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ABSTRACT 

Th. Fauzi constructed special kinds of lacunary quintic g-splines and proved that for functions         the 

methods converges  faster than that investigated by A.K. Verma and for functions        the order of  

approximation is the same as the best order of approximation using quintic g-splines. 

In this paper, we construct quintic lacunary g-splines which are solutions of (0,1,4 )- Interpolation problem 

and obtain their local approximations with functions belonging to          and           . Our methods are of 

lower degree having better convergence property than the earlier investigations. 
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1. Let 

(1.1)  :  0 =           . . .                    = 1  
 

              be a partition of the interval I =       with            ,          . Th. Fauzi     

constructed special kinds of lacunary quintile g-splines and proved that for functions        the methods 

converge faster than that investigated by A.K. Varma      and for functions         the order of 

approximation is the same as the best order of approximation using quintic g-splines.   J. Gyorvari     

considered local methods of degree six of class C    , which settles the problem of (0, 2, 3 ) and ( 0, 2, 4 )-

interpolations offering better approximation than the interpolants investigated by R. S. Misra and first author 

    .  By varying continuity class and nature of the spline functions R.B. Saxena and H.C. Tripathi 

      obtained for functions          in the case of uniform partition the estimates of    
      -   

 
        and 

   
      -   

 
          Where   

 

   and  
 

  each of degree six interpolate the data ( 0, 1 , 3 ) and ( 0, 2, 4 ), q = 0 (1) 

5 choosing suitable initial and boundary conditions respectively. 

 

              In this paper, we construct quintic lacunary g-splines, which are solutions of ( 0, 1, 4 ) – 

Interpolation problems and obtain their local approximations with functions belonging to           and   

        . Our methods are of lower degree having better convergence property than the earlier investigations 

made in [ [1], [2], [4], [5], [6], [7], [8],[9] ]. More over, our results have no counterpart in polynomial 

approximation theory. § 2. Is devoted to the study of quintic spline interpolant ( 0, 1, 4 ) for          .  
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2. Spline Interpolant ( 0, 1, 4 ) for f          . 

Let        be a piecewise polynomial of degree    5. The spline interpolant ( 0, 1, 4 ) for functions   

        is given by :  

 

(2.1)                 =     
     

   

  
       ,         ,         , 

     

     Where     
   

 , s are explicitly given below in terms of the prescribed data {  
   

} , j = 0, 1, 4; K = 0(1)n, viz  

for  k  =  0(1)n-1 ,  

 

(2.2 )     
   

    =    
   

   ,  j  =  0, 1, 4 . 

 

          For     j  =  2, 3, 5,  we have 

 

(2.3 )       
   

  =  
 

 
   [    

   
   

   
] ,  

 

(2.4)      
   

= - 
  

    [(            
   

  
  

  
   

   
    

 

 
       

   
    

   
  

  

  
   

   
  

  

  
     

   
 ]  

 

and 

 

(2.5)          
   

  = 
 

   [             
   

  
  

  
    

   
  

  

  
      

   
  

  

  
     

   
     

         

 The coefficients      
   

,  j = 2, 3, 5 have been so chosen  

That  

               
   

                
   

                                   1 

Thus 

                                                             

Is a unique quintic piecewise polynomial satisfying interpolator conditions (2.2 ). 
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              If  f        [I],  then owing to (2.3) – (2.5) and using Taylor ‘ s expansion, we have 

(2.6)         
   

    
   

         
   

                                           

Where the constant      
   

  are given by :  

 

                 
   

  
 

  
      

   
    

 

 
            

     
 =   1. 

Using  (2.1)  -  (2.6) and a little computation gives : 

 

Theorem 2.1 

 

 Let    f        [I]  and                       (I)  be the unique spline interpolant  (0,  1, 4 ) given in        ( 

2.1 ) -  (2.5 ), 

 

then 

 

(2.7)               ( f-      )         [       
 ]       

 
         (     , h)                 j =0(1) 5;    k=0 (1) n-1 

 

Where the constants      
 

 , s are given by :  

     
  =  

 

  
  ,       

  =  
 

  
  ,         

  =  
  

  
  ,          

  =  
 

 
  ,         

  =     
 = 1    

 

Almost Quartic Spline Interpolant  ( 0, 1, 4 ) *  for      f        (I). 

          

   Almost quartic spline interpolant ( 0, 1, 4 )*  is a piecewise polynomial of degree 4 in each subinterval 

except in the last one, where it is a polynomial of degree  5. In this case, we have 

 

 

 

 

(2.8)     
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                           = 
      

    

  

 
            

                            

 

The coefficients      
    

 are explicitly given in terms of the data. In particular , for K=O(1) n-1, we prescribe  

 

(2.9)        
    

  =      
   

   ,   j  = 0, 1, 4 . 

For  k  = 0(1)n-2 and   j = 2, 3,      
    

   are given by  

 

(2.10)        
    

 = 
 

    [ (     -    -    
  - 

  

  
   

   
 ) - 

 

 
 (    

  -   
  - 

  

  
   

   
 ) ] 

and 

  

(2.11)     
    

 = - 
  

    [ (     -    -    
  - 

  

  
   

   
 ) - 

 

 
 (    

  -   
  - 

  

  
   

   
 ) ] 

 

For   k=n-1  and   j=2, 3  and    5,  we have  

(2.12)            
    

   =  
 

 
 (  

   
 -      

   
 ) 

 

(2.13)          
    

   =  -  
  

    [ (   -      -      
  - 

  

  
     

   
 ) - 

 

 
 (  

  -     
  - 

  

  
     

   
 ) + 

  

  
        

    
   ]    

 

and   

 

(2.14)        
    

 = - 
 

  
 [ (   -      -      

  - 
  

  
        

    
 - 

  

  
       

   
 -   

  

  
     

    
   ]     

 

                 (2.10) and (2.11) are obtained from the condition. 
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(2.15)         
          [I] ,  

 

While (2.12)-(2.14) are determined from conditions (2.9) for  k  =   n-1 in  (2.8). 

 

 Analogous to (2.6) for         [I] , one can establish  

 

(2.16)             
    

  -      
   

              
    

          (     , h) ,  

 

Where the constants       
    

    are given by  

 

         
    

   
 

 
                               

                             
                      k=0(1)n-2 

    
    

  
 

 
                                

  

  
                               

                    k=n-1 

 

Finally, similar to theorem 2.1 , we have  

 

Theorem  2.2 

                Let      f        [I]  and       
   be the unique almost quartic spline interpolant (0, 1, 4 )* , given by 

(2.8) , then 

(2.17)        

            
            

               
    

                 

 

Where the constants      
    

  are given by :      

     
    

     
    

     
    

     
    

     
    

 

k=0(1)n-2  

 
       1   

 
 2   1 

K=n-1   

   
 

   

   
 

  

 
 

  

  
   1 
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