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Abstract:

In this paper, the conjugate secondary eigen values (con-s-eigen values) of a matrix, when properly defined,
obey relations similar to the classical inequalities between the s-eigen values and s-singular values. Several
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1. Introduction

Let Cnxn be the space of nxn complex matrices of order n. For AeC let AT, A, A", A,

nxn?

S
A’ (: A j and A*' denote the transpose, conjugate, conjugate transpose, secondary transpose, conjugate

secondary transpose and inverse of matrix A respectively. The conjugate secondary transpose of A satisfies
the following properties such as(A")e = A (A+B)’ =A’+B (AB)" =B’A’. etc

Definition 1

A matrix AeC,, is said to be normal if AA"=A"A,

n

Definition 2

A Matrix AeC,, is said to be conjugate normal (con-normal) if AA = A'A.
Definition 3

A matrix AeC,__ issaid to be secondary normal (s-normal) if AA? = A°A
Definition 4

A matrix AeC,_ issaid to be unitary if AA"=A'A=1.
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Definition 5

A matrix AeC,_,
Definition 6

The spectrum of a matrix Ae C__ is the set of all eigen values of A.
Definition 7

is said to be s-unitary if AA? = A°A=1.

n

The spectral radius of A is defined by p(A)= max{|/1|//1 € a(A)}, where o(A)is the spectrum of
A.
Definition 8

Matrices A,BeM, (C) are said to be con-s-similar if A=SBS™ for a non s-singular matrix

S eMn(C). As usual, the bar over the symbol of a matrix means element wise conjugation. s-unitary

congruence is an important particular case of con-s-similarity where S=U is an s-unitary matrix and
A=UBU®,

Definition 9

Let a scalar 2 < C and a nonzero vector xeC" are called a con-s-eigen value and a con-s-eigen
vector (associated with ) of a matrix A, respectively, if AX = uX

(1)
Result 1

It follows from [Sec. 4.6 of 1] that x is a con-s-eigen value of A if and only if |ﬂ|2 is an s-eigen

value of AA. Therefore, if AA has no real nonnegative s-eigen values, then A has no con-s-eigen values. If
y7i IS a con-s-eigen value, then, for all OcR,e’u also § a
con-s-eigen value.

Hence if A has a con-s-eigen value, then it has infinitely many of them. By contrast, a matrix of order
n always has exactly n s-eigen values if their multiplicities are counted. It follows that the set of con-s-eigen
values is inconvenient to work with.

In Sec. 2 of this paper, we suggest a different definition of con-s-eigen values. In accordance with
this definition, any matrix of order n has exactly n con-s-eigen values (with account for their multiplicities).
It turns out that certain relations between the (ordinary)
s-eigen values and matrix norms and also between the s-eigen values and the s-singular values have
counterparts for the con-s-eigen values.

Some classical inequalities, such as the schur inequality or the additive Weyl inequalities, become
equalities for a s-normal matrix A. In Sec. 3, we show that in the case of con-s-eigenvalues, similar
equalities hold for the con-s-normal matrices. In the theory of
s-unitary congruences, this matrix class plays a role similar to that of the s-normal matrices in the theory of
s-unitary similarities. Other analogous properties of matrices in these two classes are also indicated.

2. Inequalities between the Con-s-Eigen Values and the s-Singular Values
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Given amatrix Ae M, (C), we associate with it the matrices

A = AA .. )
and A, = AA ... (3)

Although, in general, the products AB and BA need not be similar, the matrices A and A, always

are similar [1, Sec. 4.6]. Therefore, in the subsequent discussion of secondary spectral properties of these
matrices, it will be sufficient to consider only one of them, say, A, .

The secondary spectrum of A, has the following remarkable properties.

1. It is s-symmetric about the real axis. Moreover, the s-eigen values 4 and 4 are of the same

multiplicity.
2. The negative real s-eigen values of A _ (if any) are necessarily of even algebraic multiplicity.
Let A (A)={A) @

be the secondary spectrum of A_ and let pg (A)= max{|/1|,l € g (A)} denote the secondary spectral radius
of A.

Definition 10

The con-s-eigen values of A are the n scalars 4, ..., ¢, defined as follows:

o If 4 e/ (AL) does not lie on the negative real semi-axis, then the corresponding con-s-eigen
value g is defined as the square root of 1, with nonnegative real part, and the multiplicity of
4; s that of 4,

1

e, 4 =27 Reu >0 ... (5
e With a real negative s-eigen value A € A (Al) we associate two conjugate purely imaginary
con-s-eigen values

N |-

fh =4 6) The

multiplicity of each of them being half the multiplicity of A..

The set CAs (A)={t4r 14y} )

is called the conjugate secondary spectrum of A.

The con-s-eigen values of a matrix A allow for another interpretation. Define the matrix

~ |0 A
w2 4] ®

Proposition 1
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Let 1,..., 1, be the con-s-eigen values of a N nmatrix A. Then

A

As (A):{,ul,...,yn,—,ul,...,—yn} ... (9

Proof

The assertion desired follows from two observations. First, we have A> = A. @ A , which implies
that any s-eigen value of Ais a square root of an s-eigen value of A, _. Second, the characteristic polynomial

@(A)of A is given by
p(2)=det(A1,, —A)=det(2°1, - A ) =det(2*1, - A,)

Thus, if A4 is an s-eigen value of A, then—4 also is an s-eigen value of A, and both of them have
the same multiplicity.

For the rest of this section, we adopt the following conventions.

(i) The s-singular values of A are arranged in non increasing order,

ie, o0 (A)>0,(A)>..>0,(A) ... (10)
Hence e, o, (A)=0,(A)=|A], .. (11)
(ii) The con-s-eigen values of A are numbered in non increasing order of their absolute values,
i.e., |24 (A) =] (A)2..2|u, (A) .. (12)
(iii) The same conventions apply to the s-singular values and s-eigen values of A,
i.e.,al(A)201(A)2...202n(A) ... (13)
‘A(A) > |2, (A)| 2 .. 2 |4, (A) ... (14)
In view of (9), we have
‘z?i_l(A) :‘12<A) — |t (A)i=1,2,..n. ... (15)

Note that A has the same s-singular values as A®@ A and A has the same s-singular values as A.
Consequently, the s-singular values of A are those of A repeated twice.

Thus, 05,1 (A) =0y (A) =0, (A),i=12,..n. ... (16)
Finally, we define the conjugate secondary spectral radius of A as follows:

Cps (A)=|e(A) . (17)
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Proposition 2

Let |[]| be an absolute matrix norm. Then
Cos(A)<|A| ... (18)
Proof
Wehave Cp? (A)=|u (A)] = (AA)<[A] <[] 4] = A"

The secondary spectral norm is not absolute. However, inequality (18) holds true for the secondary
spectral norm as well.

Proposition 3

The following inequality is valid.

Cps (A)<|A], ... (19)

Proof

For any sub multiplicative matrix norm |, we have p; (A) < HAH implying that ‘A(A)

<o, (A)

In view of (11) and (15)-(17) this is the desired inequality (19) in disguised form.
Remark 1

In a personal communication, R. Horn, indicated to the author that Propositions 2 and 3 can be
united and strengthened under the assumption that for the matrix norm used, |A| =|Al|. Indeed, in this more

general case, the proof of Proposition 2 remains the same. In particular, not only the secondary spectral
norm but all the s-unitarily invariant norms are covered.

Proposition 4

The con-s-eigen values satisfy the inequality
n 2
2
2l (A) <IA: .. (20)
Proof
In application to A, the well-known schur inequality yields

SJa(4)

2
<[4 @

Obviously, HA”ZF =2||A||2F which, together with (15), shows that (21) is equivalent to (20).
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Since, ||A|Z =Y o7 (A), relation (20) can be regarded as an inequality between the con-s-eigen
i=1

values of A and its s-singular values. From this point of view, the following theorem is an extension of
Proposition 4.

Theorem 1

For 1<m<n and an arbitrary real non negative .,

Zml\ﬂi (A)\s Sin(A) . (22)

i=1 i=1

Proof

By applying the additive Weyl inequalities [3, sec.11.4.2] to A, we obtain

S| (A)] <Xor(A)asi=an )

i=1

Setting | =2m(1<m<n) in (23) and taking into account (15) and (16), we arrive at (22).

Proposition 5

Let A be a block triangular matrix of the form A ={ A
2

Then CAs (A)=CA (A;)UCA (A,) N vZ)

A, Am}_

Of course, (24) also holds for a lower block triangular matrix. Moreover, analogous equalities are
valid not only for 2 x 2block triangular matrices but for all block orders.

3. Con-s-Normal Matrices

The role of s-normal matrices in the theory of s-unitary similarities is well known. It is related to the
fact that the s-normal matrices are exactly the matrices that can be brought to the simplest (secondary
diagonal) form by s-unitary similarity transformations.

The con-s-normal matrices (c.s.n. matrices) play a similar role in the theory of s-unitary congruences.

Definition 11 [2]

A matrix AeC,_ . is said to be a conjugate secondary normal matrix (con-s-normal) if AA’ = A’A

where A’ = A’ . ... (25)
Theorem 2

Any con-s-normal matrix AeM, (C)can be brought by a proper s-unitary congruence
transformation to a block diagonal matrix with diagonal blocks of order 1 and 2. The 1x1 blocks are the
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nonnegative con-s-eigen values of A. Each 2x 2 block corresponds to a pair of complex con con-s-eigen
0, — . 0 Pij
values y; = p,e™, iz; and is of the form 2
e J
J

... (26)

or ng 'L(l)‘} .27

The block diagonal matrix described in Theorem 2 is called the canonical form of the con-s-normal
matrix A. The form (26) of its 2 x 2 blocks was used in [4], whereas the alternative form (27) was given in

[5]

Complex s-symmetric, s-skew symmetric and s-unitary matrices are special cases of con-s-normal
matrices. From the classical Takagi theorem [1, sec.4.4] it follows that the
con-s-eigen values of a s-symmetric matrix are identical to its s-singular values. The
con-s-eigen values of a s-unitary matrix U , being the square roots of the s-eigen values of the s-unitary

matrix UU, have unit absolute values; on the other hand, all the s-singular values of U are equal to one. This

relation between the con-s-eigen values and the s-singular values holds for the entire class of con-s-normal
matrices.

Proposition 6

The s-singular values of a con-s-normal matrix A are the absolute values of its
con-s-eigen values.

Proof

The relation desired is readily obtained by inspecting the canonical form of A. Indeed, the
nonnegative con-s-eigen values (i.e., 1x1the blocks in the canonical form) are s-singular values of A. on the

other hand, the s-singular spectrum of matrix (27) is the scalar ‘ ,uj‘ repeated twice.
Corollary 1

For a con-s-normal matrix A, inequalities (19), (20) and (22) hold with equality.
Remark 2

The Toeplitz (or Cartesian) decomposition of a complex square matrix A is defined as the
representation,

A=B+C, B=B’, C=-C’ ... (28)

The matrices B and C, called the real and imaginary parts of A, respectively are uniquely determined
by the equalities

1 1
B:E(A+A“’), C :E(A—A").
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The usefulness of the Toeplitz decomposition is related to the fact that it is respected by s-unitary
similarity transformations in the following sense: for a s-unitary matrix U , the matrices U’BU and U°CU
are the real and imaginary parts of U’AU respectively; in addition, under the transformation with the
matrixU , all the three matrices A, B and C preserve their s-eigen values.

The representation  A=S+K ... (29)
of a matrix A, where

1 1
S:E(A+As)and K:E(A—AS) ... (30)

are a s-symmetric and a s-skew symmetric matrices, called the s-symmetric and s-skew symmetric parts of
A, respectively, will be referred to as its SSSSS (meaning s-Symmetric-s-Skew Symmetric) decomposition.
Decomposition (29), (30) is the counterpart of the Toeplitz decomposition for the theory of s-unitary
congruences.

Decomposition (29), (30) is respected by s-unitary congruence transformation in the sense that for a
s-unitary U, the  matrices U®SU and U°SKU  are the s-symmetric and

s-skew symmetric parts of the matrix U°AU respectively. Moreover the con-s-eigen values of the three
matrices A, S and K are preserved under s-unitary congruence transformations.

Theorem 3

Let A be a con-s-normal matrix with SSSSS decomposition (29), (30). Then the
con-s-eigen values of the matrices S and K are the real and imaginary parts, respectively, of the con-s-eigen
values of A.

Proof

This can readily be seen by inspecting the canonical form of A. If , isalx1 block in the canonical
form, then, obviously, its SSSSS decomposition is = z+0.

If 1, =X, +ly;is a complex con-s-eigen value of A, then the SS SSS decomposition of matrix (27) is

of the form  §;+K|,
where sj{ ’} ... (31)

and K. = 0 ... (32)
Yoy, 0

The conjugate secondary spectrum of matrix (31) is the scalar x; repeated twice, whereas matrix (32)
has the con-s-eigen values iy; and —iy;.
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