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Abstract 

In this paper, we proposed a local fractional series expansion method (LFSEM) to solve the Laplace 

and Schrodinger equations on Cantor sets. Some examples are given to illustrate the efficiency and 

accuracy of the proposed method to obtain analytical solutions to differential equations within the 

local fractional derivatives. 
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1. Introduction 

     Many problems of physics and engineering are expressed by ordinary and partial differential 

equations, which are termed boundary value problems. We can mention, for example, the wave, the 

Klein-Gordon, the Schrodinger’s, the Advection, the Burgers, the Boussinesq, and the Fisher 

equations and others [1]. 
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     Several analytical and numerical techniques were successfully applied to deal with differential 

equations, fractional differential equations, and local fractional differential equations [1-10] . The 

techniques include the heat-balance integral [11], the fractional Fourier [12], the fractional Laplace 

transform [12], the harmonic wavelet [13, 14], the local fractional Fourier and Laplace transform 

[15], local fractional variational iteration  [16, 17,18], the  local   fractional   decomposition [19], and 

the generalized local fractional Fourier transform [21] methods. 

 

      The main idea of this paper is to present the local fractional series expansion method for effective 

solutions of the Laplace and Schrodinger equations on Cantor sets involving local fractional 

derivatives. The paper has been organized as follows. Section 2, the basic mathematical tools are 

reviewed. In Section 3 gives a local fractional series expansion method. Some illustrative examples 

are shown in Section 4. The conclusions are presented in Section 5.     

 

2.  A Brief Review of the Local Fractional Calculus  

Definition 1. [19-24]. Suppose that there is the relation  

        10,)()( 0   xfxf                                                                                     (2.1)          

with  0xx , for 0,   and R , , then the function )(xf  is called local fractional continuous 

at 0xx   and it is denoted by )()(lim 0
0

xfxf
xx




.  

Definition 2.[19-24].  Suppose that the function )(xf  satisfies condition (2.1), for ),( bax ; it is so 

called local fractional continuous on the interval ),( ba , denoted by ),()( baCxf  .  

Definition 3.[19-24].  In fractal space, let ),()( baCxf  , local fractional derivative of )(xf  of  order 

  at 0xx   is given by 
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where )).()(()1())()(( 00 xfxfxfxf     

The formulas of local fractional derivatives of special functions [19] used in the paper are as follows: 
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Definition 4.[19-24]. A partition of the interval ],[ ba  is denoted as ,),( 1jj tt  atNj  0,1,...,0  and 

btN   with jjj ttt  1  and ,.....}.,max{ 10 ttt  Local fractional integral of )(xf  in the interval ],[ ba  

is given by 
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The formulas of local fractional integrals of special functions [19] used in the paper are as follows: 
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3. Analysis of the method 

Let us consider a given local fractional differential equation  
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,                                                                                                (3.1) 

where L  is a linear local fractional derivative operator with respect to  2,1, nx . 

In accordance with the results in [24], there are  multiterm separated functions of independent 

variables t  and x  reads as 
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where )(tTi  and )(xX i  are local fractional continuous functions. 

In view of (3.2), we have 
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Making use of (3.4), we get 
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In view of (3.5) and (3.6), we have 
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Hence, from (3.7), the recursion reads as follows: 

        )()( xXLxX ini  ,                                                                                                  (3.8) 

with ;1n we arrive at the following relation: 

        )()(1 xXLxX ii  ,                                                                                                  (3.9) 

with ;2n we may rewrite (3.8) as: 

        )()(2 xXLxX ii                                                                                                   (3.10) 

By the recursion formulas, we can obtain the solution of (3.1) as 
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4. Applications to Laplace and Schrodinger Equations on Cantor Sets  

In this section, four examples for Laplace and Schrodinger equations on Cantor sets will demonstrate 

the efficiency of local fractional series expansion method. 

 

Example 1. Let us consider the Laplace equation on Cantor set 
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and subject to the fractal value conditions 
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Following (3.10), we have recursive formula 

                   

,0
)0,(

)(

),()0,()(

,
)(

)(

1

0

2

2

2

























t

xu
xX

xExuxX

x

xX
xX i

i

                                                                             (4.3) 

Hence, using the relations (4.3), the recursive calculations yield 
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and so on. 

Therefore, through (4.5) we get the solution 
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Example 2. Let us consider the Laplace equation on Cantor set 
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and subject to the fractal value conditions 
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By using (3.10), we have 
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Then, through the iterative relations (4.9), we have 
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Finally, we obtain 

                   
 










0

)12(

)12(1
)1()(),(

i

i
i

i

t
xEtxu






  

                     )(sin)( 



 txE                                                                             (4.12)  

 

Example 3. Let us consider the Schrodinger equation on Cantor set 
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with  the initial conditions 
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Following (3.10), we have recursive formula 
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Hence, using the relations (4.15), the recursive calculations yield 
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Therefore, through (4.16) we get the solution 
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Example 4. Let us consider the Schrodinger equation on Cantor set 
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with  the initial conditions 

                   )()0,( 
 xExu                                                                                           (4.19) 

Following (3.10), we have recursive formula 
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Hence, using the relations (4.20), the recursive calculations yield 
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Therefore, through (4.21) we get the solution 
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5. Conclusion  

       In this work, the nondifferentiable solution for the Laplace and Schrodinger equations involving 

local fractional derivative operators is investigated by using the local fractional series expansion 

method (LFSEM). In this context, the suggested method is a potential tool for development of 

approximate solutions of local fractional differential equations with fractal initial value conditions, 

which, of course, draws new problems beyond the scope of the present work. 
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