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Abstract 

A simple connected graph G is Hamiltonian Laceable, if there exists a Hamiltonian path between every pair of distinct vertices at 

an odd distance in it. G is a Hamiltonian-t-laceable (t*-laceable) if there exists a Hamiltonian path in G between every pair (at least 

one pair) of vertices u and v in G with the property d(u,v)=t , 1≤t≤diam G. In this paper we explore Hamiltonian laceability 

properties of the Total graph of the Sunlet graph, Star graph, Path graph and Cycle. 
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1. Introduction 

     All Graphs considered in this paper are finite, undirected, connected and simple.  The vertex set and edge set of the graph G are 

denoted by V(G) and E(G) respectively.  The Cardinalit ies of V(G) and E(G) are called respectively the order and size of G.   

     Let u and v be two vert ices in G.  The d istance between u and v, denoted by d(u,v) is the length of a shortest u-v path in G.  G is 

Hamiltonian laceable if there exists a Hamiltonian path between every pair of distinct vertices in it at an odd distance.  G is a 

Hamiltonian-t-laceable (t*-laceable) if there exists a Hamiltonian path between every pair (at least one pair) of vert ices u and v in G 

with the property d(u,v)=t, where t is positive integer such that 1≤ t ≤ diamG.  

      Let ai and aj be any two distinct vertices in a connected graph G.  Let E be the min imal set of edges not in G and P be a path in 

G, such that EP  is a Hamiltonian path in G from a i to aj. Then, E is called the t-laceability number )(t of G.  Further the 

edges in E are called the t-laceability edges. 

     In [2], [3] and [4] the authors have studied the Hamiltonian-t-laceability and Hamiltonian-t*-laceability properties and )(t for 

different graph structures.  In this paper we exp lore the Hamiltonian-t-laceability properties of the Total graph of the Sunlet 

graph,Star graph, Path graph and Cycle.  

Definition 1.1  

     The n- Sun let graph on 2n vertices is obtained by attaching n-pendent edges to the cycle Cn and is denoted by Sn.  
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Definition 1.2  

     Let G be a graph with vertex set V(G) and edge set E(G). The Total graph of G, denoted by T (G) and is defined as follows. 

The vertex set of T (G) is V(G)  E(G). Two vert ices x, y in the vertex set of T(G) are adjacent in T(G) in case one of the 

following holds. 

(i) x, y are in V(G) and x is adjacent to y in G.  

(ii) x, y are in E(G) and x, y  are ad jacent in G.   

(iii) x is in V(G), y is in E(G), and x, y  are incident in G.  

2. Main Results 

Theorem 2.1  

Let G= Sn, n 3. Then 

(i) T(G) is Hamiltonian-t*-laceable for t=1,2. 

(ii) If n is odd T(G) is Hamiltonian-3*-laceable.  

(iii) If n is even T(G) is Hamiltonian-3*-laceable with .1)( t  

Proof: 

      Let Sn be the sunlet graph on 2n vertices. Let V(Sn)={ 1a , 2a , 3a ,---------, }na { , 1b , 2b , 3b ,----------, }nb Where ia ’s are 

the vertices of cycles taken in cyclic order and ib ’s are pendant vertices such that each iiba  is a pendent edge.  

      Let V(Sn)= { 1a , ,2a ......,..........3a }na { , 1b , 2b , ..,.........3b ,, }nb and }1:{)( nieSE in   }11:{  niei  

 }{ ne  where ie  is the edge ),11(1  niaa ii ne is the  edge 1aan and ie is the edge )1( niba ii  by the definition of 

the total graph    }1:{)()(( niaSESVSTV innn  }1:{ niai  }1:{ nibi }1:{ nibi 
 

where, ia  and ib
 represents the edge ie

 and ie }1{ ni  respectively. 

Case (i): For t=1 

 In G, 1),( 11 abd  and the path ),(: 11 bbP  ),( 1 nab  ),( nn aa  ),( 1nn ba 
 ),( 11 nn bb 

 ),( 21 nn ab .............

 ),( 33 aa ),( 33 ba ),( 33 bb  ),( 23 ab  ),( 22 aa ),( 22 ba  ),( 22 bb  ),( 12 ab  ),( 11 ba  ),( 11 bb

),( 11 ab ),( 11 aa ).,( 11 aa
 is a Hamiltonian path from b1 to a1 in G.  Hence G is Hamiltonian-1*-laceable.   

Case (ii): For t=2 

In G, 2),( 21 abd  and the path 

),(: 11 bbP  ),( 11 ab 
 ),( 21 naa 

 ),( 22 nn aa  ),( 22 nn ba 
 ),( 32 nn ab ......),( 33 

 nn bb   ),( 44 aa

),( 44 ba ),( 33 bb  ),( 23 ab  ),( 33 aa  ),( 22 bb  ),( 22 bb ),( 23 ab  ),( 12 aa  ),( 21 ba ),( 22 bb 

),( 22 ab
 

is a Hamiltonian path from b1 to a2 in G. Hence T(G) is Hamiltonian-t*-laceable for t=2.
 
  

Case (iii): For t=3 

 If n is odd in G, 3),( 21 abd  and the path 
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),(: 11 bbP  ),( 11 ab  ),( 21 ba  ),( 22 bb ),( 22 ba ),( 12 ava  ),( 1 naa  ),( nn aa  ),( 22 nn ba


 ..............),( 22 nn bb  ),( 33 aa ),( 33 ba ),( 33 bb ),( 23 ab 

 

is a Hamiltonian path from b0 to a
I
2 in G. Hence G is Hamiltonian-3*-laceable.  

Case (iv): 

 If n is even and t=3 

If n is even in G, 3),( 31 abd  and the path 

),(: 11 baP  ),( 11 ab ),( 11 aa  ),( 21 aa ),( 22 ba  ),( 22 bb  ),( 22 ab  .............),( 32 aa


 ),,( 11 nn aa 

 ),,( 1 nn aa ),( nn ba ),( nn ab    ),( nn ab ),( 33 ab .  is a Hamiltonian path from b1 to a3. Where 

),( 3aan
 is the Laceability edge. Hence G is Hamiltonian-3*-laceable with .1)( t  

Theorem 2.2 

Let G=K1,n, (n≥3) graph. Then, T(G) is Hamiltonian-t*- laceable  for t=1 and 2.   

Proof: Let },,.........,,{ 1210 naaaa },,.........,,{)( 1210,1  nn aaaaKV  where }1{ nieaa ii   by the definition of Total 

graph )( ,1 nKT  has the vertex set }11:{)( ,1  nibKV in   where ib the vertex of subdivision of the edge is .ie  also the 

vertex subset },,.........,,{ 1210 naaaa  of nK ,1  induces a clique on n vertices.
  

Case (i): For t=1 

In G, d(a0,b0)=1 and the path ),(: 10 aaP ),( 21 aa ),( 32 aa ),( 43 aa ........),( 54 aa  ),( 23 nn aa

 ),( 12 nn aa  ),( 1 nn aa  ),( 1nn ba  ),( 21 nn bb ..............),( 32  nn bb ),( 23 bb ),( 12 bb ),( 01 bb is a 

Hamiltonian path from 0a  to 0b . Hence G is Hamiltonian-1*-laceable. 

Case (ii): For t=2 

In G, d(a0,b1)=2 and the path  

),(: 10 aaP ),( 21 aa ),( 32 aa ),( 43 aa .............),( 54 aa  ),( 23 nn aa  ),( 12 nn aa  ),( 1 nn aa

 ),( 1nn ba  ),( 21 nn bb  ...............),( 32 nn bb ),( 23 bb ),( 02 bb ),( 10 bb
 

is a Hamiltonian path from 0a  to 1b . Hence G is Hamiltonian-2*-laceable. 

Theorem 2.3  

      Let G=Pn, n 3. Then 

(i) T(G) is a Hamiltonian-t*-laceable for t=1 

(ii) T(G )is a Hamiltonian-t*-laceable for t=2 with 1)( t  

(iii) T(G) is a Hamiltonian-t*-laceable for t=3 if n even and n≥4   

(iv) T(G) is a Hamiltonian-t*-laceable for t=3 with 1)( t  , if n is odd and n≥5  

Proof: Let }..,,.........,,,{)( 1210  nn aaaaPV  and let }20:{}10:{))((  nibniaPTV iin Where, ib is 

the vertex of )( nPT  corresponding to edge 1iiaa  of nP  
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Case (i): For t=1
 

In G, d(a0,b0)=1 and the path 

),(: 10 aaP ),( 21 aa ),( 32 aa ),( 43 aa  .........),( 54 aa  ),( 23 nn aa  ),( 12 nn aa  ),( 21 nn ba

............),( 32  nn bb ),( 45 bb ),( 34 bb ),( 23 bb ),( 12 bb ),( 01 bb is a Hamiltonian path from 0a  to 0b . Hence G 

is Hamiltonian-1*-laceable.   

Case (ii): For t=2 

In G, d(a0,b1)=2 and the path 

),(: 00 baP ),( 10 ab  ),( 21 naa  ),( 12 nn ab  ),( 21 nn aa  ),( 33 nn ab .........),( 43  nn aa  ),( 88 nn ab

............................),( 98  nn aa ),( 34 ba ),( 33 ab ),( 23 ba ),( 22 ab ),( 12 ba is a Hamiltonian path from 0a  to 

1b .  Hence G is a Hamiltonian-2*-laceab le with 1)( t . 

Case(iii): For t=3, if  n≥4 

In G, d(a0,b2)=3 and the path  

),(: 00 baP ),( 10 ab ),( 11 ba ),( 21 ab  .....................),( 54 aa  ),( 23 nn aa  ),( 12 nn aa

 ),( 21 nn ba  .............................),( 32 nn bb ),( 45 bb ),( 34 bb ),( 23 bb is a Hamiltonian path from 0a  to 2b .  

Hence G is a Hamiltonian-3*-laceab le.
 

Case (iv): For t=3, if n≥5 

 In G, d(a0,b2)=3 and the path  

),(: 00 baP ),( 10 ab ),( 11 ba ),( 21 ab  ),( 22 nba  ),( 12 nn ab  ),( 21 nn aa  ................),( 32 nn ba

),( 34 ba ),( 33 ab ),( 23 ba is a Hamiltonian path from 0a to 2b . Hence G is a Hamiltonian-3*-laceable with 1)( t . 

Theorem 2.4 

Let G=Cn  n≥4.Then T(G) is Hamiltonian-t*-laceable for t=1, 2 and 3. 

Proof: Let },,.........,,{)( 1210  nn aaaaCV
 and  let )]([ nCTV 0{a , 1a , 2a , 3a ,---------, }1na 0{b , 1b , 2b , 3b ,----------,

}1nb
 
where ia

 
is the vertex of T(Cn) corresponding to the edge

 ia 1ia
 
of Cn (1≤ i ≤ n -1).  

 

Case (i): For t=1 

 

Sub Case (i): If n is even 

 

In G, d(a0,b0)=1 and the path   

),(: 10 aaP ),( 21 aa  .......),( 32 aa  ),( 21 nn bb  ....................),( 32 nn bb  ),( 98 nn bb

 .............),( 32 nn ba ),( 23 bb ),( 12 bb ),( 01 bb is Hamiltonian path from 0a  to 0b Hence G is a Hamiltonian-1*-

laceable. 

Case (ii): For t=2 

 

In G, d(a0,b1)=2 and the path   
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),(: 00 baP ),( 10 ab ),( 21 aa ),( 32 aa .............),( 43 aa   ),( 21 nn bb ........),( 32  nn bb 

 ),( 98 nn bb  ),( 32 nn ba ),( 23 bb ),( 12 bb
 

is a Hamiltonian path from 0a  to 
1b .  Hence G is a 

Hamiltonian-2*-laceable.
 

Case (iii): For t=3 

 

Sub Case (ii): If n is even 

 

In G, d(a0,b2)=3 and the path   

),(: 00 baP ),( 10 ab ),( 11 ba ),( 21 ab ),( 32 aa .........),( 43 aa  ),( 1110 aa  ),( 89 nn ab ...............

  ),( 21 nn bb ......),( 32  nn bb  ),( 34 bb  ),( 23 bb
 

is a Hamiltonian path from 0a  to 
2b .  Hence G is a 

Hamiltonian-3*-laceable.
 

Remark 3 

Let G=Cn , the total graph T(G) is Hamiltonian-t*-laceable for t=3 if  n is odd and n≥5  

In G, d(a0,b2)=3 and the path   

),(: 00 baP ),( 10 ab ),( 11 ba ),( 21 ab ),( 32 aa ........),( 43 aa  ),( 1110 aa  ),( 89 nn ab ..........

 ),( 21 nn bb .........),( 32  nn bb  ),( 34 bb  ),( 23 bb
 
is a Hamiltonian path from 0a  to 2b .  Hence G is a Hamiltonian-

3*-laceab le. Hence the proof. 

 

4. Conclusion  

 Here we investigate new results of Laceability in Total Graphs of Sunlet Graphs, Star Graphs, Paths and Cycles. It is possible to 

investigate similar results for other graph families. There is a scope to obtain similar results corresponding to 

Example 1 

     Sunlet Graph Sn 

 

Example 2 

     Total graph of Sunlet Graph T(Sn) 
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Example 3: For t=1  

    
Hamiltonian path from the vertex b1 to a1 in total graph T[S4] 
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Example 4: For t=2  

     Hamiltonian path from the vertex b1 to a2 in total graph T[S5] 

 

 

Example 5: For t=3 if n is odd 

     Hamiltonian path from the vertex b1 to a
I
2 in total graph T[S5] 

 

 

Example 6: For t=3 if n is even 

     Hamiltonian path from the vertex b1 to a3 in total graph T[S6] 
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Example  7: For t=1  

     
Hamiltonian path from the vertex a0 to b0  in total  graph T[K1,8]

 

 

 

Example  8: For t=2
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     Hamiltonian path from the vertex a0 to b1  in total  graph T[K1,8]
 

 

 

Example 9: For t=1
 

     Hamiltonian path from the vertex a0 to b0  in total graph T[P7]
 

 

 

Example 10: For t=2 with 1)( t
  

      Hamiltonian path from the vertex a0 to b1  in total graph T[P7] 

 

 

Example 11: For t=3 if 4n  for even n
 

     Hamiltonian path from the vertex a0 to b2  in total  graph T[P8] 
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Example 12: For t=3 with, 1)( t  if 5n  for odd n
 

     Hamiltonian path from the vertex a0 to b2  in total  graph T[P9] 

 

 

Example 13: For t=1, if n is even 

     
Hamiltonian path from the vertex a0 to b0  in total  graph T[C8]
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Example 14: For t=2 if n is even 

     
 Hamiltonian path from the vertex a0 to b1  in total graph T[C8]

 

 

 

 

 

 

 

 

 

Example 15: For t=3, if n is even  

     
Hamiltonian path from the vertex a0 to b2  in total  graph T[C8]

 

 

Example16: For t=3 if 5n for odd n 

     
Hamiltonian path from the vertex a0 to b2  in total  graph T[C5]
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