On The Conjugate Secondary Eigenvalues and Secondary Singular Values of A Complex Square Matrix

Dr.B.K.N.Muthugobal *, R.Raja**
* Guest Lecturer in Mathematics, Bharathidasan University Constituent College, Nannilam.
**P.G. Assistant in Mathematics, Govt. Girls Hr. Sec. School, Papanasam. Tamil Nadu, India.
Email: bkn.math@gmail.com

Abstract

: In this paper, the conjugate secondary eigen values (con-s-eigen values) of a matrix, when properly defined, obey relations similar to the classical inequalities between the s-eigen values and s-singular values. Several interesting secondary spectral properties of conjugate secondary normal (con-s-normal) matrices are indicated. This matrix class plays the same role in the theory of s-unitary congruence as the class of snormal matrices plays in the theory of s-unitary similarities.

AMS Classification: 15A21, 15A09, 15457.
Keywords: s-normal matrix, con-s-normal matrix, s-unitary, s-eigenvalues, con-s-eigenvalues, s-symmetric, s-skew symmetric, s-spectrum and s-singular values.

1. Introduction

Let $C_{n \times n}$ be the space of $n \times n$ complex matrices of order n. For $A \in C_{n \times n}$, let $A^{T}, \bar{A}, A^{*}, A^{s}$, $A^{\theta}\left(=\bar{A}^{s}\right)$ and A^{-1} denote the transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose and inverse of matrix A respectively. The conjugate secondary transpose of A satisfies the following properties such as $\left(A^{\theta}\right)^{\theta}=A,(A+B)^{\theta}=A^{\theta}+B^{\theta},(A B)^{\theta}=B^{\theta} A^{\theta}$. etc

Definition 1

A matrix $A \in C_{n \times n}$ is said to be normal if $A A^{*}=A^{*} A$.

Definition 2

A Matrix $A \in C_{n \times n}$ is said to be conjugate normal (con-normal) if $A A^{*}=\overline{A^{*} A}$.

Definition 3

A matrix $A \in C_{n \times n}$ is said to be secondary normal (s-normal) if $A A^{\theta}=A^{\theta} A$.

Definition 4

A matrix $A \in C_{n \times n}$ is said to be unitary if $A A^{*}=A^{*} A=I$.

Definition 5

A matrix $A \in C_{n \times n}$ is said to be s-unitary if $A A^{\theta}=A^{\theta} A=I$.

Definition 6

The spectrum of a matrix $A \in C_{n \times n}$ is the set of all eigen values of A.

Definition 7

The spectral radius of A is defined by $\rho(A)=\max \{|\lambda| / \lambda \in \sigma(A)\}$, where $\sigma(A)$ is the spectrum of A.

Definition 8

Matrices $A, B \in M_{n}(C)$ are said to be con-s-similar if $A=S B \bar{S}^{-1}$ for a non s-singular matrix $S \in M_{n}(C)$. As usual, the bar over the symbol of a matrix means element wise conjugation. s-unitary congruence is an important particular case of con-s-similarity where $S=U$ is an s-unitary matrix and $A=U B U^{S}$.

Definition 9

Let a scalar $\mu \in C$ and a nonzero vector $x \in C^{n}$ are called a con-s-eigen value and a con-s-eigen vector (associated with μ) of a matrix A, respectively, if

$$
\begin{equation*}
A x=\mu \bar{x} \tag{1}
\end{equation*}
$$

Result 1

It follows from [Sec. 4.6 of $\mathbf{1}$] that μ is a con-s-eigen value of A if and only if $|\mu|^{2}$ is an s-eigen value of $\bar{A} A$. Therefore, if $\bar{A} A$ has no real nonnegative s-eigen values, then A has no con-s-eigen values. If μ is a con-s-eigen value, then, for all $\theta \in R, e^{i \theta} \mu$ also is a con-s-eigen value.

Hence if A has a con-s-eigen value, then it has infinitely many of them. By contrast, a matrix of order n always has exactly n s-eigen values if their multiplicities are counted. It follows that the set of con-s-eigen values is inconvenient to work with.

In Sec. 2 of this paper, we suggest a different definition of con-s-eigen values. In accordance with this definition, any matrix of order n has exactly n con-s-eigen values (with account for their multiplicities). It turns out that certain relations between the (ordinary) s-eigen values and matrix norms and also between the s-eigen values and the s -singular values have counterparts for the con-s-eigen values.

Some classical inequalities, such as the schur inequality or the additive Weyl inequalities, become equalities for a s-normal matrix A. In Sec. 3, we show that in the case of con-s-eigenvalues, similar equalities hold for the con-s-normal matrices. In the theory of s-unitary congruences, this matrix class plays a role similar to that of the s-normal matrices in the theory of s-unitary similarities. Other analogous properties of matrices in these two classes are also indicated.

2. Inequalities between the Con-s-Eigen Values and the s-Singular Values

Given a matrix $A \in M_{n}(C)$, we associate with it the matrices
and

$$
\begin{align*}
& A_{L}=\bar{A} A \tag{2}\\
& A_{R}=A \bar{A} \tag{3}
\end{align*}
$$

Although, in general, the products $A B$ and $B A$ need not be similar, the matrices A_{L} and A_{R} always are similar [1, Sec. 4.6]. Therefore, in the subsequent discussion of secondary spectral properties of these matrices, it will be sufficient to consider only one of them, say, A_{L}.

The secondary spectrum of A_{L} has the following remarkable properties.

1. It is s-symmetric about the real axis. Moreover, the s-eigen values λ and $\bar{\lambda}$ are of the same multiplicity.
2. The negative real s-eigen values of A_{L} (if any) are necessarily of even algebraic multiplicity.

Let $\quad \lambda_{S}\left(A_{L}\right)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$
be the secondary spectrum of A_{L} and let $\rho_{S}(A)=\max \left\{|\lambda|, \lambda \in \lambda_{S}(A)\right\}$ denote the secondary spectral radius of A.

Definition 10

The con-s-eigen values of A are the n scalars μ_{1}, \ldots, μ_{n} defined as follows:

- If $\lambda_{i} \in \lambda_{S}\left(A_{L}\right)$ does not lie on the negative real semi-axis, then the corresponding con-s-eigen value μ_{i} is defined as the square root of λ_{i} with nonnegative real part, and the multiplicity of μ_{i} is that of λ_{i}

$$
\begin{equation*}
\text { i.e, } \mu_{i}=\lambda_{i}^{\frac{1}{2}}, \operatorname{Re} \mu_{i} \geq 0 \tag{5}
\end{equation*}
$$

- With a real negative s-eigen value $\lambda_{i} \in \lambda_{S}\left(A_{L}\right)$ we associate two conjugate purely imaginary con-s-eigen values

$$
\begin{equation*}
\mu_{i}= \pm \lambda_{i}^{\frac{1}{2}} \tag{6}
\end{equation*}
$$

multiplicity of each of them being half the multiplicity of λ_{i}.

The set

$$
\begin{equation*}
C \lambda_{S}(A)=\left\{\mu_{1}, \ldots, \mu_{n}\right\} \tag{7}
\end{equation*}
$$

is called the conjugate secondary spectrum of A.
The con-s-eigen values of a matrix A allow for another interpretation. Define the matrix

$$
\hat{A}=\left[\begin{array}{ll}
0 & A \tag{8}\\
\bar{A} & 0
\end{array}\right]
$$

Proposition 1

Let μ_{1}, \ldots, μ_{n} be the con-s-eigen values of a $n \times n$ matrix A. Then

$$
\begin{equation*}
\lambda_{S}(\hat{A})=\left\{\mu_{1}, \ldots, \mu_{n},-\mu_{1}, \ldots,-\mu_{n}\right\} \tag{}
\end{equation*}
$$

Proof

The assertion desired follows from two observations. First, we have $\hat{A}^{2}=A_{R} \oplus A_{L}$, which implies that any s-eigen value of \hat{A} is a square root of an s-eigen value of A_{L}. Second, the characteristic polynomial $\varphi(\lambda)$ of \hat{A} is given by

$$
\varphi(\lambda)=\operatorname{det}\left(\lambda I_{2 n}-\hat{A}\right)=\operatorname{det}\left(\lambda^{2} I_{n}-A_{L}\right)=\operatorname{det}\left(\lambda^{2} I_{n}-A_{R}\right)
$$

Thus, if λ is an s-eigen value of \hat{A}, then $-\lambda$ also is an s-eigen value of \hat{A}, and both of them have the same multiplicity.

For the rest of this section, we adopt the following conventions.
(i) The s-singular values of A are arranged in non increasing order,

$$
\begin{equation*}
\text { i.e., } \sigma_{1}(A) \geq \sigma_{2}(A) \geq \ldots \geq \sigma_{n}(A) \tag{10}
\end{equation*}
$$

Hence i.e., $\sigma_{\max }(A)=\sigma_{1}(A)=\|A\|_{2}$
(ii) The con-s-eigen values of A are numbered in non increasing order of their absolute values,

$$
\begin{equation*}
\text { i.e., }\left|\mu_{1}(A)\right| \geq\left|\mu_{2}(A)\right| \geq \ldots \geq\left|\mu_{n}(A)\right| \tag{12}
\end{equation*}
$$

(iii)The same conventions apply to the s-singular values and s-eigen values of \hat{A},

$$
\begin{align*}
& \text { i.e., } \sigma_{1}(\hat{A}) \geq \sigma_{1}(\hat{A}) \geq \ldots \geq \sigma_{2 n}(\hat{A}) \tag{13}\\
& \left|\lambda_{1}(\hat{A})\right| \geq\left|\lambda_{2}(\hat{A})\right| \geq \ldots \geq\left|\lambda_{2 n}(\hat{A})\right| \tag{14}
\end{align*}
$$

In view of (9), we have

$$
\begin{equation*}
\left|\lambda_{2 i-1}(\hat{A})\right|=\left|\lambda_{2}(\hat{A})\right|=\left|\mu_{i}(A)\right|, i=1,2, \ldots, n . \tag{15}
\end{equation*}
$$

Note that \hat{A} has the same s-singular values as $A \oplus \bar{A}$ and \bar{A} has the same s-singular values as A. Consequently, the s-singular values of \hat{A} are those of A repeated twice.

Thus, $\sigma_{2 i-1}(\hat{A})=\sigma_{2 i}(\hat{A})=\sigma_{i}(A), i=1,2, \ldots, n$.
Finally, we define the conjugate secondary spectral radius of A as follows:

$$
\begin{equation*}
C \rho_{S}(A)=\left|\mu_{1}(A)\right| \tag{17}
\end{equation*}
$$

Proposition 2

Let $\|\|\|$ be an absolute matrix norm. Then

$$
\begin{equation*}
C \rho_{S}(A) \leq\|A\| \tag{18}
\end{equation*}
$$

Proof

We have $C \rho_{s}^{2}(A)=\left|\mu_{1}(A)\right|^{2}=\rho_{S}(\bar{A} A) \leq\|\bar{A} A\| \leq\|\bar{A}\|\|A\|=\|A\|^{2}$.
The secondary spectral norm is not absolute. However, inequality (18) holds true for the secondary spectral norm as well.

Proposition 3

The following inequality is valid.

$$
\begin{equation*}
C \rho_{S}(A) \leq\|A\|_{2} \tag{19}
\end{equation*}
$$

Proof

For any sub multiplicative matrix norm $\left\|\left\|\|\right.\right.$, we have $\left.\left.\rho_{S}(\hat{A}) \leq\right\| \hat{A}\right\|$, implying that $\quad\left|\lambda_{1}(\hat{A})\right| \leq \sigma_{1}(\hat{A})$
In view of (11) and (15)-(17) this is the desired inequality (19) in disguised form.

Remark 1

In a personal communication, R. Horn, indicated to the author that Propositions 2 and $\mathbf{3}$ can be united and strengthened under the assumption that for the matrix norm used, $\|A\|=\|\bar{A}\|$. Indeed, in this more general case, the proof of Proposition 2 remains the same. In particular, not only the secondary spectral norm but all the s-unitarily invariant norms are covered.

Proposition 4

The con-s-eigen values satisfy the inequality

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\mu_{i}(A)\right|^{2} \leq\|A\|_{F}^{2} \tag{20}
\end{equation*}
$$

Proof

In application to \hat{A}, the well-known schur inequality yields

$$
\begin{equation*}
\sum_{i=1}^{2 n}\left|\lambda_{i}(\hat{A})\right|^{2} \leq\|\bar{A}\|_{F}^{2} \tag{21}
\end{equation*}
$$

Obviously, $\quad\|\hat{A}\|_{F}^{2}=2\|A\|_{F}^{2}$ which, together with (15), shows that (21) is equivalent to (20).

Since, $\|A\|_{F}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}(A)$, relation (20) can be regarded as an inequality between the con-s-eigen values of A and its s-singular values. From this point of view, the following theorem is an extension of Proposition 4.

Theorem 1

For $1 \leq m \leq n$ and an arbitrary real non negative μ,

$$
\begin{equation*}
\sum_{i=1}^{m}\left|\mu_{i}(A)\right|^{\delta} \leq \sum_{i=1}^{m} \sigma_{i}^{\delta}(A) \tag{22}
\end{equation*}
$$

Proof

By applying the additive Weyl inequalities [3, sec.II.4.2] to \hat{A}, we obtain

$$
\begin{equation*}
\sum_{i=1}^{l}\left|\lambda_{i}(\hat{A})\right|^{\mu} \leq \sum_{i=1}^{l} \sigma_{i}^{\mu}(\hat{A}), 1 \leq l \leq 2 n \tag{23}
\end{equation*}
$$

Setting $l=2 m(1 \leq m \leq n)$ in (23) and taking into account (15) and (16), we arrive at (22).

Proposition 5

Let A be a block triangular matrix of the form $A=\left[\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right]$.
Then

$$
\begin{equation*}
C \lambda_{S}(A)=C \lambda_{S}\left(A_{11}\right) \cup C \lambda_{S}\left(A_{22}\right) \tag{24}
\end{equation*}
$$

Of course, (24) also holds for a lower block triangular matrix. Moreover, analogous equalities are valid not only for 2×2 block triangular matrices but for all block orders.

3. Con-s-Normal Matrices

The role of s-normal matrices in the theory of s-unitary similarities is well known. It is related to the fact that the s-normal matrices are exactly the matrices that can be brought to the simplest (secondary diagonal) form by s-unitary similarity transformations. The con-s-normal matrices (c.s.n. matrices) play a similar role in the theory of s-unitary congruences.

Definition 11 [2]

A matrix $A \in C_{n \times n}$ is said to be a conjugate secondary normal matrix (con-s-normal) if $A A^{\theta}=\overline{A^{\theta} A}$ where $A^{\theta}=\bar{A}^{S}$.

Theorem 2

Any con-s-normal matrix $A \in M_{n}(C)$ can be brought by a proper s-unitary congruence transformation to a block diagonal matrix with diagonal blocks of order 1 and 2 . The 1×1 blocks are the
nonnegative con-s-eigen values of A. Each 2×2 block corresponds to a pair of complex con con-s-eigen values $\mu_{j}=\rho_{j} e^{i \theta_{j}}, \bar{\mu}_{j}$ and is of the form $\quad\left[\begin{array}{cc}0 & \rho_{j} \\ \rho_{j} e^{-i 2 \theta_{j}} & 0\end{array}\right]$
or $\quad\left[\begin{array}{cc}0 & \mu_{j} \\ \bar{\mu}_{j} & 0\end{array}\right]$
The block diagonal matrix described in Theorem 2 is called the canonical form of the con-s-normal matrix A. The form (26) of its 2×2 blocks was used in [4], whereas the alternative form (27) was given in [5].

Complex s-symmetric, s-skew symmetric and s-unitary matrices are special cases of con-s-normal matrices. From the classical Takagi theorem [1, sec.4.4] it follows that the con-s-eigen values of a s-symmetric matrix are identical to its s-singular values. The con-s-eigen values of a s-unitary matrix U, being the square roots of the s-eigen values of the s-unitary matrix $\bar{U} U$, have unit absolute values; on the other hand, all the s-singular values of U are equal to one. This relation between the con-s-eigen values and the s-singular values holds for the entire class of con-s-normal matrices.

Proposition 6

The s-singular values of a con-s-normal matrix A are the absolute values of its con-s-eigen values.

Proof

The relation desired is readily obtained by inspecting the canonical form of A. Indeed, the nonnegative con-s-eigen values (i.e., 1×1 the blocks in the canonical form) are s-singular values of A. on the other hand, the s-singular spectrum of matrix (27) is the scalar $\left|\mu_{j}\right|$ repeated twice.

Corollary 1

For a con-s-normal matrix A, inequalities (19), (20) and (22) hold with equality.

Remark 2

The Toeplitz (or Cartesian) decomposition of a complex square matrix A is defined as the representation,

$$
\begin{equation*}
A=B+C, \quad B=B^{\theta}, \quad C=-C^{\theta} \tag{28}
\end{equation*}
$$

The matrices B and C, called the real and imaginary parts of A, respectively are uniquely determined by the equalities

$$
B=\frac{1}{2}\left(A+A^{\theta}\right), C=\frac{1}{2}\left(A-A^{\theta}\right) .
$$

The usefulness of the Toeplitz decomposition is related to the fact that it is respected by s-unitary similarity transformations in the following sense: for a s-unitary matrix U, the matrices $U^{\theta} B U$ and $U^{\theta} C U$ are the real and imaginary parts of $U^{\theta} A U$ respectively; in addition, under the transformation with the matrix U, all the three matrices A, B and C preserve their s-eigen values.

The representation $\quad A=S+K$
of a matrix A, where

$$
\begin{equation*}
S=\frac{1}{2}\left(A+A^{S}\right) \text { and } K=\frac{1}{2}\left(A-A^{S}\right) \tag{30}
\end{equation*}
$$

are a s-symmetric and a s-skew symmetric matrices, called the s-symmetric and s-skew symmetric parts of A, respectively, will be referred to as its SSSSS (meaning s-Symmetric-s-Skew Symmetric) decomposition. Decomposition (29), (30) is the counterpart of the Toeplitz decomposition for the theory of s-unitary congruences.

Decomposition (29), (30) is respected by s-unitary congruence transformation in the sense that for a s-unitary U, the matrices $U^{S} S U$ and $U^{s} K U$ are the s-symmetric and s-skew symmetric parts of the matrix $U^{s} A U$ respectively. Moreover the con-s-eigen values of the three matrices A, S and K are preserved under s-unitary congruence transformations.

Theorem 3

Let A be a con-s-normal matrix with SSSSS decomposition (29), (30). Then the con-s-eigen values of the matrices S and K are the real and imaginary parts, respectively, of the con-s-eigen values of A.

Proof

This can readily be seen by inspecting the canonical form of A. If μ is a $\times 1$ block in the canonical form, then, obviously, its SSSSS decomposition is $\mu=\mu+0$.

If $\mu_{j}=x_{j}+i y_{j}$ is a complex con-s-eigen value of A, then the SS SSS decomposition of matrix (27) is of the form $\quad S_{j}+K_{j}$,
where

$$
S_{j}=\left[\begin{array}{cc}
0 & x_{j} \tag{31}\\
x_{j} & 0
\end{array}\right]
$$

and $\quad K_{j}=\left[\begin{array}{cc}0 & i y_{j} \\ -i y_{j} & 0\end{array}\right]$
The conjugate secondary spectrum of matrix (31) is the scalar x_{j} repeated twice, whereas matrix (32) has the con-s-eigen values $i y_{j}$ and $-i y_{j}$.

References

[1] Horn, R.A. and Johnson, C.R., "Matrix Analysis." Cambridge Univ. Press, Cambridge, 1985; Mir, Moscow, 1989.
[2] Krishnamoorthy, S. and Raja, R., "On Con-s-normal matrices." International J. of Math. Sci. and Engg. Appls., Vol. 5 (II), (2011), 131-139.
[3] Marcus, M. and Mink, H., "A Survey of Matrix Theory and Matrix Inequalities." Allyn and Bacon, Boston, (1964).
[4] Vujici'c, M., Herbut, F. and Vujici'c, G., "Canonical forms for matrices under unitary congruence transformations I: con-normal matrices." SIAM J. Appl. Math., 23, (1972), 225-238.
[5] Wigner, E.P., "Normal form of anti unitary operators." J. Math. Phys., 1 (1960), 409-413.

