

[Volume 2 issue 12 December 2014] Page

No.751-765 ISSN :2320-7167

INTERNATIONAL JOURNAL OF MATHEMATICS AND

COMPUTER RESEARCH

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 751

A Comparative Study on Different Algorithms for finding Longest

Route in a Project Network

Dr. K.M. Roopa
*
, H.R. Apoorva

1
 and M.C.Viswanath

2

*
Professor, Department of Mathematics, Bangalore Institute of Technology, Bangalore, India

Email: roopakm10@gmail.com
1
B.E, Department of Computer Science, PES Institute of Technology, Bangalore, India

2
Assistant Professor, Department of Mathematics, Nagarjuna College of Engg. & Technology, Bangalore, India

Abstract:

Network techniques are often used in scheduling projects that contain many interrelated activities. One

approach that has been widely used is the Critical Path Method(CPM), in which a network diagram depicts

precedence among activities. In the CPM, such as three parameters earliest event time, latest event time and

slack time are used to determine each of the critical activities. This paper also deals with the methodology to

find the critical path using modified Dijkstra’s algorithm, Floyd Warshall’s algorithm and Bellman Ford

algorithm. In addition to critical path problem formulated as a Linear Programming Problem (LPP), it was

also solved using binary integer (0-1) programming formulation. Further, dual of the linear programming is

used to determine the critical path as well as critical distance. Finally, these algorithms were executed using

matlab software.

Keywords: Longest Route, Critical Path Method, Modified Dijkstra’s, Floyd Warshall’s, Bellman Ford

algorithms, LPP, Matlab, Network Analysis

1.0 Introduction:

Scheduling activities in project management is becoming increasingly important to obtain competitive

priorities such as on-time delivery. By using project management, managers are able to obtain a graphical

display of project activities (tasks) and an estimate of how long the project will take to complete. The

Critical Path Method (CPM) is a network-based method, designed to assist in the planning, scheduling and

control of the project. Its objective is to construct the time scheduling for the project. Two basic results

provided by CPM are the total duration needed to complete the project and the critical path. One of the

procedures for finding a critical path is to first determine the earliest occurrence times via a forward pass and

the latest occurrence times via a backward pass of each activity and then identify critical activity, an activity

with the earliest occurrence time equal to the latest occurrence time [5]. Finally, critical activities constitute

a critical path that is a single uninterrupted path spanning the entire project network from start to finish, and

consequently the total duration time of this project network can be obtained by summing these critical

activity times. However, it is possible for a project network to have more than one critical path [4] [8].

Dijkstra’s algorithm computes the shortest paths from a source vertex to every other vertex in a graph [1]. In

this paper, modified Dijkstra’s algorithm [5] is presented to find critical path and critical distance in a

project network. Floyd Warshall’s [2, 7] and Bellman Ford algorithms are also discussed to find critical path

by inverting edge weight in a directed acyclic graph [6]. Further, these algorithms are executed using matlab

software. The linear programming formulation for critical path problem was solved using binary integer (0-

1) programming technique, which is also discussed. In addition, CPM is formulated as binary integer

programming and dual linear programming problems, which is solved by algebraic method [3]. For large

number of vertex, matlab software can be a best choice.

2.0 Critical Path Method (CPM)

A directed acyclic graph with non negative weights and unique source and destination is called an activity

network. In this network, the arc represents activity, while the precedence relationship between all activities

mailto:roopakm10@gmail.com

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 752

is represented by the topology of the network. Let G=(V, A, T, s, d) be an activated network, where

V={v1,v2……vn} be the set of vertices, in which v1 and vn represent the start and final events of the project

respectively. Let A V x V be the set of directed edges, aij= (vi, vj), that represents the activities to be

performed in the project. The activity aij is represented by one and only one arrow with tail event vi and head

event vj. For each activity aij, a magnitude tijЄT is defined, where tij is the time required for completion of

that particular activity. With respect to CPM, the forward pass calculates the earliest time at which the

activity can start provided that its precedent activities are completed first and the backward pass calculates

the latest time at which the activity can be completed without delaying the project. Float is the amount of

time an activity can be delayed or lengthened. This is also called slack. Arcs on the critical path have zero

float, while non critical arcs have non zero floats. The more accurate term for float is total float but often

shortened as float, since it is, by far, the most commonly used measure. Critical path is the longest path from v1

to vn and an activity aij on critical path is called the critical activity. The steps used to find the critical path are as

follows:

 i) Perform a forward pass through the network to determine the earliest time say, E and longest distance from

v1 to vn.

ii) Perform a backward pass through the network to determine the latest time say, L.

iii) Calculate the float for each arc to determine the longest path in the project network.

2.1 Forward pass algorithm:

 Step1: Let the start event be v1 and set earliest time E1=0. Also, the set S represents ascending sequence of

topological order.

 Step2: For each event in S, repeat the following steps.

 Step2 (a): Calculate the earliest time for the current event as below:

 Ej=max {Ea+ taj, Eb+ tbj …………… Ek+ tkj} (1)

 Where, a, b …..…k are the head events of activities from event j.

 Ea, Eb………Ek are the earliest time of the events a, b …k respectively.

 taj, tbj………tkj are the corresponding time taken to complete of each activity.

 Step2 (b): If the current event is same as the final event then the algorithm stops.

 2.2 Backward pass algorithm:

Step1: Let final event be vn and set latest time Ln=En. Also, the set S represents descending sequence of topological

order.

Step2: For each event in S , repeat the following steps.

 Step2 (a): Calculate the latest time for the current event as below:

 Li=min {La- taj, Lb- tbj …………… Lk-tkj} (2)

 Where, a, b …..…k are the tail events of activities from event i.

 La, Lb………Lk are the latest time of the events a, b …k respectively.

 taj, tbj………tkj are the corresponding time taken to complete of each activity.

 Step2 (b): If the current event is same as the start event then the algorithm stops.

2.3 Total Float:

Total float is used to determine whether an event is critical. If the total float for an event is zero then that event is

critical event. The critical path is then found by connecting critical events.

 Steps to compute total float:

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 753

Step1: Let the start event v1 be the current event. Also the set S represents the ascending sequence of topological

order.

Step2: For each event in S, repeat the following steps.

 Step2 (a): If the current event is same as the final event, vn then the algorithm stops.

Step2 (b): For each event that is the head event of an activity from current event calculate total float as follows

 Tij =Lj - Ei - tij (3)

 Where i= current event, j= successor event

Deduce the critical path:

Step1: Let P be the set of all events that make up the critical path. Add the start event v1 to P.

Step 2: Start with the T1j value that is zero and include the event vj in P. From this find a Tjk value that is zero and

include the event vk in P. Continue the process until you find a Tmn value that is zero.

Step 3: Add the final event vn to set P.

Example: Consider the activity network as shown in Figure1, determine the earliest time and latest time by forward

pass and backward pass algorithm. Also calculates total float.

 Fig.1: Activity network

Forward pass

Set E1=0 : E2= E1+ t12= 0+15= 15 : E3= max {E1+ t13, E2+ t23} = max {10, 23} =23

E4= max{ E2+t24, E3+t34}= max{22, 27}=27 : E5= max{ E2+t25, E4+t45}= max{19, 31}=31

E6= max {E4+t46, E5+t56} = max {33, 33} =33 : E7= max{ E3+ t37, E4+ t47, E5+ t57, E6+ t67 }=max{40,32,39,39}=40

Backward pass

Set E7=L7=40 : L6=L7-t67=40-6=34 : L5= min { L7- t57, L6- t56} =min {32, 32} =32

L4= min{ L7- t47, L6- t46 ,L5- t45}=min {35,28,28}=28 : L3= min{ L7- t37, L4- t34}=min {23,24}=23

L2= min{ L3- t23, L4- t24 ,L5- t25}=min {15,21,28}=15 : L1= min{ L2- t12, L3- t13}=min {0,13}=0

Total float of the activity

T12=L2-E1-t12=0 : T13=L3-E1-t13=13 : T23=L3-E2-t23=0 : T24=L4-E2-t24=5 : T25=L5-E2-t25=13

T34=L4-E3-t34=1 : T37=L7-E3-t37=0 : T45=L5-E4-t45=1 : T46=L6-E4-t46=1 : T47=L7-E4-t47=8

T56=L6-E5 - t56=1 : T57=L7-E5- t57=1 : T67=L7-E6 - t67=1

Therefore the critical path of the project network is 1-2,2-3,3-7 i.e. 1-2-3-7

6

5

7 3

2

1

17

15

50

8

4

6

5 4

4

2

6

8

10

55

55

7
4

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 754

3.0 Modified Dijkstra’s algorithm:

Let G = (N, A), where, N = (1, 2, 3…..n) is a node, be a weighted and directed network in which the weight

of the every directed arc (edge) is non negative. Modified Dijkstra’s algorithm is used to find the path with

maximum weight from a chosen vertex, say vertex 1, to any other vertex ‘s’ of G. This algorithm is iterative

in nature and each of these iterations consists of two steps to calculate the longest distance. Further, the

algorithm provides means to trace the longest path (critical path) accordingly.

3.1 Outline of Modified’s Algorithm:

Modified Dijkstra’s algorithm considers two sets: i) set P, which at any specific point consists of all the

nodes that were encountered by the algorithm and ii) set S, a precedence set, which at any specific point

consists of the precedent node for each node in the network. Apart from these sets, the algorithm utilizes the

following distance information.

qij, for i, j=1, 2, 3, 4…n and i ≠ j, denote the weight of the directed edge (arc) from vertex i to vertex j. If

there is no arc from i to j, then qij, is set to be zero.

 tj, for j=1, 2, 3, 4…n and j ≠ s where s is the start index. Also,

 tj = q1j for j=2,3,4…n (4)

In each iteration, the sets P and S as well as the set of all tj, for j=1, 2, 3, 4…n and j≠s, that are output from

the previous iteration are taken as inputs for the current iteration.

Initially P = {s}.where S is the start vertex. S is a set of size n populated with i) 0 if tj = 0, ii) s if tj = Non-

Zero value.

The steps involved in each iteration for finding the longest path are summarized below:

Step 1: Identify maximum among the computed tj values. Let tk be the maximum.

Add k to the set P.

Step 2: Now P = {1, k}. For each of the nodes not in P and with non-zero qkj, for j=1, 2, 3, 4…n and j ∉P,
recalculate tj using the below expression:

 tj = max{ tj, tk + qkj } (5)

If (tk + qkj) > tj then update the jth entry in S to k.

Continue the iterations until the end node, e, is added to the set P.

Further, the steps to trace the critical path between nodes s and e, using Dijkstra’s algorithm are given

below:

Step 1: Take node e as the last node in the longest path. Add e to the partially constructed critical path.

Step 2: Find the eth entry in the set S, let this be x. Add this prefix node x to the partially constructed critical

path.

Step 3: Check whether x is equal to s. If so, go to Step 4; else set e = x and go to Step 2.

Step 4: Add s to the partially constructed critical path. The required critical path from node s to node e is

obtained.

Example: Determine the Critical Path and Critical distance from vertex 1 to vertex 7 in the weighted

directed network is depicted in the fig.1.

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 755

First Iteration: P= {1}, S= {0, 1, 1, 0, 0, 0, 0}, and

t2 = 15, t3 = 10, t4 = 0, t5 = 0, t6 = 0, t7 = 0

Step 1: Note that tj is maximum for j=2, i.e., t2 =15 .Therefore add 2 to the set P

Step 2: Now, P= {1, 2} and t2 =15

t3 = max {t3, t2 + q23} => t3 = max {10, 15+ 8} =23=> S [3] = 2

t4 = max {t4, t2 + q24} => t4 = max {0, 15 + 7} =22 => S [4] = 2

t5 = max {t5, t2 + q25} => t5 = max {0, 15+4} = 19. => S [5] = 2

Second Iteration: P= {1, 2}, S={0,1,1,2,2,0,0} , and t2 = 15, t3 = 23, t4 = 22, t5 = 19, t6=0, t7 =0.

Step 1: For the set of recalculated tj values, maximum occurs at j=3, i.e.t3 =23. Therefore, add node 3 to set

P.

Step 2: Now, P = {1, 2, 3} and t3 =23

t4 = max {22, 23 + 4} =27 => S [4] = 3: t7 =max {0, 23+17} = 40 => S [7] = 3

The temporary longest path from vertex1 to vertex7 is 1-2-3-7 which is of cost 40.

Check if there is any other path that is longer other than this path.

Second distance in this case from vertex 4.

Third Iteration: P = {1, 2, 3}, S= {0, 1, 1, 2, 2, 3, 3}, and t2 = 15, t3 = 23, t4 = 27, t5 = 19, t6 = 0, t7 = 0.

Step 1: The maximum tj value occurs for j=4, i.e. t4 =27. Add node to the set P.

Step 2: P= {1, 2, 3, 4} and t4 =27

t5 = max {t5, t4 + q45} => t5 = max {19, 27+ 4} =31=>S [5]=4

t6 = max {t6, t4 + q46} => t6 = max {0, 27+ 6} =33=> S [6] = 4

t7 = max {t7, t4 + q47} => t7 = max {0, 27+ 5} =32. => S [7] = 4

 The path 1-2-3-4-7 =32 is shorter than then the path 1-2-3-7=40.

Third distance from vertex 5

Fourth Iteration: P={1, 2, 3, 4}, S = {0, 1, 1, 2, 2, 3, 3}, and t2 = 15, t3 = 23, t4 = 27, t5 =31, t6 = 0, t7 = 0.

Step 1: The maximum tj value occurs for j=5, i.e. t5 =31. Add node 5 to the set P.

Step 2: P= {1, 2, 3, 4, 5 } and t5 =31

t6 = max {t6, t5 + q56} => t6 = max {0, 31+ 6} =33=> S [6] = 5

t7 = max {t7, t5+ q57} => t7 = max {0, 31+ 8} =39. => S [7] = 5

The path 1-2-3-4-5-7 =39 is shorter than then the path 1-2-3-7=40.

Third distance from vertex 6

Fifth Iteration: P={1, 2, 3, 4, 5}, S ={0, 1, 1, 2, 2, 3, 3}, and t2 = 15, t3 = 23, t4 = 27, t5 =31, t6 = 33, t7=0.

Step 1: The maximum tj value occurs for j=6, i.e. t6 =33. Add node 6 to the set P.

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 756

Step 2: P= {1, 2, 3, 4, 5, 6} and t6 =33

t7 = max {t7, t6 + q67} => t7 = max {0, 33+ 6} =39. => S [7] = 6

The path 1-2-3-4-5-6-7 = 39 is shorter than the path 1-2-3-7=40.

Therefore the critical path from vertex1 to vertex7 is 1-2-3-7 which is of duration 40 days.

The Modified Dijkstra’s algorithm is implemented in Matlab software and the corresponding output is given below:

dist =40 ; path =1 2 3 7; pred = 1 1 2 3 4 4 3

Therefore, the critical path in the project network is 1237 with the duration of 40 days.

4.0 Floyd Warshall algorithm and Bellman Ford algorithm:

These algorithms are basically used to solve shortest path problems with positive or negative edge weight but without

negative cycle. However, it is possible to find longest path by taking negative sign of their edge weight. This

transformation cannot be used in most of the graphs, because it creates a cycle of negative length in graph G. As the

graph to find critical path is a directed acyclic graph with positive edges, it does not create any negative cycles.

Further, these algorithms can also be implemented using matlab software.

4.1 Floyd Warshall algorithm:

This algorithm has square matrix d, with n-rows and n- columns. Each entry d (i, j) of the matrix gives the critical path

from node i to node j. If there is a direct link from node i to node j, it is finite or else it is infinite i.e. d(i, j) = ∞. Floyd

Warshall’s Algorithm is based on transitivity property. Consider the d (i, j) three nodes i, j and k as shown in Figure

2.0. From the transitivity property,

d (i, j)+d (j, k) = d(i, k).

 Fig. 2.0

The algorithm exploits the above property to find the shortest distance between nodes i and k as follows: If,

d (i, j) +d (j, k) <d (i, k), it is optimal to replace the direct route from ik, with the indirect route, being ijk.

4.2 Outline of Floyd Warshall’s Algorithm:

The Floyd Warshall’s algorithm uses two adjacency matrices i.e, i) distance matrix Dk and ii) Precedence matrix Sk,

where k=0, 1, 2…..n. In first iteration, the algorithm takes initial distance matrix D0 and initial precedence matrix S0 as

input. Then on, in each iteration, the distance matrix and precedence matrix that are output from the previous iteration

are taken as input to the current iteration and the n
th
 iteration where n is the number of nodes in the graph that gives

the optimal/final distance matrix D as well as the final precedence matrix S. The optimal distance matrix Dn represents

the shortest distances between any two nodes in the network. However, by taking negativethe sign of the edges and

then applying Floyd Warshall’s Algorithm, the distance matrix Dn represents the longest distance between any two

nodes in the network and the corresponding critical path can be traced out from the precedence matrix, Sn. The steps

for finding critical path under Floyd Warshall’s algorithm are summarized below:

Step1: Set iteration k=1.

Step2: Consider first column and first row of the initial representation of distance matrix D0 as pivot column and pivot

row and apply transitive operation.

Step3: If any entry of the pivot column or pivot row is infinity then row/column corresponding to this element need

not be considered.

Step 4: There are two cases:

Case (a): If the condition d (i, k) +d (k, j) <d (i, j) (i ≠ k, j ≠ k, i ≠ j), make the following changes

(i) Create Dk by replacing d (i, j) if Dk-1 with d (i, k) + d (k, j)

 i

K j

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 757

(ii) Create Sk by replacing S (i, j) in Sk-1 with k. set k=k+1. If k > n, the algorithm stops else repeat steps between 2 and

4. Reverting the sign of the entry Dn(s, n) gives the critical distance.

Case (b): If d(i, k) + d(k, j) = d(i, j), (i ≠ k, j ≠ k and i ≠ j), do not make any change this implies that i → k → j is an

alternative way of i → j.

Similarly, steps to trace the critical path between two nodes, says i and j using Floyd Warshall’s algorithm are given

below

Step1: Take node n as the last node in the shortest path.

Step2: Find the S (1, n) entry in the matrix Sn, let this be x. add this prefix node x to the partially constructed critical

path.

Step3: Check S (1, x) =x. If so, go to step 4; else set n=x and go to step 2.

Step4: Add S to the partially constructed critical path. The required critical path from node S to n is obtained. On

reverting the sign of the edge weight, the shortest path now becomes the critical path.

 Example: Consider the problem of determining critical path in the project network as shown in Figure 2.1

 Fig. 2.1

Iteration (0): Consider the initial representation of the matrix D0 and S0 from the Fig 2.1, d (i, j) =∞ implies no

traffic is allowed from node i to j.

 Iteration (1): Set K=1, by considering first column and first row as pivot column and pivot row in the distance

matrix D0, all the entries of the pivot column in D0 are infinity. Hence, D1 and S1 are same as from D0 and S0.

D0

1 2 3 4 5 6 7

1 - -15 -10 ∞ ∞ ∞ ∞

2 ∞ - -8 -7 -4 ∞ ∞

3 ∞ ∞ - -4 ∞ ∞ -17

4 ∞ ∞ ∞ - -4 -6 -5

5 ∞ ∞ ∞ ∞ - -2 -8

6 ∞ ∞ ∞ ∞ ∞ - -6

7 ∞ ∞ ∞ ∞ ∞ ∞ -

S0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6 7

4 1 2 3 4 5 6 7

5 1 2 3 4 5 6 7

6 1 2 3 4 5 6 7

7 1 2 3 4 5 6 7

D1

1 2 3 4 5 6 7

1 - -15 -10 ∞ ∞ ∞ ∞

2 ∞ - -8 -7 -4 ∞ ∞

5

7

2

4 6

3

1

-17

-15

-8

-4

-6

-5
-4

-4

-2

-6

-8

-7

-10

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 758

Iteration (2) Set K=2,by considering second column and second row as pivot column and pivot row in the matrix D1 ,

except d(1,2) all the entries in the pivot column are infinity. Also except d (2, 3), d (2,4) and

 d(2,5), all the entries in the pivot row are infinity. Now apply transitivity property to obtain the following results:

(i) d(1,2)+d(2,3)= d(1,3) d(1,2)+d(2,4)=d(1,4)

But, d(1,2)+d(2,3)=-15 - 10 and d(1,3) =-10 But, d(1,2)+ d(2,4)= -15 - 7 and d(1,4)=∞

This implies -23< -10, then d (1, 3) =-23 this implies -22< , t hen d (1, 4) = -22

 Similarly -19< , then d (1, 5) = -19.

(ii) The precedence matrix S1 can be changed as

 S (1, 3) = 2, S (1, 4) = 2 & S (1, 5) = 2. These are the changes shown in the matrix D 2 and S2

Iteration (3): Set k=3, by considering third column and third row as pivot column and pivot row in the matrix D2,

except d(1,3) and d(2,3) all the entries in the pivot column and also except d(3,4) and d(3,7) in the pivot row are

infinity. Further, apply transitivity property to obtain the following results:

 (i) Since, d(1,4)= -27 , d(1,7)=-40 and d(2,4)=-12 . So, d (2,7) = -25

 (ii) Set precedence matrix S2 as S (1, 4) = 3, S (1, 7) = 3, S (2, 4) = 3, S (2, 7) = 3 These are the changes as shown

in the matrix D3 and S3.

Continuing in this way, the final matrix in the last iteration where none of the entries in the d (i, j) can be improved by

transitivity property, because all the elements in the last row are infinity.

3 ∞ ∞ - -4 ∞ ∞ -17

4 ∞ ∞ ∞ - -4 -6 -5

5 ∞ ∞ ∞ ∞ - -2 -8

6 ∞ ∞ ∞ ∞ ∞ - -6

7 ∞ ∞ ∞ ∞ ∞ ∞ -

S1 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6 7

4 1 2 3 4 5 6 7

5 1 2 3 4 5 6 7

6 1 2 3 4 5 6 7

7 1 2 3 4 5 6 7

D2

1 2 3 4 5 6 7

1 - -15 -23 -22 -19 ∞ ∞

2 ∞ - -8 -7 -4 ∞ ∞

3 ∞ ∞ - -4 ∞ ∞ -17

4 ∞ ∞ ∞ - -4 -6 -5

5 ∞ ∞ ∞ ∞ - -2 -8

6 ∞ ∞ ∞ ∞ ∞ - -6

7 ∞ ∞ ∞ ∞ ∞ ∞ -

S2 1 2 3 4 5 6 7

1 1 2 2 2 2 6 7

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6 7

4 1 2 3 4 5 6 7

5 1 2 3 4 5 6 7

6 1 2 3 4 5 6 7

7 1 2 3 4 5 6 7

D3

1 2 3 4 5 6 7

1 - -15 -23 -27 -19 ∞ -40

2 ∞ - -8 -12 -4 ∞ -25

3 ∞ ∞ - -4 ∞ ∞ -17

4 ∞ ∞ ∞ - -4 -6 -5

5 ∞ ∞ ∞ ∞ - -2 -8

6 ∞ ∞ ∞ ∞ ∞ - -6

7 ∞ ∞ ∞ ∞ ∞ ∞ -

S3 1 2 3 4 5 6 7

1 1 2 2 3 5 6 3

2 1 2 3 3 5 6 3

3 1 2 3 4 5 6 7

4 1 2 3 4 5 6 7

5 1 2 3 4 5 6 7

6 1 2 3 4 5 6 7

7 1 2 3 4 5 6 7

D7

1 2 3 4 5 6 7

1 - -15 -23 -27 -31 -33 -40

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 759

The minimum weighted path 1 to 7 is the critical path and inverting the sign of the weight of this path gives the critical

distance. Now, it is found that the longest distance between any two nodes can be determined from the matrix D7
and also the route can be determined from the matrix S7. For example, the longest path from node 1 to node 7 is 40.
Let critical path be the set of all nodes that make up the critical path. Node 7 is the last node in the critical path.
Critical path= {7}, S (1, 7) =3, However S (1, 3) = 2≠3. Critical path = {7, 3}, S (1, 7) =2 and also S (1, 2) =2. Critical Path
= {7, 3, 2}. Node 1 is the start node of the critical path, critical path = {7, 3, 2, 1). Therefore 1237 is the critical
path.

 The Floyd Warshall’s algorithm can also be implemented in Matlab software and the corresponding output is given

below:

A=inf(7,7); A(1,2)= -15; A(1,3)= -10; A(2,4)= -7; A(2,5)= -4; A(2,3)= -8;

A(3,4)= -4; A(3,7)= -17; A(4,5)= -4; A(4,6)= -6; A(4,7)= -5; A(5,6)= -2; A(5,7)= -8; A(6,7)= -6;

[Q, P, result]=FloydSPR (A, 1, 7)

Q = P =

 Inf -15 -23 -27 -31 -33 -40 -1 -1 2 2 2 2 2

 Inf Inf -8 -12 -16 -18 -25 -1 -1 -1 3 3 3 3

 Inf Inf Inf -4 -8 -10 -17 -1 -1 -1 -1 4 4 -1

 Inf Inf Inf Inf -4 -6 -12 -1 -1 -1 -1 -1 -1 5

 Inf Inf Inf Inf Inf -2 -8 -1 -1 -1 -1 -1 -1 -1

 Inf Inf Inf Inf Inf Inf -6 -1 -1 -1 -1 -1 -1 -1

 Inf Inf Inf Inf Inf Inf Inf -1 -1 -1 -1 -1 -1 -1

Result = - 40. Inverting the sign of this result gives the critical distance.Therefore, the critical path in the project

network is 1237 with the duration of 40 days.

5.0 Bellman Ford algorithm:

Bellman ford algorithm is a label connecting algorithm that computes single-source shortest route in a weighted graph

in which some of the edge weights may be negative. Every route in a weighted graph has a corresponding route

weight, which is the sum of the weights of the route edges. In a weighted, directed graph, G= (V, E) with source S and

weight function W=ER, the algorithm returns a Boolean value indicating the presence of negative cycle .The

algorithm uses relaxation, reducing an estimate d (v) on the weight of a longest path from the source S to each event

vЄ V until it obtains the actual shortest path weight δ(S, v). The algorithm returns TRUE if and only when the graph

contains no negative weight cycles that are reachable from the source. If there is negative cycle then the algorithm in

turn the critical path.The Bellman Ford algorithm is executed in the following steps.

Step1: Assign infinity to all nodes other than the source node. The source node 1 is set as zero as shown in

 Figure 3.0

2 ∞ - -8 -12 -16 -18 -25

3 ∞ ∞ - -4 -8 -10 -17

4 ∞ ∞ ∞ - -4 -6 -12

5 ∞ ∞ ∞ ∞ - -2 -8

6 ∞ ∞ ∞ ∞ ∞ - -6

7 ∞ ∞ ∞ ∞ ∞ ∞ -

S7 1 2 3 4 5 6 7

1 1 2 2 3 4 4 3

2 1 2 3 3 4 4 3

3 1 2 3 4 4 4 7

4 1 2 3 4 5 6 7

5 1 2 3 4 5 6 7

6 1 2 3 4 5 6 7

7 1 2 3 4 5 6 7

∞

∞

∞

∞ ∞

∞

0

-17

-15

-8

-4

-6

-5
-4

-4

-2

-6

-8

-7

2

3

5

6

7

-10

1

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 760

 Fig. 3.0

 Step2: Relax each edge for (n − 1) times where n are the number of nodes. So relax edges for 6 times since n is 7.

Relaxing an edge means verifying if the path to a node to which the edge is pointing can be shortened, and if so,

replace that path with the found path. Start by first relaxing the edge: with only 2 nodes, starting from the source node.

Consider the edge 12 of cost -15, the cost of the source node plus the cost of the edge 12 is less than infinity

means, which replaces the node 2 with the new cost. Similarly relax edge 13 of cost -10 which is also less than

infinity. It is shown in Figure 3.1

 Fig. 3.1

 Step3: Relax a path with 3 nodes, starting from source node. With respect to this relax edge 13 through 123=>

-23< -10, relax edge 14 through 124=> -22< ∞ , relax edge 15 through 125=> -19<∞ and relax edge

17 through 137=> -27< ∞. The execution of this step is shown in Figure 3.2

 Fig.3.2
Step4: Relax a path with 4 nodes, starting from source node. With respect to this relax edge 14 through 1234

=> -27< -22 and relax edge 16 through 1256=>-21<∞, relax edge 17 through 1237=> -40< -27.

The network is changed as shown in Figure 3.3

 Fig. 3.3

Step5: Relax a path with 5 nodes, starting from source node. With respect to this relax edge 15 through

12345=>-31<-19 and relax edge 16 through 12346=>-33< -21. The execution of this step is

shown in Figure 3.4

4

∞

∞

-15

∞ ∞

-10

0

-17

-15

-

8

-4

-

6

-5
-4

-

4
-

2

-6

-8

-7

2 5

6

-10

1

4

-19

-27

-15

-22

∞

-23

0

-17

-15

-8

-4

-6

-5
-4

-4

-2

-6

-8

-7

2

3

5

6

7

-10

1

4

-19

-40

-23

-27

-21

-23

0

-17

-15

-8

-4

-6

-5
-4

-4

-2

-6

-8

-7

2

3

5

6

7

-10

1

4

-40

-27 -33

-23

0

-17

-8
-6

-5
-4

-6

-8

3

6

7

-10

1

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 761

 Fig. 3.4

Step 6: Relax a path with 6 nodes, starting from source node. However, all the edges are relaxed and there is no

change. The minimum weighted path 1 to 7 is the critical path and inverting the sign of the weight of this path gives

the critical distance. The Bellman ford algorithm can be implemented using Matlab software and the corresponding

output is given below: duration = -40 ; path =1 2 3 7; pred = 0 1 2 3 4 4 3. Therefore the critical path in the

project network is 1237 with the longest duration of 40 days.

6.0 Linear programming formulation of the longest path problem:

It is a very simple programming formulation problem. Most of the network problems can be formulated as linear

programming problems and can be solved by simplex method algorithm. In this section, two linear programming

formulations for the longest-route (critical path) problem are discussed. These formulations are generally used to find

the critical path between any two nodes in the network. The following binary integer programming and dual linear

programming formulations can be used to determine the critical path between any two nodes like s and t in the

network.

6.1 Binary integer Formulation 1: This formulation assumes that an external one unit of flow enters the network at

node s and leaves at node t, where s and t are the two target nodes in which between these nodes to determine the

critical path.

Define, xij = Amount of flow in arc (i , j), for all feasible i and j,

 cij = Length of arc (i , j), for all feasible i and j.

Because only one unit of flow can be in any arc at any one time, however, the variable xij must be assumed that the

binary values (0 or 1) only. Thus, the objective function of the linear program becomes

Maximize Z = ∑ all defined arcs ci, j xi,j,

The given constraint represents the conservation of flow at each node. For any node j will be

 Total input flow = Total output flow.

6.2 Dual linear Formulation 2:

This formulation is the dual problem of the linear Formulation1. As the number of constraints in Formulation1 is equal

to the number of nodes, the dual problem will have as many variables as the number of nodes in the network. Also, all

the dual variables must be unrestricted because all the constraints in Formulation1 are equations.

Let yj be the dual constraint associated with node j. Given that s and t are the source and destination nodes of the

network then the dual problem is defined as follows:

Minimize Z=yt - ys

Subject to yj - yi ≥ cij for all feasible i and j. However, all yi and yj are unrestricted in sign

These formulations problem is also solved by using algebraic method with only small number of variables. Otherwise,

this method is very complicated. Also, the matlab software is used to solve these problems.

Example: Consider the problem of determining critical path in the project network as shown in above Figure1

By setting =

 and the corresponding values of Linear program are listed below:

Min Z X12 X13 X23 X24 X25 X34 X37 X45 X46 X47 X56 X57 X67

15 10 8 7 4 4 17 4 6 5 2 8 6 -1

Node1 -1 -1 0

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 762

Node2 1 -1 -1 -1 0

Node3 1 1 -1 -1 0

Node4 1 1 -1 -1 -1 0

Node5 1 1 -1 -1 0

Node6 1 1 -1 0

Node7 1 1 1 1 1

From the above table, we obtain the following objective function and constraints of the linear programming problem

as given below:

Max Z = 15x12+10x13 +8x23+7x24+4x25+4x34+17x37+4x45+6x46+5x47+2x56+8x57+6x67

Subject to x12+x13 = 1

 x12-x24-x27 +x32 -=0

 x13-x32 -x34-x35=0

 x24+x34 – x\45 -x46-x47 =0

 x35+x45– x\56 –x57 =0

 x46+x56 –x67 =0

 x27+x47 + x\57 +x67 =1 , 0≤ xij ≤ 1,for i ,j=1,2,3,4,5,6,7.

This binary integer programming problem in an algebraic method was solved by introducing slack variables. The first

tableau and final tableau of algebraic method are given below:

First Tableau:

NZV x12 x13 x23 x24 x25 x34 x37 x45 x46 x47 x56 x57 x67 S1 S2 S3 S4 S5 S6 S7 Qty

S1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

S2 1 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

S3 0 1 1 0 0 -1 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

S4 0 0 0 1 0 1 0 -1 -1 -1 0 0 0 0 0 0 1 0 0 0 0

S5 0 0 0 0 1 0 0 1 0 0 -1 -1 0 0 0 0 0 1 0 0 0

S6 0 0 0 0 0 0 0 0 1 0 1 0 -1 0 0 0 0 0 1 0 0

S7 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1

Δ -15 -10 -8 -7 -4 -4 -17 -4 -6 -5 -2 -8 -6 0 0 0 0 0 0 0 0

NZV: Non Zero Variables Δ: Objective function with reversed sign

Final Tableau:

NZV x12 x13 x23 x24 x25 x34 x37 x45 x46 x47 x56 x57 x67 S1 S2 S3 S4 S5 S6 S7 Qty

x23 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

x12 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

S3 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 1 1 1 1 0

S4 0 0 0 1 1 1 0 0 0 -1 0 -1 -1 0 0 0 1 1 1 0 0

S5 0 0 0 0 1 0 0 1 0 0 -1 -1 0 0 0 0 0 1 0 0 0

S6 0 0 0 0 0 0 0 0 1 0 1 0 -1 0 0 0 0 0 1 0 0

x37 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1

Δ 0 13 0 5 12 0 0 0 0 8 0 1 1 15 0 8 12 16 18 25 40

 From the final tableau, the optimal solution was found to be Z=40 at x12 =1, x23 =1, x37 =1. This solution gives the

critical path from node 1 to node 7 as 1237 and the associated duration of z = 40 days.

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 763

It can also be solved from the above binary integer programming problem using Matlab software and the corresponding

solutions are given below:

Z=40 at x12 =1, x23 =1, x37 =1.

This solution gives the critical path from node 1 to node 7 as 1237 and the associated duration of z = 40 days.

From the concept of the dual linear programming problem, the following objective function and constraints are

obtained:

 Minimize Z =y7 –y1

 Subject to

y2 –y1 ≥ 15 (Route 1 to 2), y3 –y1 ≥10 (Route 1 to 3), y3 –y2≥8 (Route 2 to3), y4 –y2≥7 (Route 2 to 4),

y4 –y3 ≥ 4 (Route 3 to 4), y7 –y3 ≥17 (Route 3 to 7), y5 –y2≥4 (Route 2 to5), y5 –y4≥4 (Route 4 to 5),

y6 –y4 ≥ 6 (Route 4 to 6), y7 –y4 ≥5 (Route 4 to 7), y6 –y5≥2 (Route 5 to 6), y7 –y6≥6 (Route 6 to 7),

 y7 –y5 ≥ 8 (Route 5 to7). (6)

Where, y1, y2. . …...y7 are unrestricted sign.

This linear programming problem in an algebraic method was solved by introducing surplus variables. The first

tableau and final tableau of algebraic method are given below:

First Tableau:

NZV y7 y6 y5 y4 y3 y2 y1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Qty

S1 0 0 0 0 0 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 15

S2 0 0 0 0 1 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 10

S3 0 0 0 0 1 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 8

S4 0 0 0 1 0 -1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 7

S5 0 0 0 1 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 4

S6 1 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 17

S7 0 0 1 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 4

S8 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 4

S9 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 6

S10 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 5

S11 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 2

S12 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 6

S13 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 8

Δ -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Final Tableau:

NZV y7 y6 y5 y4 y3 y2 y1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Qty

y2 0 0 0 0 0 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 15

y3 0 0 0 0 1 0 -1 -1 0 -1 0 0 0 0 0 0 0 0 0 0 23

S3 0 0 0 0 0 0 0 -1 1 -1 0 0 0 0 0 0 0 0 0 0 13

y4 0 0 0 1 0 0 -1 -1 0 -1 0 0 -1 0 0 1 0 0 1 0 28

S5 0 0 0 0 0 0 0 0 0 -1 1 0 -1 0 0 1 0 0 1 0 6

S6 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 1 0 0 1 0 1

y5 0 0 1 0 0 0 -1 -1 0 -1 0 0 -1 0 0 0 0 0 0 1 32

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 764

S8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 -1 1 0

S9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 -1 0 7

S10 0 0 0 0 0 0 0 0 0 -1 0 0 -1 1 0 0 0 0 0 1 13

S11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 0

y7 1 0 0 0 0 0 -1 -1 0 -1 0 0 -1 0 0 0 0 0 0 0 40

y6 0 1 0 0 0 0 -1 -1 0 -1 0 0 -1 0 0 0 0 0 1 0 34

Δ 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 -40

From the final tableau, the optimal solution of Z=40 at y1 =0, y2 =15, y3 =23, y4 =28, y5 =32, y6 =34, y7 =40,

These solutions have satisfied the constraints (6) .Therefore, it is clear that the value of Z = 40 gives the critical path

from node 1 to node 7 and the longest route 1-2, 2-3, 3-7, 4-5, 4-6 , 5-6, 5-7, 6 -7 are obtained. From these sequence

1-2, 2-3, 3-7 give the critical path 1237

It can also be solved the above dual problem using Matlab software and the corresponding solutions are: Z=40 at y1

= 8.3278, y2 = - 6.6722, y3 = -14.6722, y4 = -18.8366, y5 = -23.0222, y6 = -25.4382, y7 = -31.6722

7.0 Conclusions:

Comparison of computational time of various algorithms

From the above graph, it can be concluded that the modified Dijkstra’s is the most effective algorithm to find the

longest route in a large network when compared to other most discussed algorithms such as Floyd’s Warshall’s

algorithm and Bellman Ford algorithm as well as some of the analytic methods like LPP, Dual LPP and algebraic

method. This study has also revealed that some of the algorithms and analytic methods demonstrated in matlab

software could be the ideal choice for determining the longest path in larger networks. Therefore, the proposed

methods can be easily applied to identify the longest path in larger project networks like health care, water and power

distribution, plant construction and building construction etc.

Acknowledgement:

The support got from Dr.A.M. Ramesh, Senior Scientific Officer and Srinivasu V.K, Scientific Officer from

Karnataka Science and Technology Academy is gratefully acknowledged.

References:

1. Ahuja H.N, Dozzi S.P, and Abourizk S.M,1994. Project Management, New York: Wiley.

2. Dijkstra, E. W., 1959. A note on two problems in connection with graphs. Numerische Mathematik 1: p269-

271.

3. Dr. Roopa K.M, Apoorva H.R., Srinivasu V.K. and Vishwanath M.C, 2013. A Study on Different Algorithm for

shortest Route Problem. IJERT, 2(9): P422-434.

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8 9 10

T
im

e
to

 c
o

m
p

u
te

 p
a

th
 (

C
P

U

cl
o

ck
 w

is
e)

 i
n

 m
il

is
ec

o
n

d
s

Iterations

 Time to compute path Vs iterations

Bint prog

Bellman

Floyd

Modified Digkstra's

IJMCR www.ijmcr.in| 2:12|December|2014|751-765 | 765

4. Hemalatha S and Valsalal P, 2012. Identification of Optimal Path in Power System Network Using Bellman

Ford Algorithm. Hindawi Publishing Corporation, Modelling and Simulation in Engineering,Article ID 913485.

5. Ravi Shankar N and Sireesha, 2010. Using modified Dijkstra’s Algorithm for Critical Path Method in a Project

Network. IJCAM, 5 (2) : p.217-225.

6. Sohana, J, and Sajid, H, Md, 2011. A Comparitive Study on Algorithms for Shortest- Route Problem and

some Extensions. International journal of Basic and Applied Sciences. 11(6): p167-177

7. Stevenson W.J, 2002. Operation Management, seventh edition, McGraw-Hill.

8. Taha H A, 2003. Operations Research: An Introduction, (Seventh Edition), Prentice Hall.

