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Abstract

In this paper, we proposed a local fractional series expansion method (LFSEM) to solve the Laplace
and Schrodinger equations on Cantor sets. Some examples are given to illustrate the efficiency and
accuracy of the proposed method to obtain analytical solutions to differential equations within the

local fractional derivatives.
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1. Introduction

Many problems of physics and engineering are expressed by ordinary and partial differential
equations, which are termed boundary value problems. We can mention, for example, the wave, the
Klein-Gordon, the Schrodinger’s, the Advection, the Burgers, the Boussinesq, and the Fisher

equations and others [1].
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Several analytical and numerical techniques were successfully applied to deal with differential
equations, fractional differential equations, and local fractional differential equations [1-10] . The
techniques include the heat-balance integral [11], the fractional Fourier [12], the fractional Laplace
transform [12], the harmonic wavelet [13, 14], the local fractional Fourier and Laplace transform
[15], local fractional variational iteration [16, 17,18], the local fractional decomposition [19], and

the generalized local fractional Fourier transform [21] methods.

The main idea of this paper is to present the local fractional series expansion method for effective
solutions of the Laplace and Schrodinger equations on Cantor sets involving local fractional
derivatives. The paper has been organized as follows. Section 2, the basic mathematical tools are
reviewed. In Section 3 gives a local fractional series expansion method. Some illustrative examples

are shown in Section 4. The conclusions are presented in Section 5.

2. A Brief Review of the Local Fractional Calculus
Definition 1. [19-24]. Suppose that there is the relation

[f(x)—f(xp)<e” ,0<a<1 (2.1)
with |x—xq|<¢&, for ¢,6>0 and ¢,5<R, then the function f(x) is called local fractional continuous

at x=xq and it is denoted by lim f(x)=f(xg).
X—>Xg

Definition 2.[19-24]. Suppose that the function f(x) satisfies condition (2.1), for xe(a,b); it is SO
called local fractional continuous on the interval (a,b), denoted by f(x)eC,(a,b).
Definition 3.[19-24]. In fractal space, let f(x)eC,(a,b), local fractional derivative of f(x) of order

a at x=x, is given by

= f(a)(xo) - lim A*(F(x) = f(x0)) (22)

X=>Xg (x—=x%g)*

a d“
Dy f(Xo)=—1 (%)
dx

X=Xq

where A”(f(x) - f (X)) =T(a+2) (f(X)- f(xg)).

The formulas of local fractional derivatives of special functions [19] used in the paper are as follows:

D{”ag(x) =aD{“g(x), (2.3)
d“ xne X(n—l)“
W[r(ﬂ na)J_ rl+(n-Da)’ neN (2.4)
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Definition 4.[19-24]. A partition of the interval [a,b] is denoted as (t;.t;,;), j=0,...N-1Lt;=a and
ty =b With At; =t;,,—t; and At =max{At,,At,,.....}.Local fractional integral of f(x) in the interval [a,b]

is given by

£ (x) = r(11+ lim Zf(t ) (At))“. (2.5)

b
a);[f(t)(dt)“ F(1+ a) At

The formulas of local fractional integrals of special functions [19] used in the paper are as follows:

o1 Pag(x) =a o1 {Pg(x), (2.6)

neN (2.7)

(@) X" X(n+1)"
| = :
" \r@+na) | r+n+a)

3. Analysis of the method
Let us consider a given local fractional differential equation

" *u(x,t)

e et (3.1)
where L, is alinear local fractional derivative operator with respect to x, ne{1,2}.

In accordance with the results in [24], there are  multiterm separated functions of independent

variables t and x reads as

uxH = 3T O (9, (32)

i=0
where T,(t) and X;(x) are local fractional continuous functions.

Inview of (3.2), we have

tia
TO- o (3.3)
so that
o tia
U(X,t)=§mxi(x). (34)
Making use of (3.4), we get
o"u(xt) &t
athe IZ:F(1+| ) i+n(X): (35)
© tia © i
Lau(xit)zl—a{gr(T |( )] Zol (1+| ) a | (X) (36)

Inview of (3.5) and (3.6), we have
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o0 o0

Zm Xin(X) = Zl‘(l+| ) L, X M%) - (3.7)

Hence, from (3.7), the recursion reads as follows:

Xin(®) = (L X (%) » (3.8)
with n=1; we arrive at the following relation:

Xiaa () = (L Xi %) 4 3.9)
with n=2; we may rewrite (3.8) as:

X122 00 = (L, X; %) (3.10)

By the recursion formulas, we can obtain the solution of (3.1) as

u(xt) = Zm Xi( (3.11)

4. Applications to Laplace and Schrodinger Equations on Cantor Sets
In this section, four examples for Laplace and Schrodinger equations on Cantor sets will demonstrate

the efficiency of local fractional series expansion method.

Example 1. Let us consider the Laplace equation on Cantor set

2% u(x,t)  d%u(x,t)
+
ot x>

and subject to the fractal value conditions

-0 (4.1)

o“u(x,0)
ata
Following (3.10), we have recursive formula

u(x,0)=-E_ (x%), =0 4.2)

2% X (X)
Xi+2(x)=—ax—2'aa

Xo(X) =u(x,0) = —E, (x*), (4.3)

X0 -T2 g

Hence, using the relations (4.3), the recursive calculations yield
Xo(X) =u(x,0) = -E, (x*),

) (4.4)
X,(x)= 240 _g

aZa o(X)

Xo(X) =~ =E,(x),
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%X, (x)
XS(X) - axzz
X g8 X 0
4(X) - axza
X azax?z(x)
5(X) - axza
x 620!)(4()()
G(X) - axza

and so on.

- a(Xa)v (45)

Therefore, through (4.5) we get the solution

u(x,t) = ~E, (x* )Z( D'

2|

I'l+2ia)

=-E,(x*)cos, (t) (4.6)

Example 2. Let us consider the Laplace equation on Cantor set

% u(x,t) qu(x t)

atZa aXZOt

-0 4.7

and subject to the fractal value conditions

u(x,0)=0,
By using (3.10), we have

Xi+2(x) == 6x2“
Xo(X) =u(x,0) =0,
X, (x) = 0 u(x 0)

0% u(x 0

%X (%)

=-E,(x%) (4.8)

(4.9)

=—E, (x%).

Then, through the iterative relations (4.9), we have

Xo(X) =0,
a 4.10
X0 = o) -, (7). 419
2c
xz(x)=—%;jx):o,
2a
X509 = "4 €, (),
X, (0= O X0 _ (4.11)
X%
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¥ X0 _ g (),
X

and so on.
Finally, we obtain
t(2i+l)a

u(x,t) :—Ea(xa);(—l)' m

=—E, (x%)sin , (t*) (4.12)

Example 3. Let us consider the Schrodinger equation on Cantor set

o"u(x.t) azu(x t)_
ata axza

(4.13)
with the initial conditions

u(x,0) =sin , (x*) (4.14)

Following (3.10), we have recursive formula

(x) = a“x (x)
Xiaa(x) = ox¥ (4.15)
Xo(X) =u(x,0) =sin , (x*)

Hence, using the relations (4.15), the recursive calculations yield

Xo(X) =u(x,0) =sin, (x¥),

0% X (X)
Xi(X)=—i e

=isin, (x%),

2a
X, (X) = —8 X1 (%)

=i%sin , (x%),

0% X, (%)
ox%

X5(x) = —i—2222 —i3sin (x9), (4.16)

X4(X)=—i

2c
M_i“sina(xa),
X

and so on.

Therefore, through (4.16) we get the solution
u(x.t)=sin, (x“)E,, [i*t*) (4.17)

IIMCR www. ijmer.in] 2:11|November[2014(736-744 |



Example 4. Let us consider the Schrodinger equation on Cantor set

o“u(x) . o*u(x.t) _ 0 (4.18)
ot 8)(20: !

with the initial conditions

u(x,0) = E, (x*) (4.19)
Following (3.10), we have recursive formula
0% X (%)
Xi+1(x) =-l axza ) (420)

Xo(x) =u(x,0) = E, (x%)
Hence, using the relations (4.20), the recursive calculations yield

Xo () =u(x,0) = E, (x“),

X3(x) =—i%= i 2E, (x%),
X() = -i 82’;))((22(x) — %, (), (4.21)
Xy (=i X g ()

and so on.

Therefore, through (4.21) we get the solution
u(x,t)= E, (x)E, [-i"t* )= E, ((x~it)*) (4.22)

5. Conclusion

In this work, the nondifferentiable solution for the Laplace and Schrodinger equations involving
local fractional derivative operators is investigated by using the local fractional series expansion
method (LFSEM). In this context, the suggested method is a potential tool for development of
approximate solutions of local fractional differential equations with fractal initial value conditions,

which, of course, draws new problems beyond the scope of the present work.
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