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In this paper we introduce Polya-Aeppli non-central chi-square process as a mixed Polya-Aeppli 

process with mixing random variable having non-central chi-square distribution. We derive 

expression for PMF and discuss several properties. We consider a risk model with Polya-Aeppli 

non-central chi- square process as the counting process. The joint distribution of the time to ruin and 

deficit at the time of ruin is derived. The differential equation of the ruin probability is given. As 

example, we consider the case of exponentially distributed claims. 
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1  Introduction 

Polya-Aeppli process was introduced by Minkova(2004) as a 

compound Poisson process with geometric compounding 

distribution. It is a generalization of homogeneous Poisson 

process and is used to model over-dispersed count data. In 

order to allow a for lack of homogeneity, some random 

variation is introduced in the parameter   (see 

Minkova(2013))of Polya-Aeppli process. This leads to the 

notion of a mixed Polya-Aeppli process. It is a modification 

of Polya-Aeppli process. One reason of the interest on these 

mixed Polya-Aeppli process lies on the fact that they are 

over-dispersed relative to Polya-Aeppli process and offer 

more flexibility than Polya-Aeppli process. 

 Recently, many researchers used mixed Polya- 

Aeppli process as a claim counting process in risk modeling. 

I-Polya process was introduced by Minkova (2011) as a 

mixed Polya-Aeppli process with gamma mixing 

distribution. It is a generalization of the classical Polya 

process. Lazarova and Minkova(2015) studied Polya-Aeppli 

process with shifted gamma mixing distribution and called it 

I-Delaporate process. If 0= , I-Delaporate process 

reduces to Delaporate process. 

 In this study we, introduce a new mixed 

Polya-Aeppli distribution which is called the Polya-Aeppli 

non-central chi-square distribution. It is a mixture of 

Polya-Aeppli distribution by mixing the Polya-Aeppli 

distribution and non-central chi-square distribution. Then we 

define a counting process with Polya-Aeppli non-central 

chi-square distribution and consider the risk model with 

Polya-Aeppli non-central chi-square counting process . The 

motivation behind to make a choice of non-central chi-square 

distribution as the mixing distribution is that it can view as a 

Poisson mixture of certain gamma distribution and it has 

various financial applications.

  

2.  Preliminary Results 

      The Polya-Aeppli distribution with parameters  and  is specified by the PMF: 
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The PGF of Polya-Aeppli distribution is given by 

 

 

The factorial moment of order k of Polya-Aeppli distribution is given by 
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For a thorough discussion of Polya-Aeppli distribution, see Johnson et al.(2005) and Minkova (2002). 

 

The non-central chi-square distribution with r degrees of freedom and non-centrality parameter  is denoted with PDF: 
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The Laplace transform of non-central chi-square distribution(see Johnson and Kotz (2010)) given by 
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This is the convolution of a gamma and a compound Poisson distribution. 

Throughout this study, we will use the Confluent Hypergeometric function defined by, 
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where 1).(1)(=)(  naaaa n   

 

3.  Polya-Aeppli Non-central Chi-square Distribution   

Definition 3.1. 1 A random variable N  has a Polya-Aeppli non-central chi-square ),,( r  distribution when the following 

conditions satisfy:  
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 We denote unconditional distribution of N  by PANC ),,( r  and its PMF is given by  

.1,2,=,

)
2

,(

)
6

,
2

,
2

(
3

)2(1

3

=

0=,3=)=(

1=2

2

32

n
r

j

r
j

r
M

j

n

n

e

nenNP

i

n

j
r

n

r





















 














 

   

 The PGF of N  is given by  
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where )(
~

sf is the Laplace transform of non-central chi-square ),( r distribution, given by (2). 

Hence it follows that  
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Theorem 3.1. 2 If ),,( rPANCN ~ ,then the 
thk  factorial moment of N is given by  
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   Proof: The 
thk  factorial moment of ),,( rPANC   can be obtained as  
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   where )|()(  Nk is the 
thk factorial moment of Polya-Aeppli distribution and is given by (1). 

 By substituting (1) in (5),we get (4).              
 

 Proposition 3.1: 3The PMF of the PANC ),,( r satisfies the following recursions:  
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 and 0=1P .   

 

   Proof: On differentiating (3) with respect to s, we have  
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 Equating the co-efficient of 
is on both sides of (7), we obtain (6).        

    

 Proposition 3.2: 4Recurrence relation for the factorial moments )(k of PANC ),,( r  is the following for 1,2,=k  with 

1=(0)   
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   Proof: The factorial MGF of PANC ),,( r  is  
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 On differentiating (9) with respect to t, we get  
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 Equating the co-efficient of 
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 on both sides of (10), we obtain (8).              

3.1 Polya-Aeppli Non-central Chi-square Process 

 

 Let )(tN denotes the number of the events up to time t.Then 0}),({ ttN is a Polya-Aeppli non-central chi-square process if  
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 We use the notation ),,(PANCP)( rtN ~ and its PMF is given by  
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 The mean and variance of PANCP ),,( r  are given by  
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 Therefore PANCP ),,( r  is overdispersed, related to Polya-Aeppli process. 

 

4.  PANCP as a pure birth process  

 

 In this section we define PANCP as a pure birth process. 

  

 Definition 4.1. 5A counting process 0}),({ ttN  is said to be a PANCP with parameters rand,   if   

  (1) 0=(0)N ;  

  (2) the state transition probabilities are defined as follows  
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 for every 0,1,=m , where 0)( ho  as 0h .   

 Let 0,1,2,=   ),=)((=)( nntNPtPn .  

Then the above postulates yield the following Kolmogorov forward equations:  
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 with initial conditions  

 1,2,=   0,=(0)and1=(0)0 nPP n  

As the solutions of above Kolmogorov forward equations, the marginal distributions of the process are obtained , given by (11). 

Therefore two definitions of the Process are equivalent. 

  

5  Properties of PANCP ),,( r
 

 

 In this section, we discuss some properties of ),,( rPANCP  .  

  

 Theorem 5.1. 6 Let ),,()(  rPAPNCPtN ~ . Then:   

1. The time interval 1T  to the first arrival is a non-central chi-square mixture of     exponential(NCME) pdf's and 
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   Proof: Let 2}{ kkT  are the inter-arrival times and i
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=  be the waiting time until the 

thn  event. 

For any 0t  and 0n , the following relation holds.  
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(1). The conditional C.D.F of 1T  given (See Minkova(2004)) is  
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(2).  We will prove the result by using mathematical induction. 
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For 1=n , (14) becomes  
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Now, suppose that for 1n , the distribution of waiting time given by (13) is true. Applying (11) for nm =  and then 

differentiating (14) and substituting (13), we get  
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6.  Application to Risk Theory 

   We consider here the standard risk model 0}),({ ttX , defined on the probability space ),,( PF   
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 where c is the rate of insurer's premium income and the claim sizes },{ NiYi   independent of the counting process 

0}),({ ttN , are i.i.d positive random variables with common distribution function )(xF  such that 0=(0)F . In this model 

we assume that 0}),({ ttN  is a ),,( rPANCP  . 

The relative safety loading 0>  satisfies the equation ,
1
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c  where )(= iXE . 

The time to ruin is denoted by T and is defined by  
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 The probability of ultimate ruin from initial capital u  is denoted by )(u  and is given by  
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 The non ruin probability is defined by )(1=)( uu  . 

Let ),( zuW  denote the joint CDF of the time to ruinT and deficit at the time of ruin |)(=| TXuD   is given by  
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 It is clear that  
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 where 1,2,=),(* kxF k
 is the k -fold convolution of claim amount distribution. 

or,equivalently  
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 Taking the limit 0h , leads to the following differential equation:  
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 is a non defective 

distribution function of the claims with 1=)(0,=(0) GG . 

The above equation can be expressed in terms of the safety loading as follows:  
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 Using (17) and (18) we obtain the following integro- differential equation for the ruin probability.  
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 Theorem 6.1.  7The probability of ruin with zero initial capital satisfies  
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   Proof: If we integrate (18) from 0=u  to =u  with 0=),( zW  , we get the following equation.  
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 Changing the order of integration in the 
ndII  integral and then making use of some transformation, we get  
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 Using (17) and (21) we can write,  
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 where EX  is the mean of the random variable X  with distribution function )(xG  and is given by  
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 Hence the result.              

 

Exponential claims 

  Consider exponential claim sizes with p.d.f 
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In this case we obtain )(0,zW  from (21) and is given by  
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Differentiating (19) w.r.to u twice we get the following differential equation for the ruin probability, in the case of exponentially 

distributed claims.  
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Conclusions 

In this study we introduced PANCP as a mixed Polya-Aeppli 

process with mixing random variable having non-central  

 

chi-square distribution. We found that this model is more 

suitable for handling over-dispersed count data. We have 

defined the risk model with PANCP as a counting process 

and have studied probability of ruin for this model.  
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