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ABSTRACT 

In this paper, we offer a new class of sets called fuzzy g  -open sets in fuzzy topological spaces. It turns out 

that this class lies between the class of fuzzy open sets and the class of fuzzy generalized open sets. 
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INTRODUCTION 

Recently,  Jeyaraman  et al. [6] have introduced   the concept of  fuzzy g  -closed sets  and  studied  its 

basic fundamental  properties in fuzzy topological spaces. In this paper, we introduce a new class of sets 

namely fuzzy g  -open sets in fuzzy topological spaces. Also, we investigate the   relationships among 

related fuzzy generalized open sets. 

PRELIMINARIES 
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Throughout this paper (X, ) and (Y, ) (or X and Y) represent fuzzy topological spaces on which no 

separation axioms are assumed unless otherwise mentioned. For a fuzzy subset A of a space (X, ), cl(A), 

int(A) and A
c
 denote the closure of A, the interior of A and the complement of A respectively.  

 We recall the following definitions which are useful in the sequel. 

Definition 2.1: 

A subset A of a space (X, ) is called: 

(i)  fuzzy semi-open set [1] if A ≤ cl(int(A)); 

(ii)  fuzzy preopen set [4] if A  ≤ int(cl(A)); 

(iii)  fuzzy  -open set [4] if A ≤ int(cl(int(A))); 

(iv)  fuzzy β-open set [13] (= fuzzy semi-preopen [13] ) if A ≤ cl(int(cl(A))); 

(v)  fuzzy regular open set [1] if A = int(cl(A)). 

The complements of the above mentioned fuzzy open sets are called their respective fuzzy closed 

sets. 

The fuzzy semi-closure [15] (resp. fuzzy -closure [7], fuzzy semi-preclosure [13]) of a fuzzy subset 

A of X, denoted by  scl(A) (resp.  cl(A), spcl(A)) is defined to be the intersection of all fuzzy semi-closed 

(resp. fuzzy -closed, fuzzy semi-preclosed) sets of (X, ) containing A. It is known that scl(A) (resp. 

 cl(A), spcl(A)) is a fuzzy semi-closed (resp. fuzzy -closed, fuzzy semi-preclosed) set.  

Definition 2.2: 

A fuzzy subset A of a space (X, ) is called: 

 

(i)  a fuzzy generalized closed (briefly, fuzzy g-closed) set [2] if cl(A) ≤ U                      whenever A ≤ 

U and U is fuzzy open in (X, ). The complement of fuzzy g-closed set is called fuzzy g-open set; 

(ii)   a fuzzy semi-generalized closed (briefly fsg-closed) set [3] if scl(A) ≤ U                      whenever A ≤ U 

and U is fuzzy semi-open in (X, ). The complement of  fsg-closed set is called fsg-open set; 

(iii)   a fuzzy generalized semi-closed (briefly fgs-closed) set [10] if scl(A) ≤U whenever A ≤ U and U is 

fuzzy open in (X, ). The complement of  fgs-closed set is called fgs-open set; 
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(iv)    a fuzzy -generalized closed (briefly f g-closed) set [11] if  cl(A) ≤ U  whenever A ≤ U and U is 

fuzzy open in (X, ). The complement of  f g-closed set is called f g-open set; 

(v)  a fuzzy generalized semi-preclosed  (briefly fgsp-closed) set [9] if spcl(A) ≤ U whenever A ≤ U and 

U is fuzzy open in (X, ). The complement of  fgsp-closed set is called fgsp-open set; 

(vi)  a fuzzy -closed set (briefly f -closed) [12] if cl(A) ≤ U whenever A ≤ U and U is fuzzy semi-

open in (X, ). The complement of f -closed set is called f -open set; 

(vii)    a fuzzy gs -closed set(briefly f gs -closed)[6] if  cl(A) ≤ U  whenever A ≤ U and U is fuzzy semi-

open in (X, ). The complement of f gs -closed set is called f gs -open set; 

 

         (viii)    a fuzzy g*s-closed set(briefly f g*s-closed)[6]  if  scl(A) ≤ U  whenever A ≤ U and U     

                     is fgs- open in (X, ). The complement of  f g*s closed set  is called f g*s open set;  

(ix)   a fuzzy g  -closed set (briefly f g  -closed)[6] if cl(A) ≤ U whenever A ≤ U and U is fgs-open in (X, 

). The complement of f g  -closed set is called f g  -open set; 

(x)    a fuzzy g  -closed set(briefly f g  -closed)[6] if  cl(A) ≤ U  whenever A ≤ U and U is fgs-open in (X, 

). The complement of f g  -closed set is called f g  -open set; 

Proposition 2.3[6]: 

         For any fuzzy topological space (X, ),the following assertions hold: 

(i) Every fuzzy closed set is fuzzy g  -closed but not conversely. 

(ii)    Every fuzzy g  -closed set is fuzzy g  -closed but not conversely. 

     (iii)  Every fuzzy g  -closed set is fuzzy g*s-closed but not conversely. 

     (iv)  Every fuzzy g  -closed set is fuzzy -closed but not conversely.  

     (v)   Every fuzzy g  -closed set is fuzzy sg-closed but not conversely. 

     (vi)  Every fuzzy g  -closed set is fuzzy g-closed but not conversely.  

    (vii)  Every fuzzy g  -closed set is fuzzy αgs-closed but not conversely. 
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   (viii)  Every fuzzy g  -closed set is fuzzy αg-closed but not conversely.  

    (ix)   Every fuzzy g  -closed set is fuzzy gs-closed but not conversely.  

    (x)    Every fuzzy g  -closed set is fuzzy gsp-closed but not conversely. 

 3. FUZZY g  -OPEN SETS 

In this section, we discuss some relation between fuzzy g  -open set and fuzzy generalized open sets. 

Definition 3.1: 

A fuzzy subset A of a space (X, ) is called fuzzy g  -open set in X if A
c
 is fuzzy g  -closed set in (X, 

). 

The collection of all fuzzy g  -open set in X is denoted by G  O(X). 

Proposition 3.2: 

Every fuzzy open set is fuzzy g  -open set. 

Proof: 

           If A is fuzzy open set in (X, ), then A
c
 is fuzzy closed set. Since, by proposition 2.3, every fuzzy 

closed set is fuzzy g  -closed. Therefore A
c
 is  fuzzy g  -closed set. Hence A is fuzzy g  -open set. 

The converse of Proposition 3.2 need not be true as seen from the following example. 

Example 3.3: 

Let X = {a, b} with  = {0x, A, 1x} where A is  fuzzy set in X defined by A(a)=1, A(b)=0. Then (X, 

) is a fuzzy topological space. Clearly B defined by B(a)=0.5, B(b)=0 is fuzzy g  -open set but not fuzzy 

open. 

Proposition 3.4: 

Every fuzzy g  -open set is fuzzy g  -open set. 

Proof: 

           If A is fuzzy g  -open set in (X, ), then A
c
 is fuzzy g  -closed set. Since, by proposition 2.3, every 

fuzzy g  -closed set is fuzzy g  -closed. Therefore A
c
 is fuzzy g  -closed set. Hence A is fuzzy g  -open in 

(X, ). 
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The converse of Proposition 3.4 need not be true as seen from the following example. 

Example 3.5: 

Let X = {a, b} with  = {0x,  , 1x} where   is fuzzy set in X defined by  (a)=0.6,  (b)=0.5. Then (X, 

) is a fuzzy topological space. Clearly   defined by  (a)=0.6,  (b)=0.6 is fuzzy g  -open set but not 

fuzzy g  -open set in (X, ). 

Proposition 3.6: 

Every fuzzy g  -open set is fuzzy g*s-open. 

Proof: 

          If A is fuzzy g  -open set in (X, ), then A
c
 is fuzzy g  -closed set. Since, by proposition 2.3, every 

fuzzy g  -closed set is fuzzy g*s-closed. Therefore A
c
 is fuzzy g*s -closed set. Hence A is fuzzy g*s -open 

in (X, ). 

The converse of Proposition 3.6 need not be true as seen from the following example. 

Example 3.7: 

Let X = {a, b} with  = {0x,  , 1x} where   is fuzzy set in X defined by  (a)=0.4,  (b)=0.5. Then (X, 

) is a fuzzy topological space. Clearly   defined by  (a)=0.6,  (b)=0.5  is fuzzy g*s-open but not fuzzy g  -

open set in (X, ). 

Proposition 3.8: 

Every fuzzy g  -open set is  fuzzy -open set. 

Proof: 

          If A is fuzzy g  -open set in (X, ), then A
c
 is fuzzy g  -closed set. Since, by proposition 2.3, e very 

fuzzy g  -closed set is  fuzzy -closed. Therefore A
c
 is fuzzy  -closed set. Hence A is fuzzy  -open in (X, 

). 

The converse of Proposition 3.8 need not be true as seen from the following example. 

Example 3.9: 
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Let X = {a, b}. Consider the fuzzy topology  as in Example 3.5, where   is fuzzy set in X defined 

by  (a)=0.6,  (b)=0.6. Clearly   is fuzzy -open but not fuzzy g  -open set in (X, ). 

Proposition 3.10: 

Every fuzzy g  -open set is fuzzy sg-open. 

Proof: 

          If A is fuzzy g  -open set in (X, ), then A
c
 is fuzzy g  -closed set. Since, by proposition 2.3, e very 

fuzzy g  -closed set is fuzzy sg-closed. Therefore A
c
 is fuzzy sg-closed set. Hence A is fuzzy sg-open in (X, 

). 

The converse of Proposition 3.10 need not be true as seen from the following example. 

Example 3.11: 

Let X = {a, b}. Consider the fuzzy topology  as in Example 3.7, where    is fuzzy set in X defined 

by  (a)=0.6,  (b)=0.6. Clearly   is fuzzy sg-open  but not fuzzy g  -open set in (X, ). 

 

Proposition 3.12: 

Every fuzzy g  -open set is fuzzy g-open. 

Proof: 

          If A is fuzzy g  -open set in (X, ), then A
c
 is fuzzy g  -closed set. Since, by proposition 2.3, every 

fuzzy g  -closed set is fuzzy g-closed. Therefore A
c
 is fuzzy g-closed set. Hence A is fuzzy g-open in (X, ). 

The converse of Proposition 3.12 need not be true as seen from the following example. 

Example 3.13: 

Let X = {a, b}. Consider the fuzzy topology  as in Example 3.7, where    is fuzzy set in X defined 

by  (a)=0.5,  (b)=0.5. Clearly   is fuzzy g-open but not fuzzy g  -open set in (X, ). 

Proposition 3.14: 

Every fuzzy g  -open set is f gs -open. 

Proof: 
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          If A is fuzzy g  -open set in (X, ), then A
c
 is fuzzy g  -closed set. Since, by proposition 2.3, every 

fuzzy g  -closed set is f gs -closed. Therefore A
c
 is f gs -closed set. Hence A is f gs -open in (X, ). 

The converse of Proposition 3.14 need not be true as seen from the following example. 

Example 3.15: 

Let X = {a, b}. Consider the fuzzy topology  as in Example 3.3, where C is fuzzy  

set in X defined by C(a)=1, C(b)=0.5. Clearly C is fuzzy gs -open but not fuzzy g  -open set in (X, ). 

Proposition 3.16: 

Every fuzzy g  -open set is fuzzy g-open. 

Proof: 

           If A is fuzzy g  -open set in (X, ), then A
c
 is fuzzy g  -closed set. Since, by proposition 2.3, every 

fuzzy g  -closed set is fuzzy g-closed. Therefore A
c
 is fuzzy g-closed set. Hence A is fuzzy g-open in 

(X, ). 

The converse of Proposition 3.16 need not be true as seen from the following example. 

Example 3.17: 

Let X = {a, b}. Consider the fuzzy topology  as in Example 3.3, where C is fuzzy set in X defined 

by C(a)=1, C(b)=0.5. Clearly C is fuzzy g-open but not fuzzy g  -open set in (X, ). 

Proposition 3.18: 

Every fuzzy g  -open set is fgs-open. 

Proof: 

          If A is fuzzy g  -open set in (X, ), then A
c
 is fuzzy g  -closed set. Since, by proposition 2.3, every 

fuzzy g  -closed set is fgs-closed. Therefore A
c
 is fgs-closed set. Hence A is fgs-open in (X, ). 

The converse of Proposition 3.18 need not be true as seen from the following example. 

Example 3.19: 

Let X = {a, b}. Consider the fuzzy topology  as in Example 3.7, where    is fuzzy set in X defined 

by  (a)=0.5,  (b)=0.5. Clearly   is fgs-open but not fuzzy g  -open set in (X, ). 
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Proposition 3.20: 

Every fuzzy g  -open set is fuzzy gsp-open. 

Proof: 

           If A is fuzzy g  -open set in (X, ), then A
c
 is fuzzy g  -closed set. Since, by proposition 2.3, every 

fuzzy g  -closed set is fuzzy gsp-closed. Therefore A
c
 is fuzzy gsp-closed set. Hence A is fuzzy gsp-open in 

(X, ). 

The converse of Proposition 3.20 need not be true as seen from the following example. 

Example 3.21: 

Let X = {a, b}. Consider the fuzzy topology  as in Example 3.7, where    is fuzzy set in X defined 

by  (a)=0.5,  (b)=0.5. Clearly   is fuzzy gsp-open but not fuzzy g  -open set in (X, ). 

Lemma 3.22: 

              A fuzzy subset A of  (X, ) is  fuzzy g  -open if and only if  F ≤ int(A) whenever  F is fuzzy gs-

closed  and  F ≤  A. 

Proof: 

           Suppose  that  F≤ int(A) such that F is fgs-closed set and F ≤  A. Let A
c
 ≤ U where U is fsg-open . 

Then U
c
 ≤ A and U

c
 is fsg-closed . Therefore U

c
 ≤ int(A) by hypothesis. Since  U

c
 ≤ int(A), we have 

(int(A))
c
 ≤  U. i.e.,cl(A

c
) ≤  U, since cl(A

c
) = (int(A))

c
 . Thus A

c
 is f g  -closed set. i.e., A is f g  -open. 

Conversely, suppose that A is f g  -open such that F ≤  A and F is fgs-closed. Then F
c
 is fsg-open 

and A
c
 ≤ F

c
 . Therefore, cl(A

c
) ≤  F

c
  by definition of  f g  -closedness and so F ≤ int(A) , cl(A

c
) = (int(A))

c
. 

4. PROPERTIES OF FUZZY g  -OPEN SETS 

In this section, we discuss some basic properties of fuzzy g  -open sets. 

Theorem 4.1: 

           If A and B are fuzzy g  -open sets  in (X,), then A∧B is fuzzy g  -open set in (X, ). 

Proof: 
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If  G ≤ A ∧ B and G is fgs-closed set, then G ≤ A and G ≤ B. Since A and B are fuzzy g  -open sets, 

G≤ int(A) and G≤ int(B) and hence G≤  int(A) ∧ int(B) = int(A ∧ B). Thus A ∧ B is  fuzzy g  -open set in 

(X, ). 

Theorem 4.2: 

If A is fuzzy g  -open set in (X, ) and int(A) ≤ B ≤ A, then B is fuzzy g  -open set in (X, ). 

Proof: 

Let G ≤ B where G is fgs-closed set. Since B ≤ A, G ≤ A. Since A is fuzzy g  -open set, G ≤ int(A). 

Since  int(A) ≤ B, G ≤  int(A) ≤  int(B). Therefore B is fuzzy g  -open  

set in X. 

Theorem 4.3: 

If A is a fgs-closed set and fuzzy g  -open set in (X, ), then A is fuzzy open set in (X, ). 

Proof: 

Since A is fgs-closed set and fuzzy g  -open set, A ≤ int(A) and hence A is fuzzy open set in (X, ). 

Theorem 4.4: 

Let A be a fuzzy g  -open set of a topological space  (X, ). If A is fuzzy regular closed set, then sint(A) 

is also fuzzy g  -open sets. 

Proof: 

          Since A is fuzzy regular closed in X, A = cl(int(A)). Then sint(A)=A∧ cl(int(A)) = A. Thus, sint(A) is 

fuzzy g  -open sets in (X, ).  
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