
[Volume 1 issue 1 Feb 2013]
Page No.38-43 www.ijmcr.in [International Journal Of Mathematics And Computer Research]

T. Vishnu Vardhan | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|38-43 | 38

Survey on Bug Prediction Based on Features Selection

T. Vishnu Vardhan Reddy1, N. Sambasiva Rao2, Ch. Srikanth3
1 Vardhaman College of Engineering, Hyderabad, M.Tech Computer Science and Engineering,,

vishnu.talla34@gmail.com

2Vardhaman College of Engineering, Hyderabad, Principal of Vardhaman College of engineering,
snandam@gmail.com

3Vardhaman College of Engineering, Hyderabad,M.Tech Computer Science and Engineering,
srikanthch.tillu43@gmail.com

Abstract: The automated detection of faulty modules
contained by software systems might lead to reduced
development expenses and additional reliable software.
In this effort design and development metrics has been
used as features to predict defects in given software
module using SVM classifier. A rigorous progression of
pre-processing steps were applied to the data preceding
to categorization, including the complementary of in

cooperation classes (faulty or otherwise) and the
elimination of a large numeral of repeating instances.
The Support Vector Machine in this trial yields a
standard accuracy that miles ahead over existing defect
prediction models on previously unseen data.

Keywords: Defect Prediction, Feature Selection, F-
Measure, SVM.

1. Introduction

Data mining techniques from the field of artificial
intelligence now make it probable to forecast
software defects; undesired outputs or personal
property produced by software, from static code
metrics. Views toward the value of using such metrics
for imperfection prediction are as varied within the
software manufacturing community as those toward
the value of static code metrics. However, the
conclusions suggest that such predictors are helpful,
as on the information used in this learn they predict
defective modules with an standard accuracy that is
miles ahead of existing defect prediction models. In
this regard the consequences observed during this
training and testing processes are purely proportional
to the properties of the features such as type and
count of the selected. Hence it indicates the research
scope in the direction of developing scalable feature
extraction utilization models.

Shivkumar Shivaji et al attempted to reducing
features to Improve Code Change Based Bug
Prediction, they attempted to investigate multiple
feature selection techniques that are generally
applicable to classification-based bug prediction
methods. The techniques discard less important
features until optimal classification performance is
reached. The total number of features used for
training is substantially reduced, often to less than

10% of the original. The performance of Na¨ıve
Bayes and Support Vector Machine (SVM) classifiers
when using this technique is characterized on eleven
software projects. Na¨ıve Bayes using feature
selection provides significant improvement in buggy
F-measure (21% improvement) over prior change
classification bug prediction results (by the second
and fourth authors [10]). The SVM’s improvement in
buggy F-measure is 9%. Interestingly, an analysis of
performance for varying numbers of features shows
that strong performance is achieved at even 1% of the
original number of features.

2. Software Quality Models
2.1 Purposes, Usage Scenarios and Requirements
There is a huge amount of work on various forms of
quality models. However, comprehensive overviews
and classifications are scarce. A first, broad
classification of what he called “quality evaluation
models” was proposed by Tian. He distinguishes
between the specificness levels generalized and
product-specific. These classes are further partitioned
along unclear dimensions. For example, he
distinguishes segmented models for different industry
segments from dynamic models that provide quality
trends. Two of the authors built on Tian’s work and
introduced further dimension. Wagner discussed in
the dimensions purpose, quality view, specificness
and measurement where the purposes are
construction, assessment and prediction. This was
further extended by Wagner and Deissenboeck with

mailto:vishnu.talla34@gmail.com�
mailto:snandam@gmail.com�
mailto:srikanthch.tillu43@gmail.com�

T. Vishnu Vardhan | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|38-43 39

the dimensions phase and technique. A thorough
discussion of critique, usage scenarios and
requirements along these dimensions is not provided
in any of these contributions.
An impressive development of quality models has
taken place over the last decades. These efforts have
resulted in many achievements in research and
practice. As an example, take a look at the field of
software reliability engineering that performed a wide
as well as deep investigation of reliability growth
models. In some contexts these models are applied
successfully in practice. The developments in quality
definition models even led to the standardization in
ISO 9126 that is well known and serves as the basis
for many quality management approaches.

However, the whole field of software quality models
is diverse and fuzzy. There are large differences
between many models that are called “quality
models”. Moreover, despite the achievements made,
there are still open problems, especially in the
adoption in practice. Because of this, current quality
models are subject to a variety of points of criticism
that have to be acted on.

We provide a comprehensive definition of a quality
model based on the purpose the model has. Using this
tripartion in definition models, assessment models and
prediction models (DAP), we summarized the existing
critique and collected a unique collection of usage
scenarios of quality models. From this, we derived a
comprehensive set of requirements, again ordered in
terms of the DAP classification, that can be used in
two contexts: (1) evaluation of existing models in a
specific context or (2) further developments and
improvements of software quality models.

2.2. An Empirical Examination of 100 mature
Open Source Projects
Starting with Eric Raymond's ground-breaking work,
"The Cathedral and the Bazaar”, open-source
software (OSS) has commonly been regarded as work
produced by a community of developers. Ghosh's
cooking pot markets, similarly, point to a communal
product development system. Certainly, this is a good
label for some OSS products that have been featured
prominently in the news. For instance, Moon and
Sproull point out that by July 2000, about 350
contributors to LINUX were acknowledged in a credit
list in the source code of the kernel.

However, my goal in this paper is to ask if the
community-based model of product development
holds as a general descriptor of the average OSS
product. I systematically look at the actual number of
developers involved in the production of one hundred
mature OSS products. What I found is more
consistent with the lone developer (or cave) model of
production rather than a community model (with a
few glaring exceptions, of course).

2.3. Extracting Facts from Open Source Software
Open source software systems are becoming ever
more important these days. Many large companies are
investing in open source projects and many of them
are also using such software in their own work.

In this paper we describe a framework called
Columbus with which we are able to calculate the
object oriented metrics validated for fault-proneness
detection from the source code of the well-known
open source web and e-mail suite called Mozilla. We
then compare our results with those presented. One of
our aims was to supplement their work with metrics
obtained from a real-size software system. We also
compare the metrics of the seven most recent versions
of Mozilla (1.0–1.6), which covers over one and a
half years of development, to see how the predicted
fault-proneness of the software system changed
during its development.
The Columbus framework has been further improved
recently with a compiler wrapping technology that
allows us to automatically analyze and extract
information from practically any software system that
compiles with GCC on the GNU/Linux platform (the
idea is applicable as well to other compilers and
operating systems). What is more, we can do this
without modifying any of the source code or make
files. We describe this technique in detail later in this
paper.

This paper makes three key contributions: (1) we
presented a method and toolset with which facts can
be automatically extracted from real-size software; (2)
using the collected facts we calculated object oriented
metrics and supplemented a previous work [1] with
measurements made on the real-world software
Mozilla; and (3) using the calculated metrics we
studied how Mozilla’s predicted fault proneness has
changed over seven versions covering one and a half
years of development.

T. Vishnu Vardhan | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|38-43 40

When checking the seven versions of Mozilla we
found that the predicted fault-proneness of the
software as a whole decreased slightly but we also
found example classes with an increased probability
of fault-proneness.

In the future we plan to validate the object oriented
metrics and hypotheses presented (and here as well)
on Mozilla for fault-proneness detection using the
reported faults which are available from the Bugzilla
database. We also plan to scan Mozilla (and also other
open source systems) regularly for fault-proneness
and make these results publicly available.

2.4. Assessing the Health of Open Source
Communities
The computing world lauds many Free/Libre and
Open Source Software offerings for both their
reliability and features. Successful projects such as
the Apache http Web server and Linux operating
system kernel have made FLOSS a viable option for
many commercial organizations.
While FLOSS code is easy to access, understanding
the communities that build and support the software
can be difficult. Despite accusations from threatened
proprietary vendors, few continue to believe that open
source programmers are all amateur teenaged hackers
working alone in their bedrooms. But neither are they
all part of robust, well-known communities like those
behind Apache and Linux.
If you, as an IT professional, are going to rely on or
recommend FLOSS, or contribute yourself, you
should first research the community of developers,
leaders, and active users behind the software to decide
whether it’s healthy and suitable for your needs.

3. Life cycle and motivation
Understanding a project’s life cycle and its
participants’ motivations is useful for understanding
why a FLOSS community is important to a project’s
success.

The founders’ good ideas expressed in working code
facilitate a successful project’s second phase: a
“creative explosion” in which the product, now
public, develops quickly, gathering features and
capabilities that in turn attract additional developers
and users. What Perl founder Larry Wall calls
“learning in public” can be an exhilarating, if
difficult, time early in project’s life cycle.

Many researchers have examined FLOSS
participants’ motivations, but these studies often
focused on small samples of atypical projects.
• Intellectual engagement;
• Knowledge sharing;
• The product itself; and
• Ideology, reputation, and community obligation.

Although reputation is low on the list, its importance
does rise with the length of participant involvement.
Projects that have an atmosphere of exploration and
intellectual engagement, especially early in their life,
are most likely to attract the active user community
needed for future success. Also important in attracting
good developers is a code base that solves a real need.

Even very successful open source projects often lack
detailed roadmaps, explicit work assignments, or
feature request prioritizations. A key is to ensure the
efficient use of a fixed pool of resources, but FLOSS
projects don’t face such fixed pools, either in the
number of participants or in the amount of time each
one can devote.
Therefore, organizing for fun can be more important
than organizing for efficiency. In fact, duplication of
effort could be a positive sign that the project can
attract resources and is in a position to choose the best
contributions. On the other hand, a formalized system
for prioritizing security issues clearly benefits some
applications. And if the processes are discussed, it’s
important that these discussions regularly end in
action that lets people get back to work rather than in
an exhausted stalemate.
If your assessment leaves you feeling that the
community isn’t right for you, be prepared to consider
alternatives, no matter how attractive the code is.
Trying to change an existing community is likely to
end in frustration and undermine the reasons you
chose FLOSS in the first place. However, while a
rejection of your enthusiastic contributions can seem
dictatorial and rude, it can also demonstrate a
longterm, cohesive vision—a FLOSS community at
its best.

4. Empirical Validation of Object-
Oriented Metrics on Open Source
Software for Fault Prediction

Many researchers have sought to analyze the
connection between object-oriented metrics and code

T. Vishnu Vardhan | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|38-43 41

quality. A summary of the empirical literature was
given by Subramanian and Krishnan. It was written in
Java and consisted of 123 classes and around 34,000
lines of code. First, they examined the correlation
among the metrics and found four highly correlated
subsets. Then, they used univariate analysis to find
out which metrics could detect faults and which could
not. They found that Subramanian and Krishnan
chose a relatively large-commerce application
developed in C++ and Java and collected metrics
from 405 C++ and 301 Java classes. They examined
the effect of the size along with the WMC, CBO, and
DIT values on the faults by using multivariate
regression analysis. Besides validating the usefulness
of metrics, they compared the applicability of the
metrics indifferent languages; thus, they validated
their hypotheses for C++ and Java classes separately.
They concluded that the size was a good predictor in
both languages, but WMC and CBO could be
validated only for C++.

 Figure.1 Changes in the mean value of the metrics
over seven versions of Mozilla.

The main contributions of this paper are the
following:

1. We presented a method and toolset with
which metrics (and also other data) can be
automatically calculated from the C++
source code of real-size software (the toolset
is freely available for academic purposes and
can be downloaded from the homepage of
Front End ART).

2. By processing the Bugzilla database, we
associated the bugs with classes found in the
source code.

3. We employed statistical (logical and linear
regression) and machine learning (decision
tree and neural network) methods to assess
the applicability of the well-known object-

oriented metrics to predict the number of
bugs in classes.

4. Using the calculated metrics, we studied how
Mozilla’s predicted fault-proneness changed
over seven versions covering one and a half
years of development.

 Our main observations are the following:
1. All four assessment methods employed

yielded very similar results.
2. The CBO metric seems to be the best in

predicting the fault-proneness of classes.
3. The LOC metric performed fairly well and,

because it can be easily calculated, it seems
to be suitable for quick fault prediction.
However, for fine-grained analyses, the
multivariate models perform much better
(e.g., in the case of linear regression, theR2
value of LOC was 0.34, while the R2 value
of the multivariate model was 0.43).

4. The correctness of the LCOM metric is good,
but its completeness value is low.

5. The DIT metric is untrustworthy, and NOC
cannot be used at all for fault-proneness
prediction.

6. In Mozilla version 1.2, we noticed significant
changes in the metrics—which we believe
reflects fall in quality—but it slowly restored
in the later versions.

The precision of our models is not yet satisfactory, so
we have to analyze what the reasons are for the most
common errors in the models and examine whether
other metrics can improve them. We will also check
whether multiple models perform better when
combined in some way (e.g., using voting majority).

We are currently performing the same kind of
investigation on other large software systems
(OpenOffice.org and two industrial systems). In the
future, we plan to scan Mozilla (and other open
source systems) regularly for fault proneness and
make these results publicly available for the software
developer community.

4.2 Classifying Software Changes: Clean or Buggy
The goal of change classification is to use a machine
learning classifier to predict bugs in changes. As a
result, related work exists in the area of bug
prediction, as well as algorithms for source code
clustering and for text classification.

T. Vishnu Vardhan | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|38-43 42

4.3 Predicting Buggy and High Risk Modules
There is a rich literature for bug detection and
prediction. Existing work falls into one of three
categories, depending on the goal of the work. The
goal of some work is to identify a problematic module
list by analyzing software quality metrics or a
project’s change history. This identifies those
modules that are most likely to contain latent bugs,
butTSE-0061-0306 5provides no insight into how
many faults may be in each module. Other efforts
address this problem, predicting the bug density of
each module using its software change history. Work
that computes a problematic module list or that
determines a fault density are good for determining
where to focus quality assurance efforts, but do not
provide specific guidance on where, exactly, in the
source code to find the latent bugs. In contrast, efforts
that detect faults by analyzing source code using static
or dynamic analysis techniques can identify specific
kinds of bugs in software, though generally with high
rates of false positives. Common techniques include
type checking, deadlock detection, and pattern
recognition.

Hassan and Holt use a caching algorithm to compute
the set of fault prone modules, called the top-ten list.
They use four factors to determine this list: software
that was most frequently modified, most recently
modified, most frequently fixed, and most recently
fixed. Kim et al. proposed the bug cache algorithm to
predict future faults based on previous fault localities
.Ostrand et al. identified the top 20% of problematic
files in a project. Using future fault predictors and a
negative binomial linear regression model, they
predict the fault density of each file.

Pan et al. use metrics computed over software slice
data in conjunction with machine learning algorithms
to find bug-prone software files or functions. Their
approach tries to find faults in the whole code, while
our approach focuses on file changes.

4.4 Mining Buggy Patterns
One thread of research attempts to find buggy or
clean code patterns in the history of development of a
software project. Williams and Hollingsworth use
project histories to improve existing bug finding tools
.Using a return value without first checking its
validity may be a latent bug. In practice, this approach
leads to many false positives, as typical code has

many locations where return 8are used without
checks. To remove the false positives, Williams and
Hollingsworth use project histories to determine
which kinds of function return values must be
checked. For example, if the return value of foo was
always verified in the previous project history, but
was not verified in the current source code, it is very
suspicious. Livsh its and Zimmermann combined
software repository mining and dynamic analysis to
discover common use patterns and code patterns that
are likely errors in Java applications. Similarly, PR-
Miner mines common call sequences from a code
snapshot, and then marks all non-common call
patterns as potential bugs.

These approaches are similar to change classification,
since they use project specific patterns to determine
latent software bugs. However, the mining is limited
to specific patterns such as return types or call
sequences, and hence limits the type of latent bugs
that can be identified.

4.5 Classification, Clustering, Associating, and
Traceability Recovery
Several research efforts share a similarity with bug
classification in that they also extract features (terms)
from source code, and then feed them into
classification or clustering algorithms. These efforts
have goals other than predicting bugs, including
classifying software into broad functional categories,
clustering related software project documents, and
associating source code to other artifacts such as
design documents.
 Krovtez et al. use terms in the source code (as
Research that categorizes or associates source code
with other documents (traceability recovery) is similar
to ours in that it gathers terms from the source code
and then uses learning or statistical approaches to find
associated documents. For example, Maletic et al.
extracted all features available in the source code via
Latent Semantic Analysis (LSA), and then used this
data to cluster software and create relationships
between source code and other related software
project documents. In a similar vein, Kuhn et al. used
partial terms from source code to cluster the code to
detect abnormal module structures. The goal of the
classification is to place a bug report into a specific
category of bug report, or to find the developer best
suited to fix a bug. This work, along with change
classification, highlights the potential of using
machine learning techniques in software engineering.

T. Vishnu Vardhan | International Journal Of Mathematics And Computer Research| 1:1 Feb|2013|38-43 43

If an existing concern –such as assigning bugs to
developers, can be recast as a classification problem,
then it is possible to leverage the large collection of
data stored in bug tracking and software configuration
management systems.

4.6 Text Classification
Text classification is a well-studied area with a long
research history. Using text terms as features,
researchers have proposed many algorithms to
classify text documents, such as classifying news
articles into their corresponding genres. Among
existing work on text classification, spam filtering is
the most similar to ours. Spam filtering is a
classification problem to identify email as spam or
ham (not spam). This paper adapts existing text
classification algorithms into the domain of source
code change classification. Our research focuses on
generating and selecting features related to buggy
source code changes.

5. Conclusion

Change classification differs from previous bug
prediction work since it Classifies changes is Previous
bug prediction work focuses on finding prediction or
regression models to identify fault-prone or buggy
modules, files, and functions. Change classification
predicts whether there is a bug in any of the lines that
were changed in one file in one SCM commit
transaction. This can be contrasted with making bug
predictions at the module, file, or method level. Bug
predictions are immediate, since change classification
can predict buggy changes as soon as a change is
made.

6. Reference
1. Shivkumar Shivaji, E. James Whitehead, Jr., Ram

Akella, Sunghun Kim, “Reducing Features to
Improve Code Change Based Bug Prediction” in
IEEE 2012.

2. V. Challagulla, F. Bastani, I. Yen, and R. Paul.
Empirical Assessment of Machine Learning
Based Software Defect Prediction Techniques. In
Object-Oriented Real-Time Dependable Systems,
2005. WORDS 2005. 10th IEEE International
Workshop on, pages 263–270. IEEE, 2005.

3. M. DAmbros, M. Lanza, and R. Robbes.
Evaluating Defect Prediction Approaches: a
Benchmark and an Extensive Comparison.

Empirical Software Engineering, pages 1–47,
2011.

4. B. Efron and R. Tibshirani. An Introduction to the
Bootstrap, volume 57. Chapman & Hall/CRC,
1993.

5. K. Elish and M. Elish. Predicting Defect-Prone
Software Modules Using Support Vector
Machines. Journal of Systems and Software,
81(5):649–660, 2008.

6. R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin.
Liblinear: A Library for Large Linear
Classification. The Journal of Machine Learning
Research, 9:1871–1874, 2008.

7. T. Fawcett. An Introduction to ROC Analysis.
Pattern Recognition Letters, 27(8):861–874,
2006.

8. J. Friedman, T. Hastie, and R. Tibshirani. The
Elements of Statistical Learning, volume 1.
Springer Series in Statistics, 2001.

9. K. Gao, T. Khoshgoftaar, H. Wang, and N. Seliya.
Choosing Software Metrics for Defect Prediction:
an Investigation on Feature Selection
Techniques. Software: Practice and Experience,
41(5):579–606, 2011.

10. T. Gyim´othy, R. Ferenc, and I. Siket. Empirical
Validation of Object-Oriented Metrics on Open
Source Software for Fault Prediction. IEEE
Trans. Software Eng., 31(10):897–910, 2005.

	1. Introduction
	2.4. Assessing the Health of Open Source Communities
	4.3 Predicting Buggy and High Risk Modules
	4.5 Classification, Clustering, Associating, and Traceability Recovery

