On The Conjugate Secondary Eigenvalues and Secondary Singular Values of A Complex Square Matrix

Dr.B.K.N.Muthugobal *, R.Raja**

 * Guest Lecturer in Mathematics, Bharathidasan University Constituent College, Nannilam.
 **P.G. Assistant in Mathematics, Govt. Girls Hr. Sec. School, Papanasam. Tamil Nadu, India.
 Email: <u>bkn.math@gmail.com</u>

Abstract:

In this paper, the conjugate secondary eigen values (con-s-eigen values) of a matrix, when properly defined, obey relations similar to the classical inequalities between the s-eigen values and s-singular values. Several interesting secondary spectral properties of conjugate secondary normal (con-s-normal) matrices are indicated. This matrix class plays the same role in the theory of s-unitary congruence as the class of s-normal matrices plays in the theory of s-unitary similarities.

AMS Classification: 15A21, 15A09, 15457.

Keywords: s-normal matrix, con-s-normal matrix, s-unitary, s-eigenvalues, con-s-eigenvalues, s-symmetric, s-skew symmetric, s-spectrum and s-singular values.

1. Introduction

Let $C_{n \times n}$ be the space of $n \times n$ complex matrices of order n. For $A \in C_{n \times n}$, let A^{T} , \overline{A} , A^{*} , A^{s} , $A^{\theta} \left(=\overline{A}^{s}\right)$ and A^{-1} denote the transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose and inverse of matrix A respectively. The conjugate secondary transpose of A satisfies the following properties such as $\left(A^{\theta}\right)^{\theta} = A$, $\left(A + B\right)^{\theta} = A^{\theta} + B^{\theta}$, $\left(AB\right)^{\theta} = B^{\theta}A^{\theta}$. etc

Definition 1

A matrix $A \in C_{n \times n}$ is said to be normal if $AA^* = A^*A$.

Definition 2

A Matrix $A \in C_{n \times n}$ is said to be conjugate normal (con-normal) if $AA^* = \overline{A^*A}$.

Definition 3

A matrix $A \in C_{n \times n}$ is said to be secondary normal (s-normal) if $AA^{\theta} = A^{\theta}A$.

Definition 4

A matrix $A \in C_{n \times n}$ is said to be unitary if $AA^* = A^*A = I$.

Definition 5

A matrix $A \in C_{n \times n}$ is said to be *s*-unitary if $AA^{\theta} = A^{\theta}A = I$.

Definition 6

The spectrum of a matrix $A \in C_{n \times n}$ is the set of all eigen values of A.

Definition 7

The spectral radius of A is defined by $\rho(A) = \max\{|\lambda| / \lambda \in \sigma(A)\}$, where $\sigma(A)$ is the spectrum of

Α.

Definition 8

Matrices $A, B \in M_n(C)$ are said to be con-s-similar if $A = SB\overline{S}^{-1}$ for a non s-singular matrix $S \in M_n(C)$. As usual, the bar over the symbol of a matrix means element wise conjugation. s-unitary congruence is an important particular case of con-s-similarity where S = U is an s-unitary matrix and $A = UBU^S$.

Definition 9

Let a scalar $\mu \in C$ and a nonzero vector $x \in C^n$ are called a con-s-eigen value and a con-s-eigen vector (associated with μ) of a matrix *A*, respectively, if $Ax = \mu \overline{x}$

Result 1

It follows from [Sec. 4.6 of 1] that μ is a con-s-eigen value of A if and only if $|\mu|^2$ is an s-eigen value of $\overline{A}A$. Therefore, if $\overline{A}A$ has no real nonnegative s-eigen values, then A has no con-s-eigen values. If μ is a con-s-eigen value, then, for all $\theta \in R, e^{i\theta}\mu$ also is a con-s-eigen value.

Hence if A has a con-s-eigen value, then it has infinitely many of them. By contrast, a matrix of order n always has exactly n s-eigen values if their multiplicities are counted. It follows that the set of con-s-eigen values is inconvenient to work with.

In Sec. 2 of this paper, we suggest a different definition of con-s-eigen values. In accordance with this definition, any matrix of order n has exactly n con-s-eigen values (with account for their multiplicities). It turns out that certain relations between the (ordinary) s-eigen values and matrix norms and also between the s-eigen values and the s-singular values have counterparts for the con-s-eigen values.

Some classical inequalities, such as the schur inequality or the additive Weyl inequalities, become equalities for a s-normal matrix *A*. In **Sec. 3**, we show that in the case of con-s-eigenvalues, similar equalities hold for the con-s-normal matrices. In the theory of s-unitary congruences, this matrix class plays a role similar to that of the s-normal matrices in the theory of s-unitary similarities. Other analogous properties of matrices in these two classes are also indicated.

2. Inequalities between the Con-s-Eigen Values and the s-Singular Values

Given a matrix $A \in M_n(C)$, we associate with it the matrices

$$A_L = \overline{A}A \qquad \dots (2)$$

 $A_R = A\overline{A} \qquad \qquad \dots (3)$

Although, in general, the products AB and BA need not be similar, the matrices A_L and A_R always are similar **[1, Sec. 4.6]**. Therefore, in the subsequent discussion of secondary spectral properties of these matrices, it will be sufficient to consider only one of them, say, A_L .

The secondary spectrum of A_L has the following remarkable properties.

- 1. It is s-symmetric about the real axis. Moreover, the s-eigen values λ and $\overline{\lambda}$ are of the same multiplicity.
- 2. The negative real s-eigen values of A_L (if any) are necessarily of even algebraic multiplicity.

Let
$$\lambda_{S}(A_{L}) = \{\lambda_{1}, ..., \lambda_{n}\}$$
 ... (4)

be the secondary spectrum of A_L and let $\rho_s(A) = \max\{|\lambda|, \lambda \in \lambda_s(A)\}$ denote the secondary spectral radius of A.

Definition 10

The con-s-eigen values of A are the n scalars $\mu_1, ..., \mu_n$ defined as follows:

If λ_i ∈ λ_s (A_L) does not lie on the negative real semi-axis, then the corresponding con-s-eigen value μ_i is defined as the square root of λ_i with nonnegative real part, and the multiplicity of μ_i is that of λ_i

i.e,
$$\mu_i = \lambda_i^{\frac{1}{2}}, \text{Re } \mu_i \ge 0$$
 ... (5)

• With a real negative s-eigen value $\lambda_i \in \lambda_s(A_L)$ we associate two conjugate purely imaginary con-s-eigen values

$$\mu_i = \pm \lambda_i^{\frac{1}{2}}$$
 . . . (6) The

multiplicity of each of them being half the multiplicity of λ_i .

The set

$$C\lambda_{S}(A) = \{\mu_{1}, \dots, \mu_{n}\}$$
(7)

is called the conjugate secondary spectrum of A.

The con-s-eigen values of a matrix A allow for another interpretation. Define the matrix

$$\hat{A} = \begin{bmatrix} 0 & A \\ \overline{A} & 0 \end{bmatrix} \qquad \dots (8)$$

Proposition 1

and

Let $\mu_1, ..., \mu_n$ be the con-s-eigen values of a $n \times n$ matrix A. Then

$$\lambda_{S}(\hat{A}) = \{\mu_{1}, ..., \mu_{n}, -\mu_{1}, ..., -\mu_{n}\}$$
 (9)

Proof

The assertion desired follows from two observations. First, we have $\hat{A}^2 = A_R \oplus A_L$, which implies that any s-eigen value of \hat{A} is a square root of an s-eigen value of A_L . Second, the characteristic polynomial $\varphi(\lambda)$ of \hat{A} is given by

$$\varphi(\lambda) = \det(\lambda I_{2n} - \hat{A}) = \det(\lambda^2 I_n - A_L) = \det(\lambda^2 I_n - A_R)$$

Thus, if λ is an s-eigen value of \hat{A} , then $-\lambda$ also is an s-eigen value of \hat{A} , and both of them have the same multiplicity.

For the rest of this section, we adopt the following conventions.

(i) The s-singular values of A are arranged in non increasing order,

i.e.,
$$\sigma_1(A) \ge \sigma_2(A) \ge \dots \ge \sigma_n(A)$$
 ... (10)

Hence *i.e.*, $\sigma_{\max}(A) = \sigma_1(A) = ||A||_2$

(ii) The con-s-eigen values of A are numbered in non increasing order of their absolute values, i.e., $|\mu_1(A)| \ge |\mu_2(A)| \ge ... \ge |\mu_n(A)|$...(12)

(iii)The same conventions apply to the s-singular values and s-eigen values of \hat{A} ,

i.e.,
$$\sigma_1(\hat{A}) \ge \sigma_1(\hat{A}) \ge \dots \ge \sigma_{2n}(\hat{A})$$
 ... (13)

$$\left|\lambda_{1}\left(\hat{A}\right)\right| \geq \left|\lambda_{2}\left(\hat{A}\right)\right| \geq ... \geq \left|\lambda_{2n}\left(\hat{A}\right)\right| \qquad \dots (14)$$

In view of (9), we have

$$\left|\lambda_{2i-1}\left(\hat{A}\right)\right| = \left|\lambda_{2}\left(\hat{A}\right)\right| = \left|\mu_{i}\left(A\right)\right|, i = 1, 2, ..., n.$$
(15)

Note that \hat{A} has the same s-singular values as $A \oplus \overline{A}$ and \overline{A} has the same s-singular values as A. Consequently, the s-singular values of \hat{A} are those of A repeated twice.

Thus,
$$\sigma_{2i-1}(\hat{A}) = \sigma_{2i}(\hat{A}) = \sigma_i(A), i = 1, 2, ..., n.$$
 (16)

Finally, we define the conjugate secondary spectral radius of A as follows:

$$C\rho_{S}(A) = |\mu_{I}(A)| \qquad \dots (17)$$

...(11)

Proposition 2

Let 🔲 be an absolute matrix norm. Then

$$C\rho_{s}(A) \leq ||A|| \qquad \qquad \dots (18)$$

Proof

We have
$$C\rho_{s}^{2}(A) = |\mu_{1}(A)|^{2} = \rho_{s}(\bar{A}A) \le ||\bar{A}A|| \le ||\bar{A}|| ||A|| = ||A||^{2}$$
.

The secondary spectral norm is not absolute. However, inequality (18) holds true for the secondary spectral norm as well.

Proposition 3

The following inequality is valid.

Proof

For any sub multiplicative matrix norm $\|\mathbf{f}\|$, we have $\rho_{S}(\hat{A}) \leq \|\hat{A}\|$, implying that $|\lambda_{I}(\hat{A})| \leq \sigma_{I}(\hat{A})$

In view of (11) and (15)-(17) this is the desired inequality (19) in disguised form.

Remark 1

In a personal communication, R. Horn, indicated to the author that **Propositions 2** and **3** can be united and strengthened under the assumption that for the matrix norm used, $||A|| = ||\overline{A}||$. Indeed, in this more general case, the proof of **Proposition 2** remains the same. In particular, not only the secondary spectral norm but all the s-unitarily invariant norms are covered.

Proposition 4

The con-s-eigen values satisfy the inequality

$$\sum_{i=1}^{n} |\mu_{i}(A)|^{2} \leq ||A||_{F}^{2} \qquad \dots (20)$$

Proof

In application to \hat{A} , the well-known schur inequality yields

$$\sum_{i=1}^{2n} \left| \lambda_i \left(\hat{A} \right) \right|^2 \le \left\| \overline{A} \right\|_F^2 \qquad \dots (21)$$

Obviously, $\|\hat{A}\|_{F}^{2} = 2\|A\|_{F}^{2}$ which, together with (15), shows that (21) is equivalent to (20).

Since, $||A||_{F}^{2} = \sum_{i=1}^{n} \sigma_{i}^{2}(A)$, relation (20) can be regarded as an inequality between the con-s-eigen

values of A and its s-singular values. From this point of view, the following theorem is an extension of **Proposition 4**.

Theorem 1

For $1 \le m \le n$ and an arbitrary real non negative μ ,

$$\sum_{i=1}^{m} \left| \mu_i \left(A \right) \right|^{\delta} \leq \sum_{i=1}^{m} \sigma_i^{\delta} \left(A \right) \qquad \dots (22)$$

Proof

By applying the additive Weyl inequalities [3, sec.II.4.2] to \hat{A} , we obtain

$$\sum_{i=1}^{l} \left| \lambda_i \left(\hat{A} \right) \right|^{\mu} \leq \sum_{i=1}^{l} \sigma_i^{\mu} \left(\hat{A} \right), 1 \leq l \leq 2n$$
 (23)

Setting $l = 2m(1 \le m \le n)$ in (23) and taking into account (15) and (16), we arrive at (22).

Proposition 5

Let *A* be a block triangular matrix of the form $A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$.

Then

 $C\lambda_{s}(A) = C\lambda_{s}(A_{11}) \cup C\lambda_{s}(A_{22}) \qquad \dots (24)$

Of course, (24) also holds for a lower block triangular matrix. Moreover, analogous equalities are valid not only for 2×2 block triangular matrices but for all block orders.

3. Con-s-Normal Matrices

The role of s-normal matrices in the theory of s-unitary similarities is well known. It is related to the fact that the s-normal matrices are exactly the matrices that can be brought to the simplest (secondary diagonal) form by s-unitary similarity transformations. The con-s-normal matrices (c.s.n. matrices) play a similar role in the theory of s-unitary congruences.

Definition 11 [2]

A matrix $A \in C_{n \times n}$ is said to be a conjugate secondary normal matrix (con-*s*-normal) if $AA^{\theta} = \overline{A^{\theta}A}$ where $A^{\theta} = \overline{A}^{s}$ (25)

Theorem 2

Any con-s-normal matrix $A \in M_n(C)$ can be brought by a proper s-unitary congruence transformation to a block diagonal matrix with diagonal blocks of order 1 and 2. The 1×1 blocks are the

nonnegative con-s-eigen values of A. Each 2×2 block corresponds to a pair of complex con con-s-eigen values $\mu_j = \rho_j e^{i\theta_j}$, $\overline{\mu}_j$ and is of the form $\begin{bmatrix} 0 & \rho_j \\ \rho_j e^{-i2\theta_j} & 0 \end{bmatrix}$...(26)
or $\begin{bmatrix} 0 & \mu_j \\ \overline{\mu}_j & 0 \end{bmatrix}$...(27)

The block diagonal matrix described in **Theorem 2** is called the canonical form of the con-s-normal matrix A. The form (26) of its 2×2 blocks was used in [4], whereas the alternative form (27) was given in [5].

Complex s-symmetric, s-skew symmetric and s-unitary matrices are special cases of con-s-normal matrices. From Takagi theorem sec.4.4] the classical [1, it follows that the con-s-eigen values of a s-symmetric matrix are identical to its s-singular values. The con-s-eigen values of a s-unitary matrix U, being the square roots of the s-eigen values of the s-unitary matrix $\overline{U}U$, have unit absolute values; on the other hand, all the s-singular values of U are equal to one. This relation between the con-s-eigen values and the s-singular values holds for the entire class of con-s-normal matrices.

Proposition 6

The s-singular values of a con-s-normal matrix A are the absolute values of its con-s-eigen values.

Proof

The relation desired is readily obtained by inspecting the canonical form of A. Indeed, the nonnegative con-s-eigen values (i.e., 1×1 the blocks in the canonical form) are s-singular values of A. on the other hand, the s-singular spectrum of matrix (27) is the scalar $|\mu_i|$ repeated twice.

Corollary 1

For a con-s-normal matrix A, inequalities (19), (20) and (22) hold with equality.

Remark 2

The Toeplitz (or Cartesian) decomposition of a complex square matrix A is defined as the representation,

$$A = B + C, \quad B = B^{\theta}, \quad C = -C^{\theta} \qquad \dots (28)$$

The matrices *B* and *C*, called the real and imaginary parts of *A*, respectively are uniquely determined by the equalities

$$B = \frac{1}{2} \left(A + A^{\theta} \right), \quad C = \frac{1}{2} \left(A - A^{\theta} \right).$$

The usefulness of the Toeplitz decomposition is related to the fact that it is respected by s-unitary similarity transformations in the following sense: for a s-unitary matrix U, the matrices $U^{\theta}BU$ and $U^{\theta}CU$ are the real and imaginary parts of $U^{\theta}AU$ respectively; in addition, under the transformation with the matrix U, all the three matrices A, B and C preserve their s-eigen values.

The representation
$$A = S + K$$
 ... (29)

of a matrix A, where

$$S = \frac{1}{2} (A + A^{s})$$
 and $K = \frac{1}{2} (A - A^{s})$... (30)

are a s-symmetric and a s-skew symmetric matrices, called the s-symmetric and s-skew symmetric parts of *A*, respectively, will be referred to as its SSSSS (meaning s-Symmetric-s-Skew Symmetric) decomposition. Decomposition (29), (30) is the counterpart of the Toeplitz decomposition for the theory of s-unitary congruences.

Decomposition (29), (30) is respected by s-unitary congruence transformation in the sense that for a s-unitary U, the matrices $U^S S U$ and $U^S K U$ are the s-symmetric and s-skew symmetric parts of the matrix $U^S A U$ respectively. Moreover the con-s-eigen values of the three matrices A, S and K are preserved under s-unitary congruence transformations.

Theorem 3

Let A be a con-s-normal matrix with SSSSS decomposition (29), (30). Then the con-s-eigen values of the matrices S and K are the real and imaginary parts, respectively, of the con-s-eigen values of A.

Proof

This can readily be seen by inspecting the canonical form of *A*. If μ is a 1×1 block in the canonical form, then, obviously, its SSSSS decomposition is $\mu = \mu + 0$.

If $\mu_j = x_j + iy_j$ is a complex con-s-eigen value of *A*, then the SS SSS decomposition of matrix (27) is of the form $S_i + K_j$,

where

$$S_{j} = \begin{bmatrix} 0 & x_{j} \\ x_{j} & 0 \end{bmatrix} \qquad \dots (31)$$
$$K_{j} = \begin{bmatrix} 0 & iy_{j} \\ -iy_{j} & 0 \end{bmatrix} \qquad \dots (32)$$

and

The conjugate secondary spectrum of matrix (31) is the scalar x_j repeated twice, whereas matrix (32) has the con-s-eigen values iy_j and $-iy_j$.

References

- [1] Horn, R.A. and Johnson, C.R., "Matrix Analysis." Cambridge Univ. Press, Cambridge, 1985; Mir, Moscow, 1989.
- [2] Krishnamoorthy, S. and Raja, R., "On Con-s-normal matrices." International J. of Math. Sci. and Engg. Appls., Vol.5 (II), (2011), 131-139.
- [3] Marcus, M. and Mink, H., "A Survey of Matrix Theory and Matrix Inequalities." Allyn and Bacon, Boston, (1964).
- [4] Vujici'c, M., Herbut, F. and Vujici'c, G., "Canonical forms for matrices under unitary congruence transformations I: con-normal matrices." SIAM J. Appl. Math., 23, (1972), 225–238.
- [5] Wigner, E.P., "Normal form of anti unitary operators." J. Math. Phys., 1 (1960), 409–413.