On Soft Feebly-Continuous Functions

A.P.DhanaBalan, R. Buvaneswari

Department of Mathematics, Alagappa Govt. Arts College, Karaikudi - 630 003

Mail id : danabalanap@yahoo.com

Abstract: In this paper, recalling the basic concepts of soft topological spaces. This paper aims at introducing the soft feebly-open sets and proving some of their properties and also forming the soft feebly-open and closed mappings and investigating some results in these concepts and compositing of them. These concepts define the soft feebly-continuous function and also discuss some theorems in it.

Keywords: soft open, soft feebly-open, soft continuous, soft feebly-continuous

1.Preliminaries

Definition 1.1 [9]: Let X be an initial universe set and let E be the set of all possible parameters with respect to X. Let P(X) denote the power set of X. Let A be a nonempty subset of E. A pair (F,A) is called soft set over X, where F is a mapping given by F:A \rightarrow P(X). A soft set (F,A) on the universe X is defined by the set of ordered pairs (F,A)={(x,f_A(x)):x \in E,f_A(x) \in P(X)} where f_A: E \rightarrow P(X) such that $f_A(x)=\varphi$ if $x \notin A$. Here f_A is called an approximate function of the soft set (F,A). The collection of soft set (F,A) over a universe X and the parameter set A is a family of soft sets denoted by SS(x)_A.

Definition 1.2[6]: A set set (F,A) over X is said to be *null soft set* denoted by φ if for all $e \in A$, F(e) = φ . A soft set (F,A) over X is said to be an *absolute soft* set denoted by \tilde{A} if all $e \in A$, F(e)=X.

Definition 1.3[10]: Let Y be a nonempty subset of X, then Y denotes the soft set (Y,E) over X for which Y(e)=Y, for all $e \in E$. In particular, (X,E) will be denoted by X.

Definition 1.4: A soft subset (A,E) of a soft topological spaces (X,τ,E) is called

- (i) asoftgeneralized closed (soft g-closed) [4]if $\tilde{cl}(A,E) \cong (U,E)$ whenever $(A,E) \cong (U,E)$ and (U,E) is soft open in X.
- (ii) asoft semi open [2] if $(A,E) \cong \widetilde{cl}(\widetilde{int}(A,E))$.
- (iii) a soft regular open [7] if (A,E) = int (cl (A,E)).
- (iv) a soft α -open [8] if (A,E) $\subset int(\tilde{cl}(int(A,E)))$.
- (v) a soft pre-open set [1] if $(A,E) \simeq int(cl(A,E))$.
- (vi) a soft clopen if (A,E) is both soft-open and soft-closed.
- (vii) a soft b-open if $(A,E) \cong \widetilde{cl}(\widetilde{int}(A,E)) \widetilde{U} \ \widetilde{int}(\widetilde{cl}(A,E))$.

The complement of the soft generalized closed, soft semi open, soft regular open, soft α -open, soft pre-open, soft b-closed are their respective soft generalized open, soft semi closed, soft regular closed, soft α -open, soft pre-closed, soft b-closed sets.

Definition 1.5 [10]: Let τ be the collection of soft sets over X, then τ is said to be a soft topology on X if(i) $\varphi, X \in \tau(ii)$ If $(F,E), (G,E) \in \tau$ then $(F,E) \cap (G,E) \in \tau(iii)$ If $\{(F_i,E)\}_{i \in I} \in \tau$ then $\bigcup_{i \in I} (F_i,E) \in \tau$. The pair (X,τ,E) is called a soft topological space. Every member of τ is called a soft open set. A soft set (F,E) is called soft closed in X if $(F,E)^c \in \tau$.

Definition 1.6: Let (X,τ,E) be a soft topological space over X and let (A,E) be a soft set over X (i) the *soft interior*[11]*of* (A,E)- is the soft set $int(A,E)=\widetilde{U}\{(O,E):(O,E) \text{ which is soft open and}(O,E)\subset(A,E)\}(ii)$ the *soft closure*[10] *of* (A,E) is the soft set $cl(A,E) = \widetilde{\cap}\{(F,E):(F,E) \text{ which is soft closed and } (A,E) \subset (F,E)\}$. Clearly cl(A,E) is the smallest soft closed set over X which contains (A,E) and int(A,E) is the largest soft open set over X which is contained in (A,E).

Example 1.7: There are two houses in the universe $X = \{a, b\}$ under consideration and that E contains set of parameters e_1 -blue, e_2 -red, e_3 -green and the subset of E is $A = \{e_1, e_2\}$ mapping f_A given by houses (to be filled in by one of the parameters $e_i \in E$ for i=1,2,3). $F_A(e_1)$ means 'houses (blue)'. The power set $P(X) = \{$ φ , X,{a},{b}}. Define (F,A)₁={ (e₁, φ), (e₂, φ)}, (F,A)₂={(e₁, φ), (e₂,{a})}, (F,A)₃={(e₁, φ), (e₂,{b})}, $(F,A)_7 = \{(e_1,\{a\}),$ $(e_2, \{b\})\}, (F,A)_8 = \{(e_1, \{a\}), (e_2, \{a,b\})\}, (F,A)_9 = \{(e_1, \{b\}), (e_2, \{a,b\})\}, (F,A)_9 = \{(e_1, \{b\}), (e_2, \{a,b\})\}, (e_3, \{a,b\})\}, (e_3, \{a,b\})\}, (e_3, \{a,b\})\}, (e_3, \{a,b\})$ (e_{2},φ) , $(F,A)_{10} = \{(e_{1},\{b\}), (e_{2},\{a\})\},\$ $(F,A)_{11} = \{(e_1 \{b\})\}$ $(e_2, \{b\})\},\$ $(F,A)_{12}$ $=\{(e_1, \{b\}),$ $(e_2, \{a, b\})\},\$ $(F,A)_{13} = \{(e_1, \{a,b\}),$ (e_{2},ϕ) , • $(F,A)_{14} = \{(e_1,\{a,b\}), (e_2,\{a\})\}, (F,A)_{15} = \{e_1,\{a,b\}), (e_2,\{b\})\}, (F,A)_{16} = \{(e_1,\{a,b\}), (e_2,\{a,b\})\}$ are all soft sets on universal set X under the parameter set A. Now $SS(X)_A = \{ (F,A)_1, (F,A)_2, \dots, (F,A)_{16} \}$. τ is a subset of $SS(X)_A$. $\tau = \{(F,A)_1, (F,A)_{16}, (F,A)_5, (F,A)_7, (F,A)_8\}$ is a soft topology over X. Soft open sets are : $(F,A)_{1,1}(F,A)_{16,1}(F,A)_{5,1}(F,A)_{7,1}(F,A)_{8}$. Soft closed sets are : $(F,A)_{16,1}(F,A)_{9,1}(F,A)_{10,1}(F,A)_{12,1}(F,A)_{1,1}$. Soft preopen sets are : (F,A)₁, (F,A)₅,(F,A)₆,(F,A)₇, (F,A)₈,(F,A)₁₃, (F,A)₁₄, (F,A)₁₅,(F,A)₁₆. Soft preclosed sets are : $(F,A)_{16}$, $(F,A)_2$, $(F,A)_3$, $(F,A)_4$, $(F,A)_9$, $(F,A)_{10}$, $(F,A)_{11}$, $(F,A)_{12}$, $(F,A)_1$. The following implication holds.

Soft open set Soft semiopen set Soft α -open set Soft preopen set

Remark1.8: The cardinality of $n(SS(X)_A) = 2^{n(x).n(A)}$.

2. Soft Feebly-open sets

Definition 2.1: In a soft topological space (X,τ,E) , a soft set (i) (A,E) is said to be *soft feebly-open set* if $(A,E) \simeq s \ \widetilde{cl}(\widetilde{int}(A,E))$.(ii) (A,E) is said to be *soft feebly-closed set* if $s \ \widetilde{int}(\widetilde{cl}(A,E)) \simeq (A,E)$. A soft feebly-open set is nothing but the complement of a soft feebly-closed set.

Theorem 2.2:(i) Arbitrary union of soft feebly-open sets is a soft feebly-open sets. **(ii)** Arbitrary intersection of soft feebly closed sets is a soft feebly-closed set. **Proof:** (i) Let $\{(A_i, E) ; i \in I, \text{the index set}\}$ be a collection of soft feebly-open sets. Then for every $i \in I, (A_i, E) \subset \widetilde{cl}(\widetilde{int}(A_i, E))$. Now $\widetilde{U}(A_i, E) \subset \widetilde{Uscl}(\widetilde{int}(A_i, E)) \subset \widetilde{cl}(\widetilde{int}(A_i, E)) \subset \widetilde{cl}(\widetilde{int}(A_i, E)) \subset \widetilde{cl}(\widetilde{int}(A_i, E)) \subset \widetilde{cl}(\widetilde{int}(A_i, E))$. Hence $\widetilde{U}(A_i, E)$ is soft feebly-open set. (ii) Follows immediately from (i) by taking complements.

Definition 2.3:Let (X,τ,E) be a soft topological spaces and let (A,E) be a soft set over X.(i) Soft feeblyclosure of a soft set (A,E) in X is denoted by $f\widetilde{cl}(A,E) = \widetilde{\cap}\{(F,E): (F,E) \text{ which is a soft feebly-closed set}$ and $(A,E) \widetilde{\subset}(F,E)\}$. (ii) Soft feebly-interior of a soft set (A,E) in X is denoted by $f\widetilde{int}(A,E) = \widetilde{\cup}\{(O,E) :$ (O,E) which is a soft feebly-open set and $(O,E)\widetilde{\subset}(A,E)\}$. Clearly $f\widetilde{cl}(A,E)$ is the smallest soft feebly-closed set over X which contains (A,E) and fint(A,E) is the largest soft feebly-open set over X which is contained in (A,E).

Theorem 2.4: If (A,E) is soft feebly-open set such that (U,E) \cong (A,E) \cong $\tilde{cl}(U,E)$, then (U,E) is also a soft feebly-open set . **Proof:**(U,E) \cong (A,E) \cong s $\tilde{cl}(U,E)\cong$ s $\tilde{cl}(U,E)$ and (A,E) is soft feebly-open, (A,E) \cong s $\tilde{cl}(\tilde{int}(A,E)) \Rightarrow$ (U,E) \cong s $\tilde{cl}(\tilde{int}(A,E)) \Rightarrow$ (U,E) \cong s $\tilde{cl}(\tilde{int}(A,E)) \Rightarrow$ (U,E) \cong s $\tilde{cl}(\tilde{int}(A,E)) \Rightarrow$ (U,E) is a soft feebly-open set.

Definition 2.5: Let (A,E) be a soft feebly subset of a soft topological space (X, τ ,E). A point is in (G,E) and (G,E) \cong (A,E) where (G,E) is soft feebly-open set. The set of *soft feebly interior points* of (A,E), denoted by *fint*(A,E). *Soft feebly-exterior* of (A,E) is the complement of (A,E) and is denoted by *fext*(A,E).

Definition 2.6: *soft feebly boundary* or *soft feebly frontier* of (A,E) is written as $f\widetilde{Fr}(A,E)$, is the set of points which do not belong to the soft feebly interior or the soft feebly exterior of (A,E).

Theorem 2.7:Let(A,E) be any soft feebly subset of a soft topological space (X,τ,E) . Then fint(A,E), fext(A,E) and fFr(A,E) are disjoint and $(X,\tau,E)=fint(A,E)\tilde{U} fext(A,E)\tilde{U} fFr(A,E)$. Further fFr(A,E) is a soft feebly closed set. **Proof :** By definition, $fext(A,E)=fint(A,E)^c$. Also $fint(A,E) \cong (A,E)$ and $fint(A,E)^c = (A,E)^c$. Since $(A,E) \cap (A,E)^c = \varphi$. It follows that $fint(A,E) \cap fext(A,E)$ and $x \not\in fext(A,E) \Leftrightarrow x \not\in fint(A,E)\tilde{U} fext(A,E) \Leftrightarrow x \not\in fint(A,E)$ and $x \not\in fext(A,E) \Leftrightarrow x \not\in fint(A,E) \cap fext(A,E) \oplus fext(A,E) = (fint(A,E) \cap fext(A,E)) \oplus fext(A,E) \oplus fext(A$

Remark 2.8: Let (A,E) be any feebly subset of a soft topological space (X, τ ,E). Then the soft feebly closure of (A,E) is the union of the soft feebly interior and soft feebly frontier of (A,E). That is $f\widetilde{cl}(A,E) = f\widetilde{int}(A,E) \widetilde{U} f\widetilde{Fr}(A,E)$.

3. Soft feebly-open and soft feebly-closed mappings

In this section we introduce soft feebly-open and soft feebly-closed mappings and some of its properties are discussed.

Definition 3.1: A function $f : (X,\tau,E) \rightarrow (Y,\tau,E)$ is called the soft feebly-closed if the image of each soft closed in (X,τ,E) is a soft feebly–closed in (Y,τ,E) .

Definition 3.2: A function $f:(X,\tau,E) \rightarrow (Y,\tau,E)$ is called soft feebly-open if the image of each soft-open set in (X,τ,E) is soft feebly-open set in (Y,τ,E) .

Theorem 3.3: Every soft open mapping is soft feebly-open mapping. **Proof:** Let f: $(X,\tau,E) \rightarrow (Y,\tau,E)$ be a soft open mapping. Now we have to prove that f is soft feebly-open. Let (H,E) be any soft open subset of (X,τ,E) . Since f is soft open mapping, f(H,E) is soft open in (Y,τ,E) , f(H,E) is soft feebly-open. Hence f is soft feebly-open mapping.

Theorem 3.4: Every soft closed mapping is soft feebly-closed mapping. **Proof:** Let $f:(X,\tau,E) \rightarrow (Y,\tau,E)$ be a soft closed mapping. Now we have to prove that f is soft feebly-closed mapping. Let (H,E) be any soft closed subset of (X,τ,E) . Since f is soft closed mapping, f(H,E) is soft closed in (Y,τ,E) . f(H,E) is soft feebly-closed. Hence f is feebly-closed mapping. **Theorem 3.5:** Let $f:(X,\tau,E) \rightarrow (Y,\tau,E)$ be a soft feebly-closed mapping then the image of every soft-closed subset of (X,τ,E) is soft semi-closed in (Y,τ,E) . **Proof:** Let (H,E) be any soft closed subset of (X,τ,E) and f(H,E) is soft feebly-closed in (Y,τ,E) then f(H,E) is soft semi-closed in (Y,τ,E) .

Theorem 3.6: A mapping $f:(X,\tau,E) \to (Y,\tau,E)$ is soft feebly-open if $f(int(H,E)) \simeq int(f(H,E))$ for every $(H,E) \simeq (X,\tau,E)$. **Proof:** Let (H,E) be any soft open set in (X,τ,E) . So that int(H,E) = (H,E), then f(int(H,E)) $\simeq int(f(H,E))$. Therefore $f(H,E) \simeq int(f(H,E))$. But $int(f(H,E)) \simeq f(H,E)$ always. Hence int(f(H,E)) = f(H,E). Therefore f(H,E) is soft open in (X,τ,E) , then f is soft open. By theorem 3.3, f is soft feebly-open.

Theorem 3.7: A mapping $f:(X,\tau,E) \rightarrow (Y,\tau,E)$ is soft feebly-closed if $\widetilde{cl}(f(H,E)) \simeq f(\widetilde{cl}(H,E))$ for every (H,E) $\simeq (X,\tau,E)$. **Proof:** Let (H,E) be any soft closed set in (X,τ,E) . So that $\widetilde{cl}(H,E)) = (H,E)$. By hypothesis $\widetilde{cl}(f(H,E)) \simeq f(\widetilde{cl}(H,E)) = f(H,E)$. Therefore, $\widetilde{cl}(f(H,E)) \simeq f(H,E)$. But $f(H,E) \simeq \widetilde{cl}(f(H,E))$ always. Hence $\widetilde{cl}(f(H,E)) = f(H,E)$, thus f(H,E) is soft closed, then f is soft closed map. By theorem 3.4, f is soft feebly-closed.

Theorem 3.8: Let $f:(X,\tau,E) \to (Y,\tau,E)$ and $g:(Y,\tau,E) \to (Z,\tau,E)$ be a mappings then $g \circ f:(X,\tau,E) \to (Z,\tau,E)$ is soft feebly-open if (i) f and g be the soft open mappings (ii) f is soft open and g is soft feebly open mappings. **Proof:** (i) Let (H,E) be any soft open subset of (X,τ,E) . Now we have to prove that $(g \circ f)(H,E)$ is soft feebly-open in (Z,τ,E) . Since f is soft open, then f(H,E) is soft open in (Y,τ,E) . Also we have g is soft open, then g(f(H,E)) is soft open in (Z,τ,E) . Therefore $(g \circ f)$ (H,E) is soft feebly-open in (Z,τ,E) . Thus $g \circ f$ is soft feebly-open mapping. (ii) By same method in part (i).

Remark 3.9:(i) Let $f:(X,\tau,E) \to (Y,\tau,E)$ and $g:(Y,\tau,E) \to (Z,\tau,E)$ be the soft closed mappings thengof $:(X,\tau,E) \to (Z,\tau,E)$ is soft feebly-closed.(ii) Let $f:(X,\tau,E) \to (Y,\tau,E)$ be soft closed and $g:(Y,\tau,E) \to (Z,\tau,E)$ be soft feebly-closed, then $g \circ f:(X,\tau,E) \to (Z,\tau,E)$ is soft feebly-closed.

4. Soft feebly-continuous functions

Definition 4.1[5] : Let (X,τ,E) and (Y,τ,E) be soft classes. Let $u:X \to Y$ and $p:E \to K$ be mappings. Then a mapping f: $(X,\tau,E) \to (Y,\tau,K)$ is defined as follows for a soft set (F,A) in (X,τ,E) , (f(F,A),B), $B = p(A) \simeq K$ is a soft set in (Y,τ,K) given by $f(F,A)(\beta) = u(\underset{\alpha \in p^{-1}(\beta) \cap A}{\overset{\widetilde{U}}{}}F(\alpha))$ for $\beta \in K$. (f(F,A),B) is called a *soft image* of a soft set (F,A). If B=K, then we will write (f(F,A),K) as f(F,A).

Definition 4.2[5]: Let f: $(X,\tau,E) \rightarrow (Y,\tau,K)$ be a mapping from a soft class (X,τ,E) to another soft class (Y,τ,K) and (G,C) a soft set in soft class (Y,τ,K) , where $C \subseteq K$. Let u: $X \rightarrow Y$ and p: $E \rightarrow K$ be mappings. Then $(f^{-1}(G,C),D)$, $D = p^{-1}$ (C) is a soft set in the soft classes (X,τ,E) defined as $f^{-1}(G,C)$ (α) = u⁻¹(G(p(α))) for $\alpha \in D \subseteq E$. $(f^{-1}(G,C),D)$ is called a *soft inverse image*of (G,C). Hereafter we will write $(f^{-1}(G,C),E)$ as f ${}^{1}(G,C)$.

Definition 4.3: A mapping f: $(X,\tau,E) \rightarrow (Y,\tau,K)$ is said to be soft mapping if (X,τ,E) and (Y,τ,K) are soft topological space u: $X \rightarrow Y$ and p: $E \rightarrow K$ are mappings.

Definition 4.4: A soft mapping f: $(X,\tau,E) \rightarrow (Y,\tau,K)$ is said to be *soft feebly-continuous* if the soft inverse image by f of each soft open set (H,E) of (Y,τ,K) is soft feebly-open in (X,τ,E) .

Remark 4.5: (i) Let (X,τ,E) be a soft topological space, (A,E) and $(B,E) \simeq (X,\tau,E)$ if $(A,E) \simeq (B,E)$, then f $(\widetilde{cl}(A,E)) \simeq f(\widetilde{cl}(B,E))$. (ii) Let (X,τ,E) be a soft topological space if (A,E) is soft feebly-open if and if only

 $(A,E)^{c}$ is soft feebly-closed. From our definition of softfeebly-open and soft feebly-closed sets, we obtain them.

Theorem 4.6: If f: $(X,\tau,E) \rightarrow (Y,\tau,K)$ is soft feebly-continuous if and if only the soft inverse imageof every soft closed subset of (Y,τ,K) is soft feebly-closed in (X,τ,E) . **Proof:** We have f is soft feebly-continuous. Let (H,K) in soft closed in (Y,τ,E) , $(H,K)^c$ is soft open in τ , $f^1(H,K)^c = (f^1(H,K))^c$ is soft feebly-open in (X,τ,E) , then by remark 4.5(ii) $f^1(H,K)$ is soft feebly-closed. (H,K) is a soft open set in (Y,τ,K) , $(H,K)^c$ is soft closed, then by hypothesis $f^1(H,K)^c$ is soft feebly-closed in (X,τ,E) , then by remark 4.5(ii) $f^1(H,K)$ is soft feebly-open set in (Y,τ,E) . Thus f is soft feebly-continuous.

Theorem 4.7: Every soft-continuous mapping is soft feebly-continuous mapping. **Proof:**Let f: $(X,\tau,E) \rightarrow (Y,\tau,K)$ is soft continuous mapping. Now we have to prove that f is soft feebly-continuous. Let (H,K) be any soft open subset of (Y,τ,K) . Since f is soft continuous then $f^{-1}(H,K)$ is soft open in (X,τ,E) . Therefore $f^{-1}(H,K)$ is soft feebly-open. Hence f is soft feebly-continuous mapping.

Theorem 4.8: Let (X,τ,E) be a soft topological space, $(A,E) \cong (X,\tau,E)$, then (A,E) is soft feebly-open if and if only f int (A,E) = (A,E). **Proof:**We have (A,E) is soft feebly-open set in (X,τ,E) . It is clear $fint(A,E) \cong (A,E) \rightarrow (1)$. Since (A,E) is soft feebly-open set and f int (A,E) is largest soft feebly-open set. Then $(A,E) \cong fint (A,E) \rightarrow (2)$. From (1) and (2) we obtain fint (A,E) = (A,E). Conversely let f int (A,E) = (A,E). Since fint (A,E) is soft feebly-open set, then (A,E) is soft feebly-open set.

Corollary 4.9: Let (X,τ,E) be a soft topological space, $(A,E) \cong (X,\tau,E)$ then (A,E) isoft feebly-closed if and if only $f \widetilde{cl}(A,E) = (A,E)$.

Theorem 4.10: If $f: (X,\tau,E) \to (Y,\tau,K)$ is soft feebly-continuous if and if $\operatorname{only} f(f\widetilde{cl}(A,E)) \simeq f(\overline{A,E})$ for every $(A,E) \simeq (X,\tau,E)$. **Proof:** We have f is soft feebly-continuous. Since $f(\overline{A,E})$ is soft-closed in (Y,τ,K) , then by theorem 4.6, $f^{-1}(f(\overline{A,E}))$ is soft feebly-closed in (X,τ,E) . By corollary $4.9, f\widetilde{cl}(f^{-1}(\overline{f(A,E)})) = f^{-1}(\overline{f(A,E)}) \longrightarrow (1)$. Now $f(A,E) \simeq (\overline{f(A,E)}) \Longrightarrow (A,E) \simeq f^{-1}(f(A,E))$ then $(A,E) \simeq f^{-1}(\overline{f(A,E)}))$, thus by remark 4.5(i), $f\widetilde{cl}(A,E) \simeq f\widetilde{cl}(f^{-1}(\overline{f(A,E)}))$ according to (1), we get $f\widetilde{cl}(A,E) \simeq f^{-1}(\overline{f(A,E)})$ by the for every $(A,E) \simeq f^{-1}(\overline{(f(A,E))})$, then $f(f\widetilde{cl}(A,E)) \simeq \overline{f(A,E)}$. Conversely, let $f(f\widetilde{cl}(A,E)) \simeq \overline{f(A,E)}$ for every $(A,E) \simeq (X,\tau,E)$. Let (H,V) is soft closed set in (Y,τ,K) . Then $\overline{(H,V)} = (H,V)$, let $f^{-1}(H,V)$ be any soft subset of (X,τ,E) , then by hypothesis $f(f\widetilde{cl}(f^{-1}(A,E))) \simeq f(\overline{f^{-1}(H,V)}) = \overline{(H,V)} = (H,V)$. Thus $f\widetilde{cl}(f^{-1}(H,V)) \simeq f^{-1}(H,V)$ but $f^{-1}(H,V) \simeq f\widetilde{cl}(f^{-1}(H,V))$ always thus $f^{-1}(H,V) = f\widetilde{cl}(f^{-1}(H,V))$. Therefore by corollary $4.9, f^{-1}(H,V)$ is soft feebly-closed in (X,τ,E) , hence by theorem 4.6, f is soft feebly-continuous.

Theorem 4.11: If f: $(X,\tau,E) \to (Y,\tau,K)$ is soft feebly-continuous if and if only $f\tilde{cl}$ $(f^{-1}(B,V))$ $\tilde{c}f^{-1}(\overline{B,V})$ for every $(B,V) \tilde{c}(Y,\tau,K)$. **Proof:** We have f is soft feebly-continuous. Since $(\overline{B,V})$ is soft closed in (Y,τ,K) . Then by theorem 4.6, $f^{-1}(\overline{B,V})$ is soft feebly-closed in (X,τ,E) and by corollary 4.9, $f\tilde{cl}$ $(f^{-1}(\overline{B,V})) = f^{-1}(\overline{B,V}) \longrightarrow (1)$. Now $(B,V) \tilde{c}(\overline{B,V}) \Rightarrow f^{-1}(B,V) \tilde{c}f^{-1}(\overline{B,V})$ thenby remark $4.5(i), f\tilde{cl} (f^{-1}(B,V)) \tilde{c}f\tilde{cl}f^{-1}(\overline{B,V})$, according to (1) we get, $f\tilde{cl} (f^{-1}(B,V)) \tilde{c}f^{-1}(\overline{B,V})$. Conversely, let $f\tilde{cl} (f^{-1}(B,V)) \tilde{c}f^{-1}(\overline{B,V})$ for every $(B,V) \tilde{c}(Y,\tau,K)$. Let (H,V) be any soft closed in (Y,τ,K) . Then $(\overline{H,V}) = (H,V)$ by hypothesis $f\tilde{cl} (f^{-1}(H,V)) \tilde{c}f^{-1}(\overline{H,V})$ for every $(B,V) \tilde{c}f^{-1}(\overline{H,V})$. Thus $f\tilde{cl} (f^{-1}(H,V))\tilde{c}f^{-1}(H,V)$, but $f^{-1}(H,V) \tilde{c}f\tilde{cl} (f^{-1}(H,V))$, therefore $f\tilde{cl} (f^{-1}(H,V)) = f^{-1}(H,V)$. Then by corollary 4.9, $f^{-1}(H,V)$ is soft feebly-closed in (X,τ,E) , hence by theorem 4.6, f is soft feebly-continuous. **Theorem 4.12:** Let f: $(X,\tau,E) \to (Y,\tau,K)$ be a soft mapping if $f(f\tilde{cl}(A,E)) \simeq f\tilde{cl}(f(A,E))$ for every (A,E) $\simeq (X,\tau,E)$ then f is soft feebly-continuous. **Proof:** Let (H,V) be any soft closed set in (Y,\tau,K), then by remark 4.5(ii), let (H,V) is feebly-closed so that by corollary , $f\tilde{cl}(H,V) = (H,V)$, $f^{-1}(H,V)$ is a soft subset of (X,τ,E) so thatby hypothesis $f(f\tilde{cl}(f^{-1}(H,V))) \simeq f\tilde{cl}(f(f^{-1}(H,V))) = f\tilde{cl}(H,V) = (H,V)$. Therefore $f\tilde{cl}(f^{-1}(H,V))\simeq f^{-1}(H,V)$ always. Hence $f\tilde{cl}(f^{-1}(H,V)) = f^{-1}(H,V)$ then by corollary 4.9, $f^{-1}(H,V)$ is soft feebly-closed in (X,τ,E) . Therefore by theorem 4.6, f is soft feebly-continuous.

Theorem 4.13: Let f: $(X,\tau,E) \to (Y,\tau,K)$ be a soft mapping if $f\tilde{cl}(f^{-1}(B,V))\tilde{c}f^{-1}(f\tilde{cl}(B,V))$ for every $(B,V) \tilde{c}(Y,\tau,K)$ then f is soft feebly-continuous. **Proof:**Let (H,V) be any soft closed set in (Y,τ,K) then by result 3.2(ii) of [3], we have (H,V) is a soft feebly closed set and so by corollary $4.9, f\tilde{cl}(H,V)=(H,V)$. By hypothesis $f\tilde{cl}(f^{-1}(H,V))\tilde{c}f^{-1}(f\tilde{cl}(H,V)) = f^{-1}(H,V)$. Therefore $\tilde{cl}(f^{-1}(H,V))\tilde{c}f^{-1}(H,V)$. But $f^{-1}(H,V)\tilde{c}f\tilde{cl}(f^{-1}(H,V))$ always. Hence $f\tilde{cl}(f^{-1}(H,V)) = f^{-1}(H,V)$ then by corollary $4.9, f^{-1}(H,V)$ is soft feebly-closed in (X,τ,E) . Therefore by theorem 4.6, f is soft feebly-continuous.

5. References:

[1] I. Arockiarani and A.Arokialary, Generalized soft $g\beta$ - closed sets and soft $gs\beta$ -closed sets in soft topological space, International Journals of Mathematical Archive, 4(2),1-7,2013. [2] Bin Chen, Soft semi-open sets and related properties in soft topological spaces, Appl.math.Inf.Sci.7,1,287-294, 2013.

[3] A.P. DhanaBalan, C. Santhi, RM. SivagamaSundari, Soft feebly separation spaces and soft feebly continuous functions, Math. Sci. Int. Res. Jou. 575-577, 3(2), 2014.[4]Jeyanthi .V and Janaki.C, π gr-closed sets in topological spaces, Asian Journal of current Engg. And maths 1:5, 241-246, 2012.[5]Kharal. A and Ahmad. B, Mappings on soft classes, New Mathematics and Natural computasion, 7(3),471-481,2011. [6]Maji.P.K., Biswas. R and Roy.A.R., Soft set theory, Comput.Math.Appl., 45,555-562,2003. [7]Mahanta.J and Das.P.K., On soft topological space via semi-open and semi-closed soft set, General topology,7(1),287-294, 1999. [8]MetinAkdag and AlkanOzkan, Soft α -open sets and soft α -continuous functions.[9]Molodtsov. D, Soft set theory-first results, Computers and Mathematics with Applications, 37(4-5),19-31,1999. [10]Shabir.M and Naz.M, On soft topological spaces, Comput.Math.Appl., 61,1786-1799,2011. [11]Zorlutuna.I, Akdag.M, Min.W.K. andAtmaca.S, Remark on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 3(2),171-185,2012.