$g^{\prime\prime\prime}$ - OPEN SETS IN FUZZY TOPOLOGICAL SPACES

¹M. Jeyaraman, ²J. Rajalakshmi, ³R.Muthuraj and ⁴O.Ravi

 ¹Department of Mathematics, Raja Duraisingam Govt.Arts College, Sivagangai, Sivagangai District, Tamil Nadu. e-mail : jeya.math@gmail.com.
 ²Department of Mathematics, St. Michael College of Engg & Tech, Kalaiyarkovil, Sivagangai District, Tamil Nadu.e-mail : jrjrjrjr82@yahoo.com.
 ³Department of Mathematics, H.H.The Rajah's College, Pudukkottai, Pudukkottai District, Tamil Nadu. e-mail : rmr1973@yahoo.co.in.
 ⁴Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India. e-mail : siingam@yahoo.com.

ABSTRACT

In this paper, we offer a new class of sets called fuzzy g''-open sets in fuzzy topological spaces. It turns out

that this class lies between the class of fuzzy open sets and the class of fuzzy generalized open sets.

2010 Mathematics Subject Classification: 54C10, 54C08, 54C05.

Key words and Phrases: Fuzzy g-open set, fuzzy ω -open set, fuzzy g*s -open set, fuzzy gs-open set, fuzzy

sg-open set, fuzzy gsp-open set, fuzzy αg -open set, fuzzy αgs -open set, fuzzy g'''-open set and fuzzy g'''_{α} -

open set.

INTRODUCTION

Recently, Jeyaraman et al. [6] have introduced the concept of fuzzy g'''-closed sets and studied its basic fundamental properties in fuzzy topological spaces. In this paper, we introduce a new class of sets namely fuzzy g'''-open sets in fuzzy topological spaces. Also, we investigate the relationships among related fuzzy generalized open sets.

PRELIMINARIES

Throughout this paper (X, τ) and (Y, σ) (or X and Y) represent fuzzy topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a fuzzy subset A of a space (X, τ), cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively.

We recall the following definitions which are useful in the sequel.

Definition 2.1:

A subset A of a space (X, τ) is called:

- (i) fuzzy semi-open set [1] if $A \le cl(int(A))$;
- (ii) fuzzy preopen set [4] if $A \leq int(cl(A))$;
- (iii) fuzzy α -open set [4] if A \leq int(cl(int(A)));
- (iv) fuzzy β -open set [13] (= fuzzy semi-preopen [13]) if A \leq cl(int(cl(A)));
- (v) fuzzy regular open set [1] if A = int(cl(A)).

The complements of the above mentioned fuzzy open sets are called their respective fuzzy closed sets.

The fuzzy semi-closure [15] (resp. fuzzy α -closure [7], fuzzy semi-preclosure [13]) of a fuzzy subset A of X, denoted by scl(A) (resp. α cl(A), spcl(A)) is defined to be the intersection of all fuzzy semi-closed (resp. fuzzy α -closed, fuzzy semi-preclosed) sets of (X, τ) containing A. It is known that scl(A) (resp. α cl(A), spcl(A)) is a fuzzy semi-closed (resp. fuzzy α -closed, fuzzy semi-preclosed) set.

Definition 2.2:

A fuzzy subset A of a space (X, τ) is called:

- (i) a fuzzy generalized closed (briefly, fuzzy g-closed) set [2] if $cl(A) \le U$ whenever $A \le U$ and U is fuzzy open in (X, τ) . The complement of fuzzy g-closed set is called fuzzy g-open set;
- (ii) a fuzzy semi-generalized closed (briefly fsg-closed) set [3] if $scl(A) \le U$ whenever $A \le U$ and U is fuzzy semi-open in (X, τ) . The complement of fsg-closed set is called fsg-open set;
- (iii) a fuzzy generalized semi-closed (briefly fgs-closed) set [10] if $scl(A) \le U$ whenever $A \le U$ and U is fuzzy open in (X, τ) . The complement of fgs-closed set is called fgs-open set;

- (iv) a fuzzy α -generalized closed (briefly f α g-closed) set [11] if α cl(A) \leq U whenever A \leq U and U is fuzzy open in (X, τ). The complement of f α g-closed set is called f α g-open set;
- (v) a fuzzy generalized semi-preclosed (briefly fgsp-closed) set [9] if $spcl(A) \le U$ whenever $A \le U$ and U is fuzzy open in (X, τ) . The complement of fgsp-closed set is called fgsp-open set;
- (vi) a fuzzy ω -closed set (briefly f ω -closed) [12] if cl(A) \leq U whenever A \leq U and U is fuzzy semiopen in (X, τ). The complement of f ω -closed set is called f ω -open set;
- (vii) a fuzzy αgs -closed set(briefly f αgs -closed)[6] if α cl(A) \leq U whenever A \leq U and U is fuzzy semiopen in (X, τ). The complement of f αgs -closed set is called f αgs -open set;
- (viii) a fuzzy g*s-closed set(briefly f g*s-closed)[6] if $scl(A) \le U$ whenever $A \le U$ and U is fgs- open in (X, τ). The complement of f g*s closed set is called f g*s open set;
 - (ix) a fuzzy g'''-closed set (briefly f g'''-closed)[6] if cl(A) \leq U whenever A \leq U and U is fgs-open in (X, τ). The complement of f g'''-closed set is called f g'''-open set;
 - (x) a fuzzy g_{α}^{m} -closed set(briefly f g_{α}^{m} -closed)[6] if α cl(A) \leq U whenever A \leq U and U is fgs-open in (X,
 - τ). The complement of $f g''_{\alpha}$ -closed set is called $f g''_{\alpha}$ -open set;

Proposition 2.3[6]:

For any fuzzy topological space (X, τ) , the following assertions hold:

- (i) Every fuzzy closed set is fuzzy g'''-closed but not conversely.
- (ii) Every fuzzy g''' -closed set is fuzzy g_{α}''' -closed but not conversely.
- (iii) Every fuzzy g'''-closed set is fuzzy g*s-closed but not conversely.
- (iv) Every fuzzy g'''-closed set is fuzzy ω -closed but not conversely.
- (v) Every fuzzy g''-closed set is fuzzy sg-closed but not conversely.
- (vi) Every fuzzy g'''-closed set is fuzzy g-closed but not conversely.
- (vii) Every fuzzy g'' -closed set is fuzzy α gs-closed but not conversely.

- (viii) Every fuzzy g'''-closed set is fuzzy αg -closed but not conversely.
- (ix) Every fuzzy g'' -closed set is fuzzy gs-closed but not conversely.
- (x) Every fuzzy g'' -closed set is fuzzy gsp-closed but not conversely.

3. FUZZY g^m-OPEN SETS

In this section, we discuss some relation between fuzzy g'' -open set and fuzzy generalized open sets.

Definition 3.1:

A fuzzy subset A of a space (X, τ) is called fuzzy g'''-open set in X if A^c is fuzzy g'''-closed set in (X,

τ).

The collection of all fuzzy g''' -open set in X is denoted by G''' O(X).

Proposition 3.2:

Every fuzzy open set is fuzzy g''' -open set.

Proof:

If A is fuzzy open set in (X, τ), then A^c is fuzzy closed set. Since, by proposition 2.3, every fuzzy closed set is fuzzy g'''-closed. Therefore A^c is fuzzy g'''-closed set. Hence A is fuzzy g'''-open set.

The converse of Proposition 3.2 need not be true as seen from the following example.

Example 3.3:

Let $X = \{a, b\}$ with $\tau = \{0_x, A, 1_x\}$ where A is fuzzy set in X defined by A(a)=1, A(b)=0. Then (X, τ) is a fuzzy topological space. Clearly B defined by B(a)=0.5, B(b)=0 is fuzzy g'''-open set but not fuzzy open.

Proposition 3.4:

Every fuzzy g''' -open set is fuzzy g''_{α} -open set.

Proof:

If A is fuzzy g'''-open set in (X, τ) , then A^c is fuzzy g'''-closed set. Since, by proposition 2.3, every fuzzy g'''-closed set is fuzzy g'''_{α} -closed. Therefore A^c is fuzzy g''_{α} -closed set. Hence A is fuzzy g''_{α} -open in (X, τ) .

The converse of Proposition 3.4 need not be true as seen from the following example.

Example 3.5:

Let X = {a, b} with $\tau = \{0_x, \lambda, 1_x\}$ where λ is fuzzy set in X defined by $\lambda(a)=0.6$, $\lambda(b)=0.5$. Then (X, τ) is a fuzzy topological space. Clearly μ defined by $\mu(a)=0.6$, $\mu(b)=0.6$ is fuzzy $g_{\alpha}^{''}$ -open set but not fuzzy $g_{\alpha}^{''}$ -open set in (X, τ).

Proposition 3.6:

Every fuzzy g^{*m*}-open set is fuzzy g*s-open.

Proof:

If A is fuzzy g'''-open set in (X, τ), then A^c is fuzzy g'''-closed set. Since, by proposition 2.3, every fuzzy g'''-closed set is fuzzy g*s-closed. Therefore A^c is fuzzy g*s -closed set. Hence A is fuzzy g*s -open in (X, τ).

The converse of Proposition 3.6 need not be true as seen from the following example.

Example 3.7:

Let X = {a, b} with τ = {0_x, α , 1_x} where α is fuzzy set in X defined by α (a)=0.4, α (b)=0.5. Then (X, τ) is a fuzzy topological space. Clearly β defined by β (a)=0.6, β (b)=0.5 is fuzzy g*s-open but not fuzzy g'' - open set in (X, τ).

Proposition 3.8:

Every fuzzy g'''-open set is fuzzy ω -open set.

Proof:

If A is fuzzy g'''-open set in (X, τ), then A^c is fuzzy g'''-closed set. Since, by proposition 2.3, e very fuzzy g'''-closed set is fuzzy ω -closed. Therefore A^c is fuzzy ω -closed set. Hence A is fuzzy ω -open in (X, τ).

The converse of Proposition 3.8 need not be true as seen from the following example.

Example 3.9:

Let X = {a, b}. Consider the fuzzy topology τ as in Example 3.5, where μ is fuzzy set in X defined by $\mu(a)=0.6$, $\mu(b)=0.6$. Clearly μ is fuzzy ω -open but not fuzzy g''' -open set in (X, τ).

Proposition 3.10:

Every fuzzy g''' -open set is fuzzy sg-open.

Proof:

If A is fuzzy g'''-open set in (X, τ), then A^c is fuzzy g'''-closed set. Since, by proposition 2.3, e very fuzzy g'''-closed set is fuzzy sg-closed. Therefore A^c is fuzzy sg-closed set. Hence A is fuzzy sg-open in (X, τ).

The converse of Proposition 3.10 need not be true as seen from the following example.

Example 3.11:

Let X = {a, b}. Consider the fuzzy topology τ as in Example 3.7, where β is fuzzy set in X defined

by $\beta(a)=0.6$, $\beta(b)=0.6$. Clearly β is fuzzy sg-open but not fuzzy g'''-open set in (X, τ) .

Proposition 3.12:

Every fuzzy g'''-open set is fuzzy g-open.

Proof:

If A is fuzzy g'''-open set in (X, τ), then A^c is fuzzy g'''-closed set. Since, by proposition 2.3, every

fuzzy g'''-closed set is fuzzy g-closed. Therefore A^c is fuzzy g-closed set. Hence A is fuzzy g-open in (X, τ) .

The converse of Proposition 3.12 need not be true as seen from the following example.

Example 3.13:

Let X = {a, b}. Consider the fuzzy topology τ as in Example 3.7, where γ is fuzzy set in X defined by $\gamma(a)=0.5$, $\gamma(b)=0.5$. Clearly γ is fuzzy g-open but not fuzzy g'''-open set in (X, τ).

Proposition 3.14:

Every fuzzy g''' -open set is f αgs -open.

Proof:

If A is fuzzy g'''-open set in (X, τ), then A^c is fuzzy g'''-closed set. Since, by proposition 2.3, every fuzzy g'''-closed set is f αgs -closed. Therefore A^c is f αgs -closed set. Hence A is f αgs -open in (X, τ).

The converse of Proposition 3.14 need not be true as seen from the following example.

Example 3.15:

Let $X = \{a, b\}$. Consider the fuzzy topology τ as in Example 3.3, where C is fuzzy

set in X defined by C(a)=1, C(b)=0.5. Clearly C is fuzzy αgs -open but not fuzzy g'''-open set in (X, τ).

Proposition 3.16:

Every fuzzy g'''-open set is fuzzy α g-open.

Proof:

If A is fuzzy g'''-open set in (X, τ), then A^c is fuzzy g'''-closed set. Since, by proposition 2.3, every fuzzy g'''-closed set is fuzzy α g-closed. Therefore A^c is fuzzy α g-closed set. Hence A is fuzzy α g-open in (X, τ).

The converse of Proposition 3.16 need not be true as seen from the following example.

Example 3.17:

Let X = {a, b}. Consider the fuzzy topology τ as in Example 3.3, where C is fuzzy set in X defined by C(a)=1, C(b)=0.5. Clearly C is fuzzy α g-open but not fuzzy g'''-open set in (X, τ).

Proposition 3.18:

Every fuzzy g'''-open set is fgs-open.

Proof:

If A is fuzzy g'''-open set in (X, τ), then A^c is fuzzy g'''-closed set. Since, by proposition 2.3, every

fuzzy g'''-closed set is fgs-closed. Therefore A^c is fgs-closed set. Hence A is fgs-open in (X, τ).

The converse of Proposition 3.18 need not be true as seen from the following example.

Example 3.19:

Let X = {a, b}. Consider the fuzzy topology τ as in Example 3.7, where γ is fuzzy set in X defined by $\gamma(a)=0.5$, $\gamma(b)=0.5$. Clearly γ is fgs-open but not fuzzy g'''-open set in (X, τ).

Proposition 3.20:

Every fuzzy g''' -open set is fuzzy gsp-open.

Proof:

If A is fuzzy g'''-open set in (X, τ), then A^c is fuzzy g'''-closed set. Since, by proposition 2.3, every fuzzy g'''-closed set is fuzzy gsp-closed. Therefore A^c is fuzzy gsp-closed set. Hence A is fuzzy gsp-open in (X, τ).

The converse of Proposition 3.20 need not be true as seen from the following example.

Example 3.21:

Let X = {a, b}. Consider the fuzzy topology τ as in Example 3.7, where γ is fuzzy set in X defined by $\gamma(a)=0.5$, $\gamma(b)=0.5$. Clearly γ is fuzzy gsp-open but not fuzzy g'''-open set in (X, τ).

Lemma 3.22:

A fuzzy subset A of (X, τ) is fuzzy g'''-open if and only if $F \le int(A)$ whenever F is fuzzy gsclosed and $F \le A$.

Proof:

Suppose that $F \le int(A)$ such that F is fgs-closed set and $F \le A$. Let $A^c \le U$ where U is fsg-open. Then $U^c \le A$ and U^c is fsg-closed. Therefore $U^c \le int(A)$ by hypothesis. Since $U^c \le int(A)$, we have $(int(A))^c \le U$. i.e., $cl(A^c) \le U$, since $cl(A^c) = (int(A))^c$. Thus A^c is f g^{'''}-closed set. i.e., A is f g^{'''}-open.

Conversely, suppose that A is f g'' -open such that $F \leq A$ and F is fgs-closed. Then F^c is fsg-open

and $A^c \leq F^c$. Therefore, $cl(A^c) \leq F^c$ by definition of fg'''-closedness and so $F \leq int(A)$, $cl(A^c) = (int(A))^c$.

4. PROPERTIES OF FUZZY g''' -OPEN SETS

In this section, we discuss some basic properties of fuzzy g'' -open sets.

Theorem 4.1:

If A and B are fuzzy g''' -open sets in (X, τ), then AAB is fuzzy g''' -open set in (X, τ).

Proof:

If $G \le A \land B$ and G is fgs-closed set, then $G \le A$ and $G \le B$. Since A and B are fuzzy g'''-open sets, G \le int(A) and G \le int(B) and hence G \le int(A) \land int(B) = int(A \land B). Thus A $\land B$ is fuzzy g'''-open set in (X, τ).

Theorem 4.2:

If A is fuzzy g'' -open set in (X, τ) and $int(A) \le B \le A$, then B is fuzzy g'' -open set in (X, τ) .

Proof:

Let $G \leq B$ where G is fgs-closed set. Since $B \leq A$, $G \leq A$. Since A is fuzzy g'''-open set, $G \leq int(A)$.

Since $int(A) \le B$, $G \le int(A) \le int(B)$. Therefore B is fuzzy g'''-open

set in X.

Theorem 4.3:

If A is a fgs-closed set and fuzzy g'''-open set in (X, τ), then A is fuzzy open set in (X, τ).

Proof:

Since A is fgs-closed set and fuzzy g'' -open set, A \leq int(A) and hence A is fuzzy open set in (X, τ).

Theorem 4.4:

Let A be a fuzzy g'''-open set of a topological space (X, τ). If A is fuzzy regular closed set, then sint(A) is also fuzzy g'''-open sets.

Proof:

Since A is fuzzy regular closed in X, A = cl(int(A)). Then $sint(A)=A \land cl(int(A)) = A$. Thus, sint(A) is fuzzy g'''-open sets in (X, τ).

REFERENCES

- K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82(1) (1981),14-32.
- [2] G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems, 86(1) (1997), 93-100.
- [3] G. Balasubramanian, On fuzzy pre-separation axioms, Bull. Calcutta Math. Soc., 90(6)

(1998), 427-434.

- [4] A. S. Bin shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44(2) (1991), 303-308.
- [5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968),182-190.
- [6] M. Jeyaraman, J. Rajalakshmi, and O. Ravi, Another generalization of closed sets in fuzzy topological spaces, IJMA-4(8), August-2013.
- [7] R. Prasad, S. S. Thakur and R. K. Saraf, Fuzzy *α*-irresolute mappings, J. Fuzzy Math.,
 2(2) (1994), 335-339.
- [8] M. Rajamani, On decomposition of fuzzy continuity in fuzzy topological spaces, Acta Ciencia Indica, XXVIIM (4) (2001), 545-547.
- [9] R. K. Saraf and M. Khanna, Fuzzy generalized semipreclosed sets, J. Tripura Math. Soc., 3(2001), 59-68.
- [10] R. K. Saraf and M. Khanna, On gs-closed sets in fuzzy topology, J. Indian Acad. Math., 25(1) (2003), 133-143.
- [11] R. K. Saraf, M. Caldas and S. Mishra, Results via Fg α -closed sets and F α g-closed sets, preprint.
- [12] M. Sudha, E. Roja and M. K. Uma, Slightly fuzzy ω-continuous mappings, Int. Journal of Math. Analysis, 5(16) (2011), 779-787.
- [13] S. S. Thakur and S. Singh, On fuzzy semi-preopen sets and fuzzy semi- precontinuity, Fuzzy Sets and Systems, 98(3) (1998), 383-391.
- [14] J. Tong, A decomposition of fuzzy continuity, Fuzzy Math.,7(1987), 97-98.
- [15] T. H. Yalvac, Semi-interior and semi-closure of a fuzzy set, J. Math.Anal. Appl., 132(2) (1988), 356-364.
- [16] L. A. Zadeh, Fuzzy sets, Information and Control 8(1965), 338-353.