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Abstract: The automated detection of faulty modules 
contained by software systems might lead to reduced 
development expenses and additional reliable software. 
In this effort design and development metrics has been 
used as features to predict defects in given software 
module using SVM classifier. A rigorous progression of 
pre-processing steps were applied to the data preceding 
to categorization, including the complementary of in 

cooperation classes (faulty or otherwise) and the 
elimination of a large numeral of repeating instances. 
The Support Vector Machine in this trial yields a 
standard accuracy that miles ahead over existing defect 
prediction models on previously unseen data. 
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1. Introduction 

Data mining techniques from the field of artificial 
intelligence now make it probable to forecast 
software defects; undesired outputs or personal 
property produced by software, from static code 
metrics. Views toward the value of using such metrics 
for imperfection prediction are as varied within the 
software manufacturing community as those toward 
the value of static code metrics. However, the 
conclusions suggest that such predictors are helpful, 
as on the information used in this learn they predict 
defective modules with an standard accuracy that is 
miles ahead of existing defect prediction models. In 
this regard the consequences observed during this 
training and testing processes are purely proportional 
to the properties of the features such as type and 
count of the selected. Hence it indicates the research 
scope in the direction of developing scalable feature 
extraction utilization models. 

Shivkumar Shivaji et al attempted to reducing 
features to Improve Code Change Based Bug 
Prediction, they attempted to investigate multiple 
feature selection techniques that are generally 
applicable to classification-based bug prediction 
methods. The techniques discard less important 
features until optimal classification performance is 
reached. The total number of features used for 
training is substantially reduced, often to less than 

10% of the original. The performance of Na¨ıve 
Bayes and Support Vector Machine (SVM) classifiers 
when using this technique is characterized on eleven 
software projects. Na¨ıve Bayes using feature 
selection provides significant improvement in buggy 
F-measure (21% improvement) over prior change 
classification bug prediction results (by the second 
and fourth authors [10]). The SVM’s improvement in 
buggy F-measure is 9%. Interestingly, an analysis of 
performance for varying numbers of features shows 
that strong performance is achieved at even 1% of the 
original number of features. 

2. Software Quality Models 
2.1 Purposes, Usage Scenarios and Requirements 
There is a huge amount of work on various forms of 
quality models. However, comprehensive overviews 
and classifications are scarce. A first, broad 
classification of what he called “quality evaluation 
models” was proposed by Tian. He distinguishes 
between the specificness levels generalized and 
product-specific. These classes are further partitioned 
along unclear dimensions. For example, he 
distinguishes segmented models for different industry 
segments from dynamic models that provide quality 
trends. Two of the authors built on Tian’s work and 
introduced further dimension. Wagner discussed in 
the dimensions purpose, quality view, specificness 
and measurement where the purposes are 
construction, assessment and prediction. This was 
further extended by Wagner and Deissenboeck with 
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the dimensions phase and technique. A thorough 
discussion of critique, usage scenarios and 
requirements along these dimensions is not provided 
in any of these contributions. 
An impressive development of quality models has 
taken place over the last decades. These efforts have 
resulted in many achievements in research and 
practice. As an example, take a look at the field of 
software reliability engineering that performed a wide 
as well as deep investigation of reliability growth 
models. In some contexts these models are applied 
successfully in practice. The developments in quality 
definition models even led to the standardization in 
ISO 9126 that is well known and serves as the basis 
for many quality management approaches. 
 
However, the whole field of software quality models 
is diverse and fuzzy. There are large differences 
between many models that are called “quality 
models”. Moreover, despite the achievements made, 
there are still open problems, especially in the 
adoption in practice. Because of this, current quality 
models are subject to a variety of points of criticism 
that have to be acted on. 
 
We provide a comprehensive definition of a quality 
model based on the purpose the model has. Using this 
tripartion in definition models, assessment models and 
prediction models (DAP), we summarized the existing 
critique and collected a unique collection of usage 
scenarios of quality models. From this, we derived a 
comprehensive set of requirements, again ordered in 
terms of the DAP classification, that can be used in 
two contexts: (1) evaluation of existing models in a 
specific context or (2) further developments and 
improvements of software quality models. 
 
2.2. An Empirical Examination of 100 mature 
Open Source Projects 
Starting with Eric Raymond's ground-breaking work, 
"The Cathedral and the Bazaar”, open-source 
software (OSS) has commonly been regarded as work 
produced by a community of developers. Ghosh's 
cooking pot markets, similarly, point to a communal 
product development system. Certainly, this is a good 
label for some OSS products that have been featured 
prominently in the news. For instance, Moon and 
Sproull point out that by July 2000, about 350 
contributors to LINUX were acknowledged in a credit 
list in the source code of the kernel. 
 

However, my goal in this paper is to ask if the 
community-based model of product development 
holds as a general descriptor of the average OSS 
product. I systematically look at the actual number of 
developers involved in the production of one hundred 
mature OSS products. What I found is more 
consistent with the lone developer (or cave) model of 
production rather than a community model (with a 
few glaring exceptions, of course). 
 
2.3. Extracting Facts from Open Source Software 
Open source software systems are becoming ever 
more important these days. Many large companies are 
investing in open source projects and many of them 
are also using such software in their own work.  
 
In this paper we describe a framework called 
Columbus with which we are able to calculate the 
object oriented metrics validated for fault-proneness 
detection from the source code of the well-known 
open source web and e-mail suite called Mozilla. We 
then compare our results with those presented. One of 
our aims was to supplement their work with metrics 
obtained from a real-size software system. We also 
compare the metrics of the seven most recent versions 
of Mozilla (1.0–1.6), which covers over one and a 
half years of development, to see how the predicted 
fault-proneness of the software system changed 
during its development. 
The Columbus framework has been further improved 
recently with a compiler wrapping technology that 
allows us to automatically analyze and extract 
information from practically any software system that 
compiles with GCC on the GNU/Linux platform (the 
idea is applicable as well to other compilers and 
operating systems). What is more, we can do this 
without modifying any of the source code or make 
files. We describe this technique in detail later in this 
paper. 
 
This paper makes three key contributions: (1) we 
presented a method and toolset with which facts can 
be automatically extracted from real-size software; (2) 
using the collected facts we calculated object oriented 
metrics and supplemented a previous work [1] with 
measurements made on the real-world software 
Mozilla; and (3) using the calculated metrics we 
studied how Mozilla’s predicted fault proneness has 
changed over seven versions covering one and a half 
years of development. 
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When checking the seven versions of Mozilla we 
found that the predicted fault-proneness of the 
software as a whole decreased slightly but we also 
found example classes with an increased probability 
of fault-proneness. 
 
In the future we plan to validate the object oriented 
metrics and hypotheses presented (and here as well) 
on Mozilla for fault-proneness detection using the 
reported faults which are available from the Bugzilla 
database. We also plan to scan Mozilla (and also other 
open source systems) regularly for fault-proneness 
and make these results publicly available. 

2.4. Assessing the Health of Open Source 
Communities 
The computing world lauds many Free/Libre and 
Open Source Software offerings for both their 
reliability and features. Successful projects such as 
the Apache http Web server and Linux operating 
system kernel have made FLOSS a viable option for 
many commercial organizations. 
While FLOSS code is easy to access, understanding 
the communities that build and support the software 
can be difficult. Despite accusations from threatened 
proprietary vendors, few continue to believe that open 
source programmers are all amateur teenaged hackers 
working alone in their bedrooms. But neither are they 
all part of robust, well-known communities like those 
behind Apache and Linux. 
If you, as an IT professional, are going to rely on or 
recommend FLOSS, or contribute yourself, you 
should first research the community of developers, 
leaders, and active users behind the software to decide 
whether it’s healthy and suitable for your needs. 
 
3. Life cycle and motivation 
Understanding a project’s life cycle and its 
participants’ motivations is useful for understanding 
why a FLOSS community is important to a project’s 
success.          
  
The founders’ good ideas expressed in working code 
facilitate a successful project’s second phase: a 
“creative explosion” in which the product, now 
public, develops quickly, gathering features and 
capabilities that in turn attract additional developers 
and users. What Perl founder Larry Wall calls 
“learning in public” can be an exhilarating, if 
difficult, time early in project’s life cycle. 
 

Many researchers have examined FLOSS 
participants’ motivations, but these studies often 
focused on small samples of atypical projects. 
• Intellectual engagement; 
• Knowledge sharing; 
• The product itself; and 
• Ideology, reputation, and community obligation. 
 
Although reputation is low on the list, its importance 
does rise with the length of participant involvement. 
Projects that have an atmosphere of exploration and 
intellectual engagement, especially early in their life, 
are most likely to attract the active user community 
needed for future success. Also important in attracting 
good developers is a code base that solves a real need. 
 
Even very successful open source projects often lack 
detailed roadmaps, explicit work assignments, or 
feature request prioritizations. A key is to ensure the 
efficient use of a fixed pool of resources, but FLOSS 
projects don’t face such fixed pools, either in the 
number of participants or in the amount of time each 
one can devote. 
Therefore, organizing for fun can be more important 
than organizing for efficiency. In fact, duplication of 
effort could be a positive sign that the project can 
attract resources and is in a position to choose the best 
contributions. On the other hand, a formalized system 
for prioritizing security issues clearly benefits some 
applications. And if the processes are discussed, it’s 
important that these discussions regularly end in 
action that lets people get back to work rather than in 
an exhausted stalemate. 
If your assessment leaves you feeling that the 
community isn’t right for you, be prepared to consider 
alternatives, no matter how attractive the code is. 
Trying to change an existing community is likely to 
end in frustration and undermine the reasons you 
chose FLOSS in the first place. However, while a 
rejection of your enthusiastic contributions can seem 
dictatorial and rude, it can also demonstrate a 
longterm, cohesive vision—a FLOSS community at 
its best. 
 
4. Empirical Validation of Object-
Oriented Metrics on Open Source 
Software for Fault Prediction  

Many researchers have sought to analyze the 
connection between object-oriented metrics and code 
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quality. A summary of the empirical literature was 
given by Subramanian and Krishnan. It was written in 
Java and consisted of 123 classes and around 34,000 
lines of code. First, they examined the correlation 
among the metrics and found four highly correlated 
subsets. Then, they used univariate analysis to find 
out which metrics could detect faults and which could 
not. They found that Subramanian and Krishnan 
chose a relatively large-commerce application 
developed in C++ and Java and collected metrics 
from 405 C++ and 301 Java classes. They examined 
the effect of the size along with the WMC, CBO, and 
DIT values on the faults by using multivariate 
regression analysis. Besides validating the usefulness 
of metrics, they compared the applicability of the 
metrics indifferent languages; thus, they validated 
their hypotheses for C++ and Java classes separately. 
They concluded that the size was a good predictor in 
both languages, but WMC and CBO could be 
validated only for C++. 
 
 

 
 Figure.1 Changes in the mean value of the metrics 
over seven versions of Mozilla. 
  
The main contributions of this paper are the 
following: 

1. We presented a method and toolset with 
which metrics (and also other data) can be 
automatically calculated from the C++ 
source code of real-size software (the toolset 
is freely available for academic purposes and 
can be downloaded from the homepage of 
Front End ART). 

2. By processing the Bugzilla database, we 
associated the bugs with classes found in the 
source code. 

3. We employed statistical (logical and linear 
regression) and machine learning (decision 
tree and neural network) methods to assess 
the applicability of the well-known object-

oriented metrics to predict the number of 
bugs in classes. 

4. Using the calculated metrics, we studied how 
Mozilla’s predicted fault-proneness changed 
over seven versions covering one and a half 
years of development. 
 

   Our main observations are the following: 
1. All four assessment methods employed 

yielded very similar results. 
2. The CBO metric seems to be the best in 

predicting the fault-proneness of classes. 
3. The LOC metric performed fairly well and, 

because it can be easily calculated, it seems 
to be suitable for quick fault prediction. 
However, for fine-grained analyses, the 
multivariate models perform much better 
(e.g., in the case of linear regression, theR2 
value of LOC was 0.34, while the R2 value 
of the multivariate model was 0.43). 

4. The correctness of the LCOM metric is good, 
but its completeness value is low. 

5. The DIT metric is untrustworthy, and NOC 
cannot be used at all for fault-proneness 
prediction. 

6. In Mozilla version 1.2, we noticed significant 
changes in the metrics—which we believe 
reflects fall in quality—but it slowly restored 
in the later versions. 

The precision of our models is not yet satisfactory, so 
we have to analyze what the reasons are for the most 
common errors in the models and examine whether 
other metrics can improve them. We will also check 
whether multiple models perform better when 
combined in some way (e.g., using voting majority). 
 
We are currently performing the same kind of 
investigation on other large software systems 
(OpenOffice.org and two industrial systems). In the 
future, we plan to scan Mozilla (and other open 
source systems) regularly for fault proneness and 
make these results publicly available for the software 
developer community. 
 
4.2 Classifying Software Changes: Clean or Buggy 
The goal of change classification is to use a machine 
learning classifier to predict bugs in changes. As a 
result, related work exists in the area of bug 
prediction, as well as algorithms for source code 
clustering and for text classification. 
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4.3 Predicting Buggy and High Risk Modules 
There is a rich literature for bug detection and 
prediction. Existing work falls into one of three 
categories, depending on the goal of the work. The 
goal of some work is to identify a problematic module 
list by analyzing software quality metrics or a 
project’s change history. This identifies those 
modules that are most likely to contain latent bugs, 
butTSE-0061-0306 5provides no insight into how 
many faults may be in each module. Other efforts 
address this problem, predicting the bug density of 
each module using its software change history. Work 
that computes a problematic module list or that 
determines a fault density are good for determining 
where to focus quality assurance efforts, but do not 
provide specific guidance on where, exactly, in the 
source code to find the latent bugs. In contrast, efforts 
that detect faults by analyzing source code using static 
or dynamic analysis techniques can identify specific 
kinds of bugs in software, though generally with high 
rates of false positives. Common techniques include 
type checking, deadlock detection, and pattern 
recognition. 
 
Hassan and Holt use a caching algorithm to compute 
the set of fault prone modules, called the top-ten list. 
They use four factors to determine this list: software 
that was most frequently modified, most recently 
modified, most frequently fixed, and most recently 
fixed. Kim et al. proposed the bug cache algorithm to 
predict future faults based on previous fault localities 
.Ostrand et al. identified the top 20% of problematic 
files in a project. Using future fault predictors and a 
negative binomial linear regression model, they 
predict the fault density of each file. 
 
Pan et al. use metrics computed over software slice 
data in conjunction with machine learning algorithms 
to find bug-prone software files or functions. Their 
approach tries to find faults in the whole code, while 
our approach focuses on file changes. 
 
4.4 Mining Buggy Patterns 
One thread of research attempts to find buggy or 
clean code patterns in the history of development of a 
software project. Williams and Hollingsworth use 
project histories to improve existing bug finding tools 
.Using a return value without first checking its 
validity may be a latent bug. In practice, this approach 
leads to many false positives, as typical code has 

many locations where return 8are used without 
checks. To remove the false positives, Williams and 
Hollingsworth use project histories to determine 
which kinds of function return values must be 
checked. For example, if the return value of foo was 
always verified in the previous project history, but 
was not verified in the current source code, it is very 
suspicious. Livsh its and Zimmermann combined 
software repository mining and dynamic analysis to 
discover common use patterns and code patterns that 
are likely errors in Java applications. Similarly, PR-
Miner mines common call sequences from a code 
snapshot, and then marks all non-common call 
patterns as potential bugs. 
 
These approaches are similar to change classification, 
since they use project specific patterns to determine 
latent software bugs. However, the mining is limited 
to specific patterns such as return types or call 
sequences, and hence limits the type of latent bugs 
that can be identified. 

4.5 Classification, Clustering, Associating, and 
Traceability Recovery 
Several research efforts share a similarity with bug 
classification in that they also extract features (terms) 
from source code, and then feed them into 
classification or clustering algorithms. These efforts 
have goals other than predicting bugs, including 
classifying software into broad functional categories, 
clustering related software project documents, and 
associating source code to other artifacts such as 
design documents. 
 Krovtez et al. use terms in the source code (as      
Research that categorizes or associates source code 
with other documents (traceability recovery) is similar 
to ours in that it gathers terms from the source code 
and then uses learning or statistical approaches to find 
associated documents. For example, Maletic et al. 
extracted all features available in the source code via 
Latent Semantic Analysis (LSA), and then used this 
data to cluster software and create relationships 
between source code and other related software 
project documents. In a similar vein, Kuhn et al. used 
partial terms from source code to cluster the code to 
detect abnormal module structures. The goal of the 
classification is to place a bug report into a specific 
category of bug report, or to find the developer best 
suited to fix a bug. This work, along with change 
classification, highlights the potential of using 
machine learning techniques in software engineering. 
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If an existing concern –such as assigning bugs to 
developers, can be recast as a classification problem, 
then it is possible to leverage the large collection of 
data stored in bug tracking and software configuration 
management systems. 
 
4.6 Text Classification 
Text classification is a well-studied area with a long 
research history. Using text terms as features, 
researchers have proposed many algorithms to 
classify text documents, such as classifying news 
articles into their corresponding genres. Among 
existing work on text classification, spam filtering is 
the most similar to ours. Spam filtering is a 
classification problem to identify email as spam or 
ham (not spam). This paper adapts existing text 
classification algorithms into the domain of source 
code change classification. Our research focuses on 
generating and selecting features related to buggy 
source code changes. 
 
5. Conclusion 
 
Change classification differs from previous bug 
prediction work since it Classifies changes is Previous 
bug prediction work focuses on finding prediction or 
regression models to identify fault-prone or buggy 
modules, files, and functions. Change classification 
predicts whether there is a bug in any of the lines that 
were changed in one file in one SCM commit 
transaction. This can be contrasted with making bug 
predictions at the module, file, or method level. Bug 
predictions are immediate, since change classification 
can predict buggy changes as soon as a change is 
made. 
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