(Y_1,C_1))$ and $\omega_Y T_n = \widetilde{T_n} \omega_X$, $n \in \mathbb{N}$.

Hence by hypothesis we have that $\lim_{n\to\infty} \rho_Y(T_n(x) = 0 \text{ for each } x \in X$.

 $\mathbf{T}(x)) = lim_{n \to \infty} \| \omega_Y(\mathbf{T}_n(x)) - \| \omega_Y(\mathbf{T}(x)) \|$

 $= \lim_{n \to \infty} \| \widetilde{T_n} (\omega_x(x)) - \omega_Y(T(x)) \| \text{ and so for each } \overline{x} \in X_1 \text{ the sequence } \{T_n(\overline{x})\}_{n=1}^{\infty}$ converges to an element of Y_1 .

Let $z \in E_X$, $z = \overline{x_1} - \overline{x_2}$, $\overline{x_i} \in X_1$, i=1,2.

Then $\{\omega_{L(X,(Y,C))}(T_n)(z)\}_{n=1}^{\infty}$ converges to an element of E_Y .

By Lemma (3.6), E_X is a Banach space.

Hence by Banach- Steinhaus theorem the sequence $\{\|\omega_{L(X,(Y,C))}(T_n)\|\}_{n=1}^{\infty}$ is bounded. Since

 $\|\omega_{L(X,(Y,C))}(T_n)\| = \||T_n||$ for each $n \in \mathbb{N}$, the sequence $\{\|\|T_n\|\}_{n=1}^{\infty}$ is bounded.

4. References:

[1]	G. Godini	:	An approach to generalizing Banach spaces. Normed almost linear spaces, Proceedings of the 12 th winter school on Abstract Analysis. 5 (1984) 33-50.
[2]	G. Godini	:	On Normed almost linear spaces, Math.Ann.279 (1988) 449-455.
[3]	G. Godini	:	Operators in Normed almost linear spaces Proceedings of the 14 th winter school on Abstract Analysis (Srni.1986).Suppl. Rend. Circ. Mat. Palermo II. Numero. 14(1987) 309-328.
[4]	Sang Han Lee	:	Reflexivity of normed almost linear space, comm.korean Math.Soc. 10(1995) 855-866.
[5]	Sung Mo Im and Sang Han Lee	:	Uniqueness of basis for almost linear space, Bll. korean Math.Soc.34 (1997) 123-133.
[6]	Sung Mo Im and Sang Han Lee	:	A Metric Induced by a norm on normed almost linear space, Bull. Korean Math. Soc. 34 (1997) 115-125.
[7]	Sung Mo Im and Sang Han Lee	:	A characterization of reflexivity of normed almost linear space, Comm.KoreanMath.Soc. 12 (1997) 211-219.
[8]	Sang Han Lee and Kil-Woung Jun	:	A Metric on normed almost linear space, Bull. Korean Math.soc.36 (1999) 379-388.
[9]	Sung Mo Im and Sang Han Lee	:	Completeness of a normed almost linear space B(X,(Y,C)) Journal of the Chungcheong

			Mathematical Society. 13 (2000) 79-85.
[10]	G.Apreutesei	:	The Hyperspacial Topologies and Almost linear space. Analele Stiintifice Ale Universitatii ALI.CUZA"Iasi Tomul XLVIII S.I a Mathematica. (2002) 1-16.
[11]	G.Apreutesei, Nikoas E.Mastorakis, Anca Croitoru and Alina Gavrilut	:	On the translation of an almost linear topology, Wseas Transactions on Mathematics.8 (2009) 479- 488.