
[Volume 1 issue 1 Feb 2013]
Page No.25-37 www.ijmcr.in [International Journal Of Mathematics And Computer Research]

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|20-24 | 25

A New Distributed Accountability and Auditability for Data
Storage in Cloud Computing

1Madhuri . C, 2A.KrishnaChaitanya

1M.Tech (C.S.E),VCE, Hyderabad
2Associate Professor, I.T Dept ,VCE , Hyderabad

Abstract: Cloud computing presents a new
way of using and delivering model for IT
over internet to users by providing
dynamic scalability and virtualized
resources where users are hidden from
actual processing and hosting their
services in cloud. In cloud often data is
outsourced, leading to a number of issues
related to accountability and authentication
by the cloud service provider (CSP) and
make data usage be transparent and
tractable to the users. To provide users to
widely adopt the cloud without the threat

of losing their important data In this paper,
we propose that along with accountability,
ensure integrity as per new Cloud
Information Accountability and
Auditability (CIAA) framework of
outsourced data in cloud, and more secure
than to existing system.

Index Terms: -- cloud computing,
accountability, cloud service provider ,
auditability , outsourced data storage.

1 INTRODUCTION

Cloud computing is a promising

business model to add-on the current use
and delivery of IT services model based on
the Internet, by providing for dynamically
scalable with virtualized resources as a
service over the Internet. There is more
number of distinct commercial and
individual cloud computing services, such
as Amazon, Google, Microsoft, Yahoo,
and Sales force [1].Details of these
services are abstracted from the users who
no longer need to be experts of technology
infrastructure. Moreover, users may not
aware of which machines is actually
processing and hosting their data. While
accessing the benefits of this new
technology, users also worry about losing
control of their own data.

 These lacks of control over the data
leading to a number of issues related to
accountability and auditability, including
the handling of personally identifiable
information and audit the data. By users’
concerns, we provide an effective
mechanism for users to monitor the usage

data in the cloud. To ensure users data
according to conventional environments
access control approach, developed for
closed domains such as the databases and
operating systems, or by using a
centralized server in distributed
environments, are not applicable, due to
the following features characterizing cloud
environments. 1) Data handling can be
outsourced by the cloud service provider
(CSP) and to other entities in the cloud to
allot the tasks to others, and so on. 2) The
entities are allowed to go in and out of the
cloud in a flexible manner. As a result,
data handling in the cloud goes through a
complex and dynamic hierarchical service
chain, which does not exist in conventional
environments.

To overcome the above problems,
recently Yang tang et al. [2] proposed a
FADE, a secure overlay cloud storage
system that achieves fine-grained, policy-
based access control on the user’s data and
assured file deletion. It also relates
outsourced data files with file access
policies and assuredly deletes files to make
them unrecoverable to anyone upon

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|25-37 | 26

revocations of file access policies.
However, policy based access control is
week in third cloud storage.

Further, they are not considering the
problem of data integrity auditability,
which is the one of important security
requirement for cloud data storage.

To address Accountability and
Auditability of outsourced data in cloud.
we propose a new Cloud Information
Accountability and Auditability (CIAA)
framework based on CIA[3] in this paper .
One of the main innovative features of the
CIAA framework lies in its ability of
maintaining lightweight and powerful
Accountability and Auditability that
combines aspects of access control, usage
control, authentication and spot checking.
By means of the CIAA, data owners can
track not only whether or not the service-
level agreements are being achieved but
also implement access and usage control
rules as required. Associated with the
accountability feature, we also develop
auditability mechanism to verify the
integrity of data in cloud. In this audit
process, the verifier periodically
challenges the cloud server for integrity of
data. The design of the CIAA framework
presents significant challenges, including
uniquely identifying CSPs, ensuring the
reliability of the log, adaptability of a
highly decentralized infrastructure, etc.
Our basic approach toward addressing
these issues is to control and extend the
programmable capability of JAR (Java
ARchives) files to automatically log the
usage of the users’ data by any entity in
the cloud. The users will send their data
along with any policies such as access
control policies and logging policies that
they want to implement with this JAR
files, by cloud service providers. Any
access to the data will trigger an automated
and authenticated logging mechanism
local to the JARs. We refer to this type of
enforcement as “tight binding” since the
policies and the logging mechanism travel
with the data this strong binding exists

even when copies of the JARs are created;
thus, the user will have control over his
data at any location. Such decentralized
logging mechanism meets the dynamic
nature of the cloud but also imposes
challenges on ensuring the integrity of the
logging. To cope up with this issue, we
provide the JARs with a central point of
contact which forms a link between log
files and the user. It records the error
correction information sent by the JARs,
which allows it to monitor the loss of any
logs from any of the JARs. Moreover, if a
JAR is not able to contact its central point,
any access to its enclosed data will be
denied. Currently, we focus on image files
since images represent a very common
content type for end users and
organizations (as is proven by the
popularity of Flickr et al[4]) and are
increasingly hosted in the cloud as part of
the storage services offered by the utility
computing paradigm featured by cloud
computing. Further, images often reveal
social and personal habits of users, or used
for archiving important files from
organizations. In addition, our approach
can handle personal identifiable
information provided they are stored as
image files (they contain an image of any
textual content, for example, the SSN
stored as a .jpg file).

We tested our CIAA framework in
a cloud test bed, the Emu lab test bed[4]
with Eucalyptus as middleware[5] Our
experiments demonstrate the effectiveness
scalability and granularity of our approach.
In addition, we also provide a detailed
security analysis and discuss the reliability
and potency of our architecture in the face
of various nontrivial attacks, launched by
malicious users or due to compromised
Java Running Environment (JRE).

The rest of the paper is organized
as follows: Section 2 discusses related
work. Section 3 lays out our problem
statement. Section 4 presents our proposed
Cloud Information Accountability
framework, and Sections 5 and 6 descriaa

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|25-37 | 27

provide the detailed algorithms for
automated logging mechanism and
auditing approaches, respectively. Section
7 presents a security analysis of our
framework, followed by an experimental
study in Section 8. Finally, Section 9
concludes the paper and outlines future
research directions.

2. RELATED WORK

Here, we first review the related

works addressing the privacy and security
issues in the cloud. Then, we discuss about
adopting the similar techniques as our
approach but serve for different purposes.

The Cryptographic protection on
outsourced storage, recent studies
proposed to protect outsourced storage via
cryptographic techniques. Plutus [7] is a
cryptographic storage system, which
allows secure file sharing over untrusted
file servers. Ateniese et al. [8] and Wang
et al. [10] proposed an auditing system that
verifies the integrity of outsourced data.
Wang et al. [12] proposed a secure
outsourced data access mechanism that
supports changes in user access rights and
outsourced data. However, all the above
systems require new protocol support on
the cloud infrastructure, and such
additional functionalities may make
deployment more challenging.

Next, The Secure solutions that are
compatible with existing public cloud
storage services have been proposed. Yun
et al. [13] proposed a cryptographic file
system that achieves the privacy and
integrity guarantees for outsourced data
using a universal-hash-based MAC tree.
This prototype is a system that can interact
with an untrusted storage server via a
modified file system. Jungle Disk et al.
[14] protect the privacy of outsourced data,
and their implementation use Amazon S3
[1] as the storage backend service. For
these we have Cumulus, focuses on
making effective use of storage space
while providing essential encryption on

outsourced data, but such systems do not
consider file assured deletion and
auditability in their designs.

Access control is an One approach
to apply outsourced data is by attribute-
based encryption, which associates fine-
grained attributes with data. ABE is first
introduced in [27], in which attributes are
associated with encrypted data. Goyal et
al. [15] extended the idea to key-policy
ABE, in which attributes are associated
with private keys, and encrypted data can
be decrypted only when a threshold of
attributes are satisfied. Pirretti et al. [26]
implement ABE and conduct empirical
studies, and also point out.

We ensure ABE and conduct
empirical studies, and also specified this
access control. Nair et al. [17] have also
considered a similar opinion on ABE
algorithm, and also he seek to implement a
fine-grained access control of files based
on identity-based public key cryptography.
Policy-based deletion follows the similar
notion of ABE, in which data can be
accessed only if the subsequent attributes
(i.e., atomic policies in our case) are
satisfied. However, policy-based deletion
focuses on how to delete data, while ABE
focuses on how to access data based on
attributes. A major feature of ABE is of
users concern, decryption keys of the
associated attributes so that they can
access files that satisfy the attributes, and
hence accessible studies of ABE seek to
guarantee that no two users will collide if
they are tied with different sets of
attributes. But in this policy-based
deletion, since each policy is possessed by
multiple users, to revoke a policy the
centralized administrator to manage the
revocation is required. Boldyreva et al. [8]
combine ABE with attribute revocation,
and both of the studies need the use of
some centralized key server to manage the
attributes and the corresponding keys (i.e.,
policy-based control keys in our case). In
FADE, each policy is associated with two
keys. One is the access key, which is

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|25-37 | 28

issued to users, and another is the control
key, which is maintained by the key
server. Both Access and control keys are
required to decrypt a file. Thus, the main
focus of their work is to evaluate the
feasibility of our system via practical
implementation.

In Assured deletion, we discuss
about time-based deletion, there are
several related systems, Keypad [20]
protects data in theft-prone devices (e.g.,
laptops, USB sticks) by encrypting such
data and maintaining keys in independent,
centralized key servers, similar to FADE
[2].In assured deletion, it deletes all data of
a protected device upon requests of
deletion, and does not consider fine-
grained deletion as in FADE. Nasuni
supported assured deletion in backup
snapshots in March 2011 [16]. However,
there is no formal study about their
implementation methodologies and
performance evaluation.
 To attain such security goals,
FADE is built upon a set of cryptographic
key operations that are self-maintained by
a quorum of key managers that are
regulated by third-party cloud provider and
works effortlessly on today’s cloud storage
services.it doesn’t focuses on integrity
which is important for security in cloud.

3. PROBLEM STATEMENT

3.1 System Model
We represent network architecture

for cloud storage service architecture is
illustrated in Fig. 1. Three different
network entities used in architecture are
defined as follows

User: an entity, who has data to be
stored in the cloud and relies on the cloud
storage and computation, can be either
enterprise or individual customers.

Cloud Server (CS): an entity,
which is managed by cloud service
provider (CSP) to provide data storage
service and has main storage space and
computation resources

Third-Party Auditor: an optional
TPA, who has knowledge and capabilities
that users may not have, is trusted to assess
and expose risk of cloud storage services
on behalf of the users upon request.

Fig.1. The FADE system

architecture

In cloud data storage, a user stores

his data through a CSP into a set of cloud
servers, which are running in a Fig. 1.
Cloud storage service architecture in
which data stored in simultaneous,
cooperated, and distributed manner. Data
redundancy can be employed with a
technique of erasure-correcting code to
further tolerate errors or server crash as
user’s data grow in size and importance,
later for application purposes, the user
interacts with the cloud servers via CSP to
access or retrieve his desired data. In some
cases, the user may need to perform block
level operations on his data. The most
common forms of these operations are that
we are considering a block of data stored
is to be update, delete, insert, and append.
As users no longer possess their data
locally, it is of critical point to ensure users

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|25-37 | 29

that their data are being accurately stored
and maintained. That is, users should be
equipped with security means so that they
can make continuous accurate assurance
(to enforce cloud storage service-level
agreement) of their stored data even
without the availability of local copies. In
case if those users do not have time,
feasibility, they can delegate the data
auditing tasks to any optional trusted TPA
of their respective choices. However, to
securely establish such a TPA, any
possible leakage of user’s outsourced data
toward TPA through the Auditing protocol
should be prohibited.

In our model, we assume that the
point-to-point communication channels
between each cloud server and the user is
authentic and reliable, which can be
achieved actually with little overhead.

3.2 Adversary Model
From user’s point of view, the adversary
model has to capture all kinds of threats
toward his cloud data integrity. Because in
cloud data does not reside at local site but
at CSP’s address domain, these threats can
arrive in two different sources: internal
and external attacks. For internal attacks, a
CSP can be self-interested, untrusted, and
probably malicious. data that is desired
cannot be moved or is rarely accessed to a
lower tier of storage than agreed for
monetary reasons, but it may also attempt
to hide a data loss incident due to
management errors, Byzantine failures,
and so on.
For external attacks, data integrity threats
may come from outsiders who are beyond
the control domain of CSP, for example,
the economically motivated attackers.
They may compromise a number of cloud
data storage servers in different time
intervals and subsequently be able to
modify or delete users’ data may be
undetected by CSP. Therefore, its
adversary is in our model having the
capabilities, which captures both external
and internal threats toward the cloud data

integrity. Specifically the adversary is
concerned in continuously corrupting the
user’s data files stored on individual
servers. Once a server is comprised, an
adversary can pollute the original data
files.
By modifying or introducing its own fake
data to prevent the original data from
being retrieved by the user. This
corresponds to the threats from external
attacks. In the worst case scenario, the
adversary can cooperate with all the
storage servers so that he can intentionally
modify the data files as long as they are
internally consistent. In fact, this is
equivalent to internal attack where all
servers are assumed collision
simultaneously from the early stages of
application or service deployment to hide a
data loss or corruption incident.

3.3 Design Goals
To ensure the Integrity and availability for
cloud data storage under the
aforementioned adversary model, we aim
to design efficient mechanisms for
dynamic data verification and operation
and achieve the following goals:
1. Auditability: to ensure users that their
data are indeed stored appropriately and
kept integral all the time in the cloud.
2.Accountability: against Byzantine
failures, malicious data modification and
server colluding attacks, i.e., minimizing
the effect brought by data errors or server
failures.

 3.4. Preliminaries and notations

• D - the data file to be stored in
cloud, we assume that D can be
denoted as matrix of ‘m’ equal sized
data blocks, each consisting of ‘l’
data blocks, these all data blocks
belongs Galois Field GF (2w) where
w=8 or 16.

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|25-37 | 30

• fkey(.)- pseudo Random Function
(PRF) indexed on some key, which
is defined as
 f : {0,1}* ×key-GF (2w).

• πkey – pseudo Random Permutation
(PRP) indexed under key, which is
defined as
π : {0,1}log2(l) × key –{0,1}log2(l) .

 4. Proposed Protocol
To ensure accountability and

auditability of data storage in cloud
computing, we propose a new CIAA
framework adopted from CIA [3]. It is
designed based on access control, usage
control, authentication and spot
checking.
Our scheme consists of two phases:
1) Accountability 2) Auditability

4.1 Accountability
In this section, we explain

automated logging mechanism [3] and then
present techniques. It contains two
methods: a) Logger Structure b) Log
record Generation

a) The Logger Structure

A logger section is a nested Java
JAR file, which stores a user’s data and
corresponding log files. As shown in Fig.
2, our proposed JAR file consists of one
outer JAR nested with one or more inner
JARs. The main task of the outer JAR file
is to handle validation of entities which
want to access the data stored in the JAR
file. In our framework, the user may not
aware of exact CSPs that handle the data.
Hence, authentication is specified
according to the server’s functionality
rather than the server’s URL or identity.
For example, a policy may state that Server
X is allowed to download the data if data is
in storage server. As the outer JAR file
may also have the access control
functionality to implement the users’
requirements, specified as Java policies, on

data usage. A Java policy specifies
permissions that are available for a
specified piece of code in a Java
application environment. The permissions
are expressed in the Java policies are of
File System Permissions. However, the
user can specify the permissions in user-
centric terms as opposed to the usual code-
centric security accessible by Java, using
Java Authentication and Authorization
methods. Further, the outer JAR is also in
charge of selecting the right inner JAR
according to the users’ identity who
requested the data.

Example1: Suppose that users’
photographs are classified into three
categories according to the locations where
actually the photos were taken. The three
groups of photos are stored in three inner
JAR J1, J2, and J3, correspondingly,
related with different access control
policies. If some entities are allowed to
access only one group of the photos, say
J1, the outer JAR will choose their
respective inner JAR to the entity based on
the policy evaluation result. Each inner
JAR contains the encrypted data, class files
to support log files retrieved and display
enclosed data in an appropriate format, and
a log file for every data encrypted item.
We support two options[3]:

Pure Log: Its task is to record each
access to the data. The log files are used
for pure auditing cause.
Access Log: It has two functions:
logging actions and enforcing access
control. In case an access request is
denied, the JAR will record the time of
request when it is made. If the access
request is granted, the JAR will also
record the access information along the
period of time for which the access is
allocated.

The two kinds of logging modules
allow the user to implement definite access
conditions either proactively (in case of
Access Logs) or reactively (in case of Pure
Logs). For example, services like billing

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|25-37 | 31

may need to use Pure Logs. The Access
Logs will be needed for services which
require enforcing service-level agreements
such as limited visibility to some sensitive
content at certain location.

To hold these functions, the inner
JAR contains a class file for writing the log
records, and another class file which
corresponds with the log harmonizer, the
encrypted data, the third class file for
displaying or downloading the data (based
on whether it’s a Pure Log, or an Access
Log), and the public key of the IBE key
pair that is required for encrypting the log
records. There are no secret keys that are
ever stored in the system. The outer JAR
may control one or more inner JARs, in
addition to a class file for authenticate the
servers or the users, another class file
finding the right inner JAR, a third class
file checks the JVM’s validity using
oblivious hashing. Further, a class file is
used for running the GUI for user
authentication and the Java Policy.

b) Log Record Generation

Log records are generated by the
logger component. Logging occurs only
when any access to the data in the JAR,
and new log entries are appended in
sequence order creation LR = [r1,rn] each
record ri is encrypted individually and
appended to the log file. Specifically, a log
record takes the following forms: Here, ri
indicates that an entity identified by ID has
performed an action Act on the user’s data
at time T at location Loc correspond to the
checksum of the records preceding the
recently inserted one, concatenated with
the main content of the record itself. The
checksum is computed using a collision-
free hash function [10]. The component
symbol denotes the signature of the record
created by the server. If more than one file
is handled by the same logger, an extra Obj
ID field is added to each record. An
example of log record for a single file is
shown below. Suppose if a cloud service
provider with ID Kronos, located in USA,

read the image in a JAR file (but did not
download it) at 4:52 pm on May 20, 2011.
The corresponding log record is Kronos,
View, 2011-05-29 16:52:30, USA,
45rftT024g, r94gm30130ffi.The location is
converted from the IP address for
improved readability.

To guarantee the integrity of the log
records, we verify the access time,
locations and actions. In particular, the
time of access is determined using the
Network Time Protocol (NTP) [22] to
avoid restraint the correct time by a
malicious entity. The location of the CSP
can be determined by using IP address. The
JAR can perform an IP lookup and use the
series of the IP address to find the most
possible location of the CSP. More
advanced techniques for determining
location can also are used [16] also, if a
trusted time stamp management
infrastructure can be set up or controlled, it
can be used to record the time stamp in the
accountability log [23]. The most critical
part is to record the actions on the users’
data. In the current system, we carry four
types of actions, i.e., view, download,
timed_access, and Location-based access.
For each action, we present a specific
method to correct the record or to
implement it depending on the type of the
logging mechanism, which are elaborated
as follows:
View: The entity (e.g., the cloud service
provider) is read only data but is not
allowed to save a raw copy of logs
anywhere permanently. For this type of
action, the Pure Log will simply write a log
record about the accessing of data, while
the Access Logs will enforce the action
through the enclosed access control module
.It is to remind that the data are encrypted
and stored in the inner JAR. When there is
a view-only access request, the inner JAR
will decrypt the data on the fly and create a
temporary decrypted file. The decrypted
file will then be displayed to the entity
using the Java application viewer in case if
file is displayed to a individual users.

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|25-37 | 32

Further, to prevent from the use of some
screen capture software, the data will be
hidden when the application viewer screen
go out of focus. The content is displayed
using the headless mode in Java on the
command line when it is accessible to a
CSP.
 Download: The entity is allowed to save
a raw copy of the data and the entity does
not have control over that copy, neither to
log records about accessing of that copy. If
Pure Log is adopted, the user’s data will be
directly downloadable in a pure form using
a link. When a user clicks this download
link, the JAR file associated with the data
will decrypt that data and provide that to
the user in raw form. In case of Access
Logs, the entire JAR file is provided to the
use.
Timed_access: This action is combined
with view-only and accessibility and it
indicate that data is available only for a
certain period of time. The Pure log will
just record the access starting time and its
duration, while the Access Log will
enforce that the access is allowed only for
certain period of time. The duration of the
access is allowed to calculate by with the
use of the NTP. To implement the limit on
the duration, the Access Log records the
starting time using the NTP, and uses a
timer to stop the access.
 Location -based_access. In this case, the
Pure Log will record the locations of the
users. The Access Log will verify the
location for each of user’s access. The
access is granted and the data are made
available only to user sited locations
specified by the data owner.

4.2Auditability

Once authentication is verified,
now, we have to audit the integrity of data
stored in cloud with help of third party
auditor (TPA).The third party auditor
(TPA), who has knowledge and
capabilities that cloud users may not
possess and trusted to assess the cloud
storage security service on behalf of the

user upon request. The CSP providing the
cloud data storage based services, for their
own benefits the CS might neglect to keep
or intentionally delete rarely accessed data
files which belong to ordinary cloud users.
Besides, the CS may also decide to hide the
data corruptions caused by server hacks or
Byzantine failures to maintain reputation.
We assume the TPA, who is in the
business of auditing, is reliable and
independent, and thus has no incentive to
collude with either the CS or the users
during the auditing process. The TPA
should be able to efficiently audit the cloud
data storage without local copy of data and
without bringing in additional on-line
burden to cloud users [10].

The verification starts from the TPA
by sending a authenticate challenge to
the cloud storage service provider (CSP),
here it computes the proof of verification
and sends it back to the TPA. After
verifying the proof, the TPA sends the
result to the client. The detailed
descriptions this verification process is
given in protocol [10]

5. SECURITY ANALYSIS

We now study the possible attacks to
our CIAA framework[3]. Our analysis is
based on a semi trusted adversary model by
assuming that a server does not release user
master keys to untrusted parties, while the
attacker may try to learn extra information
from the log files and detect the data
modifications on user files. We suppose
that hackers may have sufficient Java
programming skills to disassemble a JAR
file and prior information about our CIAA
architecture , assume that the JVM is not
corrupted, and how to ensure that our
assumption hold correct.

5.1 Copying Attack

The most instinctive attack is that
the attacker copies entire JAR files. The
attacker may assume that doing so allows
accessing the data in the JAR file without
being noticed by the data owner. However,

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|25-37 | 33

such attack will be detected by our auditing
mechanism. Recall that every JAR file is
required to send log records to the
harmonizer will send the logs to data
owners periodically. If attackers move
copies of JARs to places where the
harmonizer cannot connect, copy files will
immediately go inaccessible. Thus, the
logger component provides more
transparency than Conventional log files
encryption; it make data owner to detect if
attacker has tried to create the copies of a
JAR, and harmonizer make them offline or
inaccessible.

5.2 Disassembling Attack

Another possible attack is to
disassemble the JAR file of the logs and
attempt to remove useful information out
of it or destroy the log records and it’s the
most serious attack to our architecture. The
cryptographic schemes are useful to
preserve the integrity and confidentiality of
the logs. If these JAR files are
disassembled, then attacker is in controls
the public IBE key used for encrypting the
log files, and *.class files so, the attacker
has to depend on learning the private key
or subverting the encryption to read the log
records.

To compromise the confidentiality
of the log files, the attacker may try to
identify which encrypted log records
correspond to his actions by mounting a
chosen plaintext security attacker to gain
some pairs of encrypted log records and
plain texts. However, the adoption of the
Weil Pairing algorithm ensures that the
CIAA framework has both chosen cipher
text security and chosen plaintext security
in the random oracle model [10]. From the
disassembled JAR files, the attackers are
not able to directly view the access control
policies either, since the original source
code is not included in the JAR files. If the
attacker wants to infer access control
policies, the only possible way is through

analyzing the log file and it is very hard to
accomplish. Attackers will not be able to
write fake records to log files without
going undetected, since they will need to
sign with a valid key and the chain of
hashes will not match.

The Reed-Solomon encoding[10]
used to create the redundancy for the log
files, the log harmonizer can easily detect a
corrupted record or log file. Finally, the
attacker ma y tries to modify the Java Class
loader in the JARs is in order to subvert the
class files when they are being loaded. This
attack is prevented by the sealing
techniques offered by Java. Sealing ensures
that all packages within the JAR file come
from the same source code [22].

Even if an attacker can read from it
by disassembling it—he cannot
“reassemble” it with modified packages. In
case the attacker guesses or learns the data
owner’s key from somewhere, all the JAR
files using the same key will be
compromised. Thus, using different IBE
key pairs for different JAR files will be
more secure and prevent such attack.

5.3 Man-in-the-Middle At tack
An attacker may interrupt messages during
the certification of a service provider with
the certificate authority, and reply it in
order to masquerade as a legal service
provider. There are two steps where the
attacker can reply the messages. 1) the
actual service provider has totally
disconnected and at the end of certificate
authority session. But attacks this will not
succeed since the certificate usually has a
time stamp which will become obsolete at
the time of reuse and 2) the actual service
provider is disconnected but the session is
not finished, so the attacker may try to
renegotiate the connection and this attack
will also fail since renegotiation is banned
in the latest version of Open SSL and
cryptographic checks are added.

5.4 Compromised JVM Attack

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|25-37 | 34

An attacker may try to compromise the
JVM, so has to quickly detect and correct
these issues, we discussed in Section 4.2
how to integrate oblivious hashing to
guarantee the correctness of the JRE [24]
OH adds hash code to capture t he
computation on results of each instruction
and computes the oblivious hash value as
the computation proceeds.
These two techniques allow for a quick
detection of errors due to malicious JVM,
therefore mitigating the risk of running
subverted JARs to further strengthen the
solution, one can extend OH usage to
guarantee the correctness of the class files
loaded by the JVM.

 5.5. Security Strength against Data
Corruptions

In our framework, servers are required
to operate only on specified blocks in each
challenge-response protocol execution. We
will show that this “sampling” strategy on
selected blocks instead of all can greatly
reduce the computational overhead on the
CSP, while maintaining high detection
probability for data corruption.

Suppose servers are misbehaving due
to the possible compromise or Byzantine
failure. Then we assume the adversary
modifies the data blocks in z blocks out of
the l rows in the data file. Let c be the
number of different blocks for which the
user asks for checking in a challenge. Let
X is a discrete random variable that is
defined to be the number of blocks chosen
by the user that are matches the blocks
modified by the adversary. So, the
detection probability that at least one of the
blocks picked by the user matches one of
the blocks modified by the adversary is:
PX=1-(l-z/l) c

6. PERFORMANCE ANALYSIS

In this section, we discuss about
settings of the test environment and
performance of our system.

We tested our CIAA framework by
setting up a small cloud, using the Emu lab

test bed [5]. In particular, the test
environment consists of several Open SSL-
enabled servers: one head node which is
the certificate authority, and several
computing nodes. Each of the servers is
installed with Eucalyptus [6]. Eucalyptus is
an open source cloud execution for Linux-
based systems. It is loosely based on
Amazon EC2[26], therefore bringing the
powerful functionalities of Amazon EC2
into the open source domain. We used
Linux-based servers running Fedora 10
OS. Each server has a 64-bit Intel Quad
Core Xeon E5530 processor, 4 GB RAM,
and a 500 GB Hard Drive. Each of the
servers is equipped to run the Open JDK
runtime environment with IcedTea6 1.8.2.

6.1. Experimental Results

In the experiments, we first create a
log file and time to create it and then
measure the overhead in the system. With
respect to time, the overhead can occur at
three points: 1.authentication, 2.encryption
of a log, and 3.merging of the logs. And
also with storage overhead, we observe
that our architecture is very lightweight,
the data to be stored are given by the
actual files and the associated logs then
JAR act as a compressor of the files that it
handles. In particular, as introduced in
Section 3, multiple files can be handled by
the same logger component. To this extent,
we investigate whether a single logger
component, used to handle more than one
file, results in storage overhead.

a) Log Creation Time

Here we are concerned with
finding out the time taken to create a log
file when there are entities continuously
accessing the data, causing continuous
logging. Results are shown in Fig. 5.
It is unexpected to see that the time to
create a log file increases linearly with the
size of the log file. Distinctively, the time
to create a 100 Kb file is about 114.5 ms
while the time to create a 1 MB file
averages at 731ms,as the baseline, one can

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|25-37 | 35

decide the amount of time to be specified
between dumps, making other variables
like space constraints or network traffic
while experimenting.

b) Authentication Time

The other overhead can occur is
during the authentic of a CSP .if
authentication takes long time, it may
become a bottleneck for accessing the
enclosed data and to evaluate this, the head
node issued Open SSL[25] certificates for
the computing nodes .

We evaluate the total time for the
Open SSL authentication to be completed
and checking the certification by
considering one access at the time, we find
that the authentication time averages
around 920ms which proves that not much
overhead is added during this phase. It
checks for each access thereby
performance can be further improved by
caching the certificates.

The time for authenticating an end
user is about the same as we consider only
the actions by the JAR viz., and obtain a
SAML certificate to evaluate it because
both the Open SSL and the SAML
certificates are handled in a same fashion
by the JAR. Then we consider the user
actions (i.e., submitting his username to
the JAR), it averages at 1.2 minutes.

c) Time Taken to Perform Logging

In this experiment measure the average
time taken to grant an access plus the time
to write the corresponding log record and
performance of logging mechanism and
it’s time for granting any access to the data
items in a JAR file includes the time to
evaluate and implement the appropriate
policies and to locate the requested data .

In the experiment, we let multiple
servers continuously access the same data
JAR file for a minute and recorded the
number of log records generated. Each
access is just a read only request and hence
the time for executing the action is
negligible and result, the average time to
log an action is about 10 seconds, which
includes the time taken by a user to double
click the JAR or by a server to run the
script to open the JAR and also measured
the log encryption time which is about 300
ms (per record) and is apparently unrelated
from the log size.

d) Size of the Data JAR Files

Finally, we examine whether each
logger, used to handle more than one file,
results in storage overhead.
 To measure the size of the loggers
(JARs) by varying the number and size of
data items held is tested the increase in
size of the logger containing 10 content
files (i.e., images) which increases as the
file size increases. The size of logger
grows from 3,500 to 4,035 KB when the
size of content items changes from 200 KB
to 1 MB and the size of the logger is
dictated by the size of the largest files it
contains as provided by JAR files

e) Overhead of Integrity Checking

To calculate the time overhead
added by the hash codes, we only measure
the time taken for each hash function and
if time is found to average around 7ms
then number of hash commands varies
based on the size of the code, and it does
not change with the content but with the
number of hash commands stay constant.

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|25-37 | 36

7. CONCLUSION
We propose new Cloud

Information Accountability and
Auditability (CIAA) framework for
ensuring auditing, accountability and
integrity to data stored in cloud. It will be
more transparent and secure than to
existing system. Moreover, one of the
main features of our work is that it enables
the data owner to auditability data that
were made without his knowledge.

REFERENCES

[1]. H. Abu-Libdeh, L. Princehouse, and H.

Weatherspoon, “RACS: A Case for Cloud
Storage Diversity,” Proc. ACM First ACM
Symp.Cloud Computing (SoCC), 2010.

[2]. Y. Tang, P.P.C. Lee, J.C.S. Lui, and R.
Perlman, “FADE: Secure Overlay Cloud
Storage with File Assured Deletion”, IEEE
Trans. On DEPEN DABLE AND SECURE
COMPUTING, VOL. 9, NO. 6, NOVEMBER
/DECEMB ER 2012.

[3]. Smitha S, Anna C. S. “Ensuring Distributed
Accountability for Data Sharing in t he Cloud”
, IEEE TRANSA CTIONS ON DEPEN
DABLE AND SECURE COMPUTING, VOL.
9, NO. 4, JU LY/AUGUST 2012

[4]. Flickr, http://www.flickr.com/, 2012.
[5]. Emulab Network Emulation Testbed,

www.emulab.net, 2012
[6]. Eucalyptus Systems,

http://www.eucalyptus.com/, 2012.
[7]. M. Kallahalla, E. Riedel, R. Swaminathan, Q.

Wang, and K. Fu, “Plutus: Scalable Secure
File Sharing on Untrusted Storage,”
Proc.Second USENIX Conf. File and Storage
Technologies, 2003.

[8]. M. Armbrust, A. Fox, R. Griffith, A.D.
Joseph, R. Katz, A.Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica, and M.Zaharia,
“A View of Cloud Computing.” Comm. ACM,
vol. 53,no. 4, pp. 50-58, Apr. 2010.

[9]. G. Ateniese, R.D. Pietro, L.V. Mancini, and G.
Tsudik, “Scalable and Efficient Provable Data
Possession,” Proc. Fourth Int’l Conf. Security
and Privacy in Comm. (SecureComm), 2008.

[10]. C. Wang, Q. Wang, K. Ren, and W. Lou,
“Privacy-Preserving Public Auditing for
Storage Security in Cloud Computing,”
Proc.IEEE INFOCOM, Mar. 2010.

[11]. J . Bethencourt , A . Sah a i, a nd B.
Waters, “ Ciphertext- Policy At tribute-

Based Encryption,” Proc. I EEE Sy mp.
Security and Privacy, May 2006.

[12]. W. Wang, Z. Li, R. Owens, and B.
Bhargava, “Secure and Efficient Access to
Outsourced Data,” Proc. ACM Workshop
Cloud Comput-ing Security (CCSW),
Nov. 2009

[13]. A. Yun, C. Shi, and Y. Kim , “On
Protecting Integrity and Confidentiality of
Cryptographic File System for Outsourced
Storage,” Proc. ACM Workshop Cloud
Computing Security. (ASIACCS), Apr.
2010.

[14]. P. Gutmann, “Secure Deletion of Data

from Magnetic and Solid-State Memory,”
Proc. Sixth USENIX Security Symp.
Focusing on Applications of
Cryptography, 1996.

[15]. JungleDisk, http://www.jungledisk.com/,
2010.

[16]. V. Goyal, O. Pandey, A. Sahai, and B.
Waters, “Attribute-Based Encryption for
Fine-Grained Access Control of Encrypted
Data,”Proc. 13th ACM Conf. Computer
and Comm. Security (CCS), 2006.

[17]. M. Pirretti, P. Traynor, P. McDaniel,
and B. Waters, “Secure Attribute-Based
Systems,” Proc. 13th ACM Conf.
Computer and Comm. Security (CCS),
2006.

[18]. S. Nair, M.T. Dashti, B. Crispo, and A.S.
Tanenbaum, “A Hybrid PKI-IBC Based
Ephemerizer System,” Int’l Federation for
Informa-tion Processing, vol. 232, pp.
241-252, 2007.

[19]. A. Boldyreva, V. Goyal, and V. Kumar,
“Identity-Based Encryp-tion with Efficient
Revocation,” Proc. 15th ACM Conf.
Computer and Comm. Security (CCS),
2008.

[20]. R. Geambasu, J.P. John, S.D. Gribble, T.
Kohno, and H.M. Levy,

“Keypad: Auditing File System for Mobile
Devices,” Proc. Sixth

Conf. Computer Systems (EuroSys), Apr. 2011.
[21]. Nasuni, “Nasuni Announces New

Snapshot Retention Function-ality in
Nasuni Filer; Enables Fail-Safe File
Deletion in the Cl oud ,” htt p:/ /ww w.
nas u ni. c om /n ew s/ p res s- rel ea se s/
na su ni -an no u nc es - n ew - s na p sh ot
- r et e nt i on - f u nc t i on al it y - i n- na
su n i- f il e r -enables-fail-safe-file-
deletion-in-the-clo ud/, Mar. 2011.

[22]. NTP: The Network Time Protocol,
http://www.ntp.org/, 2012.

1Madhuri . C | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|25-37 | 37

[23]. S. Pearso n and A. Charle sworth,
“Account abil ity as a Way Forward for
Privacy Protection in the Cloud,” Proc.
First Int’l Conf. Cloud Computing, 2009.

[24]. Trusted Java Virtual Machine IBM,
http://www.almaden.ibm.com/cs/projects/j
vm/, 2012.

[25]. OpenSSL, http://www.openssl.org/, 2010.
[26]. Amazon S3, http://aws.amazon.com/s3,

2010.

[27]. S. Kamara and K. Lauter, “Cryptographic

Cloud Storage,” Proc.14th Int’l Conf.
Financial Cryptography and Data
Security, 2010.

[28]. LibAWS++, http://aws.28msec.com/,
2010.

[29]. A.J. Menezes, P.C. van Oorschot, and
S.A. Vanstone, Handbook of Applied
Cryptography. CRC Press, Oct. 1996.

[30].
[31]. B. Schneier, “File Deletion,”

http://www.schneier.com/blog/archives/20
09/09/file_deletion.html, Sept. 2009.

[32]. A. Shamir, “How to Share a Secret,”
Comm. ACM, vol. 22, no. 11,pp. 612-613,
Nov. 1979.

[33]. W. Stallings, Cryptography and
Network Security. Prentice Hall,2006.

