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Abstract: A Recursive form B-spline basis function is used as basis in B-spline collocation method. The 

method is applied to solve second order singular differential equations with Neumann’s boundary 

conditions. Results of Numerical examples show the efficiency of the method. Stability of present method 

and accuracy of numerical solution is constantly improved by decreasing the nodal space. 

Keywords 

Collocation method, B-splines, Singular differential equations, Neumann’s boundary conditions 

1. Introduction 

In recent years, many numerical methods are developed to solve singular differential equations with 

Neumann- Dirchlet’s boundary conditions. The methods include like B-spline collocation method [13], 

finite difference method [4], kernel space [5, 6] sinc collocation method [7] and predictor and corrector 

method [8] and many more. The B-spline based collocation method is used to evaluate boundary value 

problems including singular boundary value problems [9]. 

 

However, it is observed from the recent literature that B-spline basis functions are derived using fixed 

equidistant space for a particular degree only. If the recursive formulation given by Carl. De boor [12] is 

applied, the basis function evaluation can be generalized and without fixing of degree of the basis function 

can be used in collocation method for uniform or non uniform mesh sizes. 
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In this paper, after defining the B-spline basis function recursively, the B-spline collocation method is 

described and formulated. The efficiency of the method is demonstrated using the second order singular 

differential equations with Neumann’s boundary conditions. 

Considering second order linear differential equations with variable coefficients 
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are B-spline basis functions, be the approximate global solution to the exact solution )(xU of the considered 

second order singular differential equation (1). 

2.1B-splines 

In this section, definition and properties of B-spline basis functions [1, 2] are given in detail.  A zero degree 

and other than zero degree B-spline basis functions are defined at ix  recursively over the knot vector space
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where p is the degree of the B-spline basis function and x is the parameter belongs to X .When evaluating 

these functions, ratios of the form 0/0 are defined as zero                                                                                                                                                      

   

            

                         Fig (1), First degree B-spline basis function with uniform Knot vector                  X=  {-  

1,0,1,2,3,4,5,6,7,8,9,10,11,12} 

                                                                       

Fig (2), Second degree B-spline basis function with uniform Knot vector                   X= {-2,- 

1,   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}           

 2.2   Derivatives of B-splines 

     If p=2, we have
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In the above equations, the basis functions are defined as recursively in terms of previous degree basis 

function i.e. the p
th

 degree basis function is the combination of ratios of knots and (p-1) degree basis 

function. Again (p-1)
th

 degree basis function is defined as the combination ratios of knots and (p-2) degree 

basis function. In a similar way every B-spline basis function of degree up to (p-(p-2)) is expressed as the 

combination of the ratios of knots and its previous B-spline basis functions.          

The  B-spline basis functions are defined on knot vectors. Knots are real quantities. Knot vector is a non 

decreasing set of Real numbers. Knot vectors are classified as non-uniform knot vectors, uniform knot 

vector and open uniform knot vectors. Uniform knot vector in which difference of any two consecutive 

knots is constant is used for test problems in this paper. Two knots are required to define the zero degree 

basis function .In a similar way,  a p
th

 degree B-spline basis function at a knot have a  domain of influence of 

(p+2) knots. B-spline basis functions of degree one and degree two over uniform knot vector are shown 

graphically below in figures (1) and (2).                                                                                                    

                        

Fig (3), First derivative of second degree B-spline basis function with uniform Knot 

vector X= {-2,-1,   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}           

                     

Fig (4), Second derivative of second degree B-spline basis function with uniform Knot 

vector X= {-2,-1,   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}           

 

-2 0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

 

-2 0 2 4 6 8 10 12
-1.5

-1

-0.5

0

0.5

1



IJMCR www.ijmcr.in| 2:10|October|2014|712-722 | 716 

 

 

 

                                                                                                                                        

2.3   B-spline collocation method  

Collocation method is widely used in approximation theory particularly to solve differential equations .In 

collocation method, the assumed approximate solution is made it exact at some nodal points by equating 

residue zero at that particular node.  B-spline basis functions are used as the basis in B-spline collocation 

method whereas the base functions which are used in normal collocation method are the polynomials 

vanishes at the boundary values. Residue which is obtained by substituting equation (2) in equation (1) is 

made equal to zero at nodes in the given domain to determine unknowns in (2).Let ],[ ba be the domain of 

the governing differential equation and is partitioned as },1.........2,1,0{ bnxnxxxxaX 
   

with equal length 
n

ab
h


  of n sub domains. The six '  are known as nodes, the nodes are treated as knots 

in collocation B-spline method where B-spline basis functions are defined and these nodes are used to make 

the residue equal to zero to determine unknowns siC '  in (2).two extra knot vectors are taken into 

consideration beside the domain of problem both side when evaluating the second degree B-spline basis 

functions at the nodes.  

Substuiting, the approximate solution (2) and its derivatives in (1). 
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Equation (5) which is valuated at six ' ,i=0, 1, 2,....n-1 gives the system of (n-1) × (n+1) equations in which 

(n+1) arbitrary constants are involved. Two more equations are needed to have (n+1) × (n+1) square matrix 

which helps to determine the (n+ 1) arbitrary constants. The remaining two equations are obtained using                   
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 Now using all the above equations (5), (6), (7) i.e. (n+1) a square matrix is obtained which is diagonally 

dominated matrix because every second degree basis function has values other than zeros only in three 

intervals and zeros in the remaining intervals, it is a continuing process like when one function is ending its 

effect in its surrounding region than other function starts its effectiveness as parameter value changing. In 

other words, every parameter has at most under the three (p=2) basis functions. The systems of equations are 

easily solved for arbitrary constants Ci’s. Substuiting these constants in (2), the approximation solution is 

obtained and used to estimate the values at domain points. 

Absolute Relative error is evaluated by using the following relationship in exact and approximate solutions                                    

                   Absolute Relative Error    =       

txaU

approUtxaU

ce

ce 
 

3.  Numerical Experiments 

The effectiveness of the present method is demonstrated by considering the various examples 

Example 1: Consider a singular boundary value problem given 

5.5)1(,0)0(,10,2)(4
2 ''''  UUxxUU
x

U  

 The exact solution is
2sinh

)2sinh(5
5.0)(

x

x
xU  . The domain is divided into equal intervals and associated 

with knot vector space .Table 1 present’s results at selected nodes inside the domain and compares their 

values with the exact solution for different mesh sizes. It is observed from the table1 that the solution 

approaches to the exact solution as the mesh size is decreased.  

Table 1. Computed value and exact value at different nodes with different mesh sizes ‘h’ 
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Fig (5), Trend of maximum absolute relative error for different number of nodes
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h=.002 

Estimated values  at 

h=.001 

Estimated values at  

h=.0005 

Exact values
 

 

.1 3.27751158212234

  

3.27656807367877

  

3.27609603880699 3.27562381647618

  

.2 3.33304140870147

  

3.33218186338812 3.33175181456266 3.33132158129189

  

. 3 3.42720499880426

  

3.42642356799421 3.42603258397339 3.42564142056487 

.4 3.56227455309514

  

3.56156938858884 3.56121654890977 3.56086353732463 

.5 3.74152499690348

  

3.74089850474504 3.74058501716492 3.74027136831943 

.6 3.96932810291296

  

3.96878741630261 3.96851685387418 3.96824614512855 

.7 4.25127857063801

  

4.25083626969027 4.25061493139471 4.25039346768551 

.8 4.59435600983891

  

4.59403112758981 4.59386854227820 4.59370586068823 

.9 5.00712791217250 5.00694727976670 5.00685687994258 5.00676642428200 
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Maximum absolute relative error is approaching the x-axis as moving along the x-axis, i.e falling in 

values of maximum absolute relative error is happening continuously as number interpolating points are 

increased.   This shows the consistency of the present method even close at singular points.
                              

                                                                                                                                                                                                                     

Example 2: The exact solution of another singular boundary value problem considered below 
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The following below figures 6, 7and 8 gives the comparison of Approximation solution and exact solution for 

example.2 for different mesh sizes ‘h’. Decreasing mesh size improves the approximation solution as well as 

consistently moving to converge with exact values very well. This shows the importance of this method in 

evaluating second order singular differential equations with Neumann’s boundary conditions.  

 

Table2 gives the relative error of the nodes which are in the neighborhood of the singular point zero   

Nodes 

close to 

singular 

point x=0 

.0100 .0050 .0025 .001 .0007 .0005 .0003
 

 

Absolute 

Relative 

error 

0.001001 0.000479 0.000234 .000092 .000061 .000045 2.29309790580385e-

05 

Absolute Relative error is fall down at points of the neighborhood of the singular point zero like at normal 

points. Results prove the efficiency of method to singular value boundary problems with Neumann’s 

conditions. 
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        Fig (6). Comparison of approximate and Exact solutions for the Example2 for mesh size 

h=0.01 

 

 

 

Conclusions 

The B-spline basis functions defined recursively are incorporated in the collocation method and applied the 

same to the singular boundary value problems. The effectiveness of the proposed method is illustrated by 

considering two numerical examples. The solution is compared with exact solution and found to be in good 

approximation. This method may be applied to different types of singular boundary value problems for its 

efficiency          
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