Lacunary Interpolation By g-Splines

R. Srivastava
Department Of Mathmathics \& Astronomy Lucknow University, Lucknow (India)
Email: rekhasrivastava4796@gmail.com

Abstract

Th. Fauzi constructed special kinds of lacunary quintic g-splines and proved that for functions $f \in C^{(4)}$ the methods converges faster than that investigated by A.K. Verma and for functions $f \in C^{(5)}$ the order of approximation is the same as the best order of approximation using quintic g -splines.

In this paper, we construct quintic lacunary g-splines which are solutions of ($0,1,4$)- Interpolation problem and obtain their local approximations with functions belonging to $C^{(4)}(I)$ and $C^{(5)}(I)$. Our methods are of lower degree having better convergence property than the earlier investigations.

KEYWORDS - g- spline, lacunary interpolation piecewise polynomial, Taylor's expansion, Explicit form.

1. Let
(1.1) $\Delta: 0=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=1$
be a partition of the interval $\mathrm{I}=[0,1]$ with $X_{k+1}-x_{k}=h_{k}, k=o(1) n-1$. Th. Fauzi [3] constructed special kinds of lacunary quintile g-splines and proved that for functions $f \in C^{(4)}$ the methods converge faster than that investigated by A.K. Varma [1] and for functions $f \in C^{(5)}$ the order of approximation is the same as the best order of approximation using quintic g-splines. J. Gyorvari [4] considered local methods of degree six of class C[I], which settles the problem of $(0,2,3)$ and ($0,2,4$)interpolations offering better approximation than the interpolants investigated by R. S. Misra and first author [2] . By varying continuity class and nature of the spline functions R.B. Saxena and H.C. Tripathi $[5,6]$ obtained for functions $f \in C^{(6)}$ in the case of uniform partition the estimates of $\left|\tilde{s}^{(q)}-\tilde{f}^{(q)}\right|$ and $\left|\tilde{s}^{(q)}-\tilde{f}^{(q)}\right| \quad$ Where \tilde{s}_{Δ} and \hat{s}_{Δ} each of degree six interpolate the data $(0,1,3)$ and $(0,2,4), \mathrm{q}=0$ (1) 5 choosing suitable initial and boundary conditions respectively.

In this paper, we construct quintic lacunary g -splines, which are solutions of ($0,1,4$) Interpolation problems and obtain their local approximations with functions belonging to $C^{(4)}(I)$ and $C^{(5)}(I)$. Our methods are of lower degree having better convergence property than the earlier investigations made in [[1], [2], [4], [5], [6], [7], [8],[9]]. More over, our results have no counterpart in polynomial approximation theory. § 2 . Is devoted to the study of quintic spline interpolant $(0,1,4)$ for $C^{(4)}(I)$.
2. Spline Interpolant $(0,1,4)$ for $f \in \boldsymbol{C}^{(5)}(I)$.

Let $s_{1, \Delta}$ be a piecewise polynomial of degree $\in 5$. The spline interpolant ($0,1,4$) for functions \in $C^{(5)}(I)$ is given by :
(2.1) $s_{1, \Delta}(x)=s_{1, k}(x)=\sum_{J=0}^{5} \frac{s_{k, j}^{(1)}}{j!}\left(x-x_{k}\right)^{j}, x_{k} \leq x \leq x_{k+1}, k=O(1) n-1$,

Where $s_{k, j}^{(1)}$, s are explicitly given below in terms of the prescribed data $\left\{f_{k}^{(j)}\right\}, \mathrm{j}=0,1,4 ; \mathrm{K}=0(1) \mathrm{n}$, viz for $\mathrm{k}=0(1) \mathrm{n}-1$,
(2.2) $s_{k, j}^{(1)}=f_{k}^{(j)}, \mathrm{j}=0,1,4$.

For $j=2,3,5$, we have
(2.3) $s_{k, 5}^{(1)}=\frac{1}{h}\left[f_{k+1}^{(4)}-f_{k}^{(4)}\right]$,

$$
\begin{equation*}
s_{k, 3}^{(1)}=-\frac{12}{h^{3}}\left[\left(f_{k+1}-f_{k}-\mathrm{h} f_{k}^{(1)}-\frac{h^{4}}{4!} f_{k}^{(4)}\right)-\frac{h}{2}\left(f_{k+1}^{(1)}-f_{k}^{(1)}-\frac{h^{3}}{3!} f_{k}^{(4)}\right)+\frac{h^{s}}{80} s_{k, 5}^{(1)}\right] \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{k, 2}^{(1)}=\frac{2}{h^{2}}\left[f_{k+1}-f_{k}-h f_{k}^{(1)}-\frac{h^{4}}{4!} f_{k}^{(4)}-\frac{h^{3}}{3!} s_{k, 3}^{(1)}-\frac{h^{5}}{5!} s_{k, 5}^{(1)}\right] \tag{2.5}
\end{equation*}
$$

The coefficients $s_{k, j}^{(1)}, \mathrm{j}=2,3,5$ have been so chosen
That

$$
D_{L}^{(p)} s_{1, k}\left(x_{k+1}\right)=D_{R}^{(p)} S_{1, k+1}\left(x_{k+1}\right), \mathrm{p}=0,1,4 ; \mathrm{k}=0(1) \mathrm{n}-1
$$

Thus

$$
s_{1, \Delta} \in C^{(0.1,4)}[\mathrm{I}]=\left\{\mathrm{f}: f^{(p)} \in \mathrm{C}(\mathrm{I}), \mathrm{p}=0,1,4\right\} .
$$

Is a unique quintic piecewise polynomial satisfying interpolator conditions (2.2).

If $\mathrm{f} \in \mathrm{C}^{(5)}[\mathrm{I}], \quad$ then owing to (2.3) - (2.5) and using Taylor ' s expansion, we have

$$
\begin{equation*}
\left|s_{k, j}^{(1)}-f_{k}^{(j)}\right| \leq C_{k, j}^{(1)} h^{5-j} \omega\left(f^{(5)} ; \mathrm{h}\right), \mathrm{j}=2,3,5 ; \mathrm{k}=0(1) \mathrm{n}-1 \tag{2.6}
\end{equation*}
$$

Where the constant $C_{k, j}^{(1)}$ are given by :

$$
C_{k, 2}^{(1)}=\frac{1}{10}, C_{k, 3}^{(1)}=\frac{1}{4} \text { and } C_{k, 5}^{(1)}=1 .
$$

Using (2.1) - (2.6) and a little computation gives :

Theorem 2.1

Let $\mathrm{f} \in C^{(5)}[\mathrm{I}]$ and $s_{1, \Delta} \in C^{(0.1,4)}$ (I) be the unique spline interpolant $(0,1,4)$ given in 2.1) - (2.5),
then

$$
\begin{equation*}
\left\|D^{(j)}\left(\mathrm{f}-S_{1, \Delta}\right)\right\| L_{\infty}\left[X_{k}, x_{k_{+1}}\right] \leq c_{1, k}^{j} h^{5-j} \omega\left(f^{(5)}, \mathrm{h}\right) \quad \mathrm{j}=0(1) 5 ; \quad \mathrm{k}=0(1) \mathrm{n}-1 \tag{2.7}
\end{equation*}
$$

Where the constants $c_{1, k}^{j}$, s are given by :
$c_{1, k}^{0}=\frac{1}{10}, \quad c_{1, k}^{1}=\frac{4}{15}, \quad c_{1, k}^{2}=\frac{31}{60}, \quad c_{1, k}^{3}=\frac{3}{4}, \quad c_{1, k}^{4}=c_{1, k}^{5}=1$

Almost Quartic Spline Interpolant $(0,1,4) *$ for $\mathrm{f} \in C^{(4)}(\mathrm{I})$.

Almost quartic spline interpolant ($0,1,4)^{*}$ is a piecewise polynomial of degree 4 in each subinterval except in the last one, where it is a polynomial of degree 5 . In this case, we have

$$
\begin{aligned}
S_{1, \Delta}^{*}(x) & =S_{1, k}^{*}(x)=\sum_{j=0}^{4} \frac{S_{k, j}^{*(1)}}{j!}\left(x-x_{k}\right)^{j}, \quad x_{k} \leq x \leq x_{k+1}, \quad k=0(1) n-2 \\
& =\sum_{j=0}^{5} \frac{S_{n-1, j}^{*(1)}}{j!}\left(x-x_{n-1}\right)^{j}, x_{n-1} \leq x \leq x_{n} \quad, k=n-1
\end{aligned}
$$

The coefficients $S_{k, j}^{*(1)}$ are explicitly given in terms of the data. In particular, for $\mathrm{K}=\mathrm{O}(1) \mathrm{n}-1$, we prescribe
(2.9) $S_{k, j}^{*(1)}=f_{k}^{(j)}, \mathrm{j}=0,1,4$.

For $\mathrm{k}=0(1) \mathrm{n}-2$ and $\mathrm{j}=2,3, S_{k, j}^{*(1)}$ are given by

$$
\begin{equation*}
S_{k, 2}^{*(1)}=\frac{6}{h^{2}}\left[\left(f_{k+1}-f_{k}-h f_{k}^{\prime}-\frac{h^{4}}{4!} f_{k}^{(4)}\right)-\frac{h}{3}\left(f_{k+1}^{\prime}-f_{k}^{\prime}-\frac{h^{3}}{3!} f_{k}^{(4)}\right)\right] \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{k, 3}^{*(1)}=-\frac{12}{h^{3}}\left[\left(f_{k+1}-f_{k}-h f_{k}^{\prime}-\frac{h^{4}}{4!} f_{k}^{(4)}\right)-\frac{h}{2}\left(f_{k+1}^{\prime}-f_{k}^{\prime}-\frac{h^{3}}{3!} f_{k}^{(4)}\right)\right] \tag{2.11}
\end{equation*}
$$

For $\mathrm{k}=\mathrm{n}-1$ and $\mathrm{j}=2,3$ and 5 , we have

$$
\begin{equation*}
S_{n-1,5}^{*(1)}=\frac{1}{h}\left(f_{n}^{(4)}-f_{n-1}^{(4)}\right) \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
S_{n-1,3}^{*(1)}=-\frac{12}{h^{3}}\left[\left(f_{\mathrm{n}}-f_{\mathrm{n}-1}-h f_{\mathrm{n}-1}^{\prime}-\frac{h^{4}}{4!} f_{\mathrm{n}-1}^{(4)}\right)-\frac{h}{2}\left(f_{\mathrm{n}}^{\prime}-f_{\mathrm{n}-1}^{\prime}-\frac{h^{3}}{3!} f_{\mathrm{n}-1}^{(4)}\right)+\frac{h^{5}}{80} S_{n-1,5}^{*(1)}\right] \tag{2.13}
\end{equation*}
$$

and
(2.14) $S_{n-1,2}^{*(1)}=-\frac{2}{h^{2}}\left[\left(f_{\mathrm{n}}-f_{\mathrm{n}-1}-h f_{\mathrm{n}-1}^{\prime}-\frac{h^{3}}{3!} S_{n-1,3}^{*(1)}-\frac{h^{4}}{4!} f_{\mathrm{n}-1}^{(4)}-\frac{h^{5}}{5!} S_{n-1}^{*(1)}\right]\right.$
(2.10) and (2.11) are obtained from the condition.

```
S *,\Delta \in C (1) [I],
```

While (2.12)-(2.14) are determined from conditions (2.9) for $\mathrm{k}=\mathrm{n}-1$ in (2.8).

Analogous to (2.6) for $\in C^{(4)}[I]$, one can establish

$$
\begin{equation*}
\left|S_{k, j}^{*(1)}-f_{k}^{(j)}\right| \leq C_{k, j}^{*(1)} h^{4-j} \omega\left(f^{(4)}, \mathrm{h}\right) \tag{2.16}
\end{equation*}
$$

Where the constants $C_{k, j}^{*(1)}$ are given by

$$
\begin{array}{ccc}
C_{k, j}^{*(1)}= \begin{cases}\frac{1}{3}, & j=2 \\
1, & j=3\end{cases} & \mathrm{k}=0(1) \mathrm{n}-2 \\
C_{k, j}^{*(1)}=\left\{\begin{array}{l}
\frac{2}{3}, \\
\frac{17}{10},
\end{array} \begin{array}{l}
j=2 \\
j=3
\end{array}\right. & \mathrm{k}=\mathrm{n}-1
\end{array}
$$

Finally, similar to theorem 2.1, we have

Theorem 2.2

Let $\mathrm{f} \in C^{(4)}[\mathrm{I}]$ and $S_{1, \Delta}^{*}$ be the unique almost quartic spline interpolant $(0,1,4)^{*}$, given by (2.8) , then
(2.17)
$\left\|D^{(J)}\left(f-S_{1, \Delta}^{*}\right)\right\| L_{\infty}\left[x_{k}, x_{k+1}\right] \leq C_{1, k}^{*(j)} h^{4-j} \omega\left(f^{(4)}, h\right)$,

Where the constants $C_{1, k}^{*(j)}$ are given by :

	$C_{1, k}^{*(0)}$	$C_{1, k}^{*(1)}$	$C_{1, k}^{*(2)}$	$C_{1, k}^{*^{(3)}}$	$C_{1, k}^{*^{(4)}}$
$\mathrm{k}=0(1) \mathrm{n}-2$	$\overline{\mathbf{8}}$	1	$\frac{\mathbf{1 1}}{\mathbf{6}}$	2	1
$\mathrm{~K}=\mathrm{n}-1$	$\frac{\mathbf{7 7}}{\mathbf{1 2 0}}$	$\frac{\mathbf{1 9 7}}{\mathbf{1 2 0}}$	$\frac{\mathbf{1 4}}{\mathbf{5}}$	$\frac{\mathbf{5 3}}{\mathbf{2 0}}$	1

Acknowledgements - The Author is thankful to Prof. K.K. Mathur for the valuable suggestions of this paper.

$\underline{\text { References }}$

(1) A.K. VARMA : Lacunary interpolation by splines-II Acta Math. Acad. Sci. Hungar., 31(1978), pp. 193-203.
(2) R. S. MISRA \& K.K. MATHUR : Lacunary interpolation by splines ($0 ; 0,2,3$) and ($0 ; 0,2,4$) cases, Acta Math. Acad. Sci. Hungar, 36 (3-4) (1980), pp. 251-260.
(3) Th. FAWZY : (0, 1, 3) Lacunary interpolation by G-splines, Annales Univ. Sci., Budapest, Section Maths. XXXIX (1986), pp.63-67.
(4) J. GYORVARI : Lacunary interpolation spline functionen, Acta Math. Acad. Sci. Hungar, 42(1-2) (1983), pp. 25-33.
(5) R.B. SAXENA \& H.C. TRIPATHI : $(0,2,3)$ and $(0,1,3)$ - interpolation through splines, Acta Math. Hungar., 50(1-2) (1987), pp. 63-69.
(6) R.B. SAXENA \& H.C. TRIPATHI : $(0,2,3)$ and $(0,1,3)$ - interpolation by six degree splines, Jour. Of computational and applied Maths., 18 (1987), pp. 395-101.
(7) Abbas Y. Albayati, Rostam K.S., Faraidun K. Hamasalh: Consturction of Lacunary Sixtic spline function Interpolation and their Applications. Mosul University, J. Edu. And Sci., 23(3)(2010).
(8) F. Lang and X. Xu: "A new cubic B-spline method for linear fifth order boundary value problems". Journal of Applied Mathematics and computing, vol. 36, no. 1-2, pp-110-116, 2011.
(9) Ambrish Kumar Pandey, Q S Ahmad, Kulbhushan Singh : Lacunary Interpolation (0, 2; 3) problem and some comparison from Quartic splines: American journal of Applied Mathematics and statistics 2013, 1(6), pp-117-120.

