
[volume 1 Issue 2 March 2013]

Page No. 61-68 ISSN :2320-7167 [International Journal Of Mathematics And Computer Research]

Mounika B |IJMCR www.ijmcr.in| 1:2 March|2013|61-58 | 61

Survey on Preventing Input Validation Vulnerabilities in Web

Applications through Automated Type Analysis

Mounika B, A. Krishna Chaitanya
(Mtech Computer Science and Engineering in Vardhaman College of Engineering)

mouni2089@gmail.com

(Associate professor in Vardhaman college of Engineering, Hyderabad)

Chaituit2004@gmail.com

ABSTRACT- In the last twenty years, web

applications have grown from simple, static pages

to complex, full-fledged dynamic applications.

simple web applications today may accept and

process hundreds of different HTTP parameters to

be able to provide users with interactive services.

Unfortunately, web applications are also frequently

targeted by attackers, and critical vulnerabilities

such as Front-end and Back-end are still common.

Much effort has been taken from the past few years

to reduce these vulnerabilities. The current

technique focused on sanitization is not able to

prevent new forms of input validation

vulnerabilities such as HTTP parameters pollutions

and are runtime overhead. In this paper a

technique for preventing these front end and back

end vulnerabilities is developed which is based on

automated data type detection of input parameters.

This novel technique is referred to as IPAAS which

automatically and transparently augments.

Keywords- Input Validation, Pattern matching,

Sanitization, SQL injection attacks, Type learning,

XSS Attacks.

1. INTRODUCTION

Web applications have become targets for

attackers due to their wide usage by users. Web

applications vulnerabilities include so many

attacks, among them the front end and back end

vulnerabilities remain most attention in the

research and is focused on reducing these

vulnerabilities. These vulnerabilities include XSS

and SQL vulnerabilities. Both of these

vulnerabilities manifest at a fundamental level as a

failure to preserve the integrity of HTML

documents and SQL queries. In XSS vulnerability

it allows attacker to inject malicious HTML

elements which includes malicious client side code.

SQL injection attack allows the attacker to enter

incorrectly filtered data that is embedded into SQL

statement and the statement is modified in such a

way that it violates the web application data

integrity.

 One approach for preventing this

vulnerability is automated sanitization of malicious

input. This approach uses filters or sanitizers that

are applied to user data which prevents injection of

dangerous elements into HTML documents or SQL

queries. But it is difficult to achieve complete and

correct sanitizer coverage.

Two methods for reducing HTML and

SQL vulnerabilities are

1) Output Sanitization and

2) Input Validation.

1.1 Output Sanitization

 Output sanitization is a automated, robust,

and context aware to web browsers and databases

and is a best solution for preventing front end and

back end vulnerabilities. In this technique the

sanitizers are automatically applied to untrusted

data before its use in document or query

construction. If an output sanitizer decides that the

data computed from untrusted data is safe, then it is

actually safe to give it to the user or submit it to the

database.

Unfortunately, output sanitization is not a

best solution. In order to achieve correctness and

complete coverage of all locations where untrusted

data is used to build HTML documents and SQL

queries, it is necessary to construct an abstract

representation of these objects in order to track

output contexts. But, this requires the direct

specification of documents and queries in a

domain-specific language or else the use of a

language amenable to precise static analysis. While

new web applications have the option of using a

secure-by-construction development framework or

templating language, legacy web applications do

not have this luxury. furthermore, many web

mailto:mouni2089@gmail.com
mailto:Chaituit2004@gmail.com

Mounika B |IJMCR www.ijmcr.in| 1:2 March|2013|61-68 || 62

developers continue to use insecure languages and

frameworks for new applications.

1.2 Input Validation

 In abstract input validation is the process

of assigning semantic meaning to unstructred and

untrusted inputs to an application and ensuring that

these inputs respect a set of constrints describing a

well formed inputs. This involves checking the

inputs that are applied to web application against

the specificification of legitimate values. The main

goal of the input validation is finding out the

program correctness rather than preventing the

attacks.

Fig 1: attacks that are prevented by input validation

Input validation mainly focuses on

validating the untrusted input and provides less

assurance of protecting the database vulnerabilities.

But this approach still fails to validate the

malicious input. Despite of these drawbacks, input

validation has many advantages. First, the

application of input validators has prevented

vulnerabilities to some extent. Second, it is simple

to achieve complete coverage of untrusted input

data. Fig shows different types of attacks that are

prevented by input validation. Fig 1: attacks that

are prevented by input validation.

2. LITERATURE SURVEY
There are many types of techniques

that are proposed from past decade for

reducing the vulnerabilities. Fonseca et al

studied how software faults relate to web

applications security. His results shown that

only small set of software fault results in

SQL and HTML vulnerability. They have

demonstrated that the attacks are occurred

because of missing function calls to

sanitization or input validation functions.

Weinberger et al showed hoe

effective web application frameworks are

sanitizing user supplied input to defend

applications against XSS attacks. In this work

he compared the sanitization work against the

features that popular web applications

require. His work also focused on output

sanitization as a mechanism for detecting and

reducing XSS attacks.

Vulnerability detection approaches

identify vulnerabilities through tracking the flow of

user inputs to sensitive sinks. Static and dynamic

analysis techniques are generally used for user

input tracking. Static analysis-based techniques

suffer from low precision as these techniques

generally overestimate the tainted-ness of inputs.

Dynamic analysis-based techniques such as model

checking and concolic execution produce zero

false positive in principal. But these techniques are

generally complex and expensive.

Mounika B |IJMCR www.ijmcr.in| 1:2 March|2013|61-68 || 63

One more technique in this approach is

automating the task of generating test vectors for

exercising input validation mechanisms. Sania is a

system which is used in the development and

debugging phases. It automatically generates SQL

injection attacks based on the syntactic structure of

queries found in the source code and tests a web

application using the generated attacks. Saxena et

al. proposed Kudzu, which combines symbolic

execution with constraint solving techniques to

generate test cases with the goal of finding client-

side code injection vulnerabilities in JavaScript

code. Halfond et al. used symbolic execution to

infer web application interfaces to improve test

coverage of web applications. Several papers

propose techniques based on symbolic execution

and string constraint solving to automatically

generate XSS and SQL injection attacks and input

generation for systematic testing of applications

implemented in C.

Different techniques have been proposed

for detecting and preventing front end and back end

vulnerabilities. Most of the research being carried

out, nowadays, pertaining to detection or

prevention of SQL attacks. in general, this is

divided into three categories (1) Runtime HTTP

requests, (2) Design-time web application source

code, and (3) Runtime dynamically generated SQL

statements. In order to detect SQL attacks, some

researchers employ only one type of data while

some others employ two.

One more technique is an advanced query

based multi-tier approach, for detecting SQL

attacks and other web attacks, is being proposed,

designed from the base, after realizing the

complexities involved in these attacks. Knowledge

based dynamic query generation techniques have

been implemented in the designed application,

which learns from the history of previously

occurred attacks over the system. The system gains

efficiency with time. It also maintains a list of

common attacks which helps detect a larger

number of attacks at an improved rate.

The easiest and the most effective client-

side solution to the XSS problem for users are to

deactivate Java Script in their browsers.

Unfortunately, this solution is often not feasible

because a large number of web sites use JavaScript

for navigation and enhanced presentation of

information.

Previous approaches to identifying SQLI

and XSS vulnerabilities and preventing exploits

include defensive coding, static analysis, dynamic

monitoring, and test generation. Each of these

approaches has its own merits, but also offers

opportunities for improvement. Defensive coding is

error-prone and requires rewriting existing software

to use safe libraries. Static analysis tools can

produce false warnings and do not create concrete

examples of inputs that exploit the vulnerabilities.

Dynamic monitoring tools incur runtime overhead

on the running application. Black-box test

generation does not take advantage of the

application’s internals, while previous white-box

techniques have not been shown to discover

unknown vulnerabilities

A Multi-Agent System has been explored

for the automated scanning of websites to detect

the presence of XSS vulnerabilities exploitable by a

stored XSS attack. It works by finding the input

points of the application susceptible of being

vulnerable to a stored–XSS attack then Injecting

selected attack vectors at the previously detected

points. Finally it checks the web application for the

injected scripts in order to verify the success of the

attack. It is not capable runtime detection and

prevention of attack also it can be used for attack

detection only, i.e. no mechanism for prevention.

 Preventative techniques for mitigating

XSS and SQL injection vulnerabilities focus either

on client-side mechanisms, or on server-side

mechanisms. Client-side or browserbased

mechanisms such as Noxes, Noncespaces, or DSI

make changes to the browser infrastructure aiming

to prevent the execution of injected scripts. Each of

these approaches requires that end-users upgrade

their browsers or install additional software;

unfortunately, many users do not regularly upgrade

their systems.

 Wassermann and Su proposed a system

that checks at runtime the syntactic structure of a

query for a tautology. AMNESIA checks the

syntactic structure of queries at runtime against a

model that is obtained through static analysis.

XSSDS is a system that aims to detect XSS attacks

by comparing HTTP requests and responses. While

these systems focus on preventing injection attacks

by checking the integrity of queries or documents,

we focus on input validation. Recent work has

focused on automatically discovering parameter

injection and parameter tampering vulnerabilities.

3. BACKGROUND

 This section describes SQLI and XSS

Web-application vulnerabilities and illustrates

attacks that exploit them.

3.1 SQL Injection.

A SQLI vulnerability results from the

application’s use of user input in constructing

database statements. The attacker invokes the

application, passing as an input a (partial) SQL

statement, which the application executes. This

permits the attacker to get unauthorized access to,

or to damage, the data stored in a database.

Mounika B |IJMCR www.ijmcr.in| 1:2 March|2013|61-68 || 64

Fig 2: SQL injection attack

The above fig 2 shows SQL injection attack.

Attackers can use existing vulnerabilities in the

web server logic to inject the data or string content

that contains the exploits and then use the web

server to relay these exploits to attack the back-end

database. To prevent this attack, applications need

to sanitize input values that are used in constructing

SQL statements, or else reject potentially

dangerous inputs

3.2 XSS(Cross Site Scripting)

 The problem with the current JavaScript

security mechanisms is that scripts may be confined

by the sand-boxing mechanisms and conform to the

same-origin policy, but still violate the security of a

system. This can be achieved when a user is lured

into downloading malicious JavaScript code

(previously created by an attacker) from a trusted

web site. Such an exploitation technique is called a

cross-site scripting.

 For example, consider the case of a user

who accesses the popular trusted.com web site to

perform sensitive operations (e.g., on-line

banking). The web-based application on

trusted.com uses a cookie to store sensitive session

information in the user’s browser. Note that,

because of the same origin policy, this cookie is

accessible only to JavaScript code downloaded

from a trusted.com web server. However, the user

may be also browsing a malicious web site, say

www.evil.com, the Fig 3 shows this Scenario.

Fig 3: Cross Site Scripting Scenario

XSS is of two types. They are.

3.2.1 First-order XSS.

A first-order XSS (also known as Type 1,

or reflected, XSS) vulnerability results from the

application inserting part of the user’s input in the

http://www.evil.com/

Mounika B |IJMCR www.ijmcr.in| 1:2 March|2013|61-68 || 65

next HTML page that it renders. The attacker uses

social engineering to convince a victim to click on

a (disguised) URL that contains malicious

HTML/JavaScript code. The user’s browser then

displays HTML and executes JavaScript that was

part of the attacker-crafted malicious URL. This

can result in stealing of browser cookies and other

sensitive user data. To prevent first-order XSS

attacks, users need to check link anchors before

clicking on them, and applications need to reject or

modify input values that may contain script code.

3.2.3 Second-order XSS

A second-order XSS (also known as

persistent, stored, or Type 2 XSS) vulnerability

results from the application storing (part of) the

attacker’s input in a database, and then later

inserting it in an HTML page that is displayed to

multiple victim users (e.g., in an online bulletin

board application). It is harder to prevent second-

order XSS than first-order XSS, because

applications need to reject or sanitize input values

that may contain script code and are displayed in

HTML output, and need to use different techniques

to reject or sanitize input values that may contain

SQL code and are used in database commands.

4. PROPOSED WORK
 This paper proposed an approach called

IPAAS that automatically integrates robust, input

parameter validation into web application. IPAAS

refers to Input PArameter Analysis System which

is one of the best solution for detecting and

reducing XSS and SQL injection attacks.

IPAAS mainly performs three functions.

They are

(i) extracting the parameters for a

web application

(ii) learning type for each parameter

by applying a combination of

machine learning over training

data and a simple static analysis

of the application and

(iii) automatically appliying robust

validators for each parameter to

the web application with respect

to the inferred types

4.1 IPAAS Architecture

These three main functions of IPAAS are

decomposed into three phases in the prevention of

vulnerabilities. The three phases are named as

1) parameter extraction phase,

2) analysis and training phase, and

3) runtime validation.

The architecture of IPAAS including three

phases listed above are shown in the following fig

4 representing the IPAAS architecture.

Fig 4: IPAAS architecture

Mounika B |IJMCR www.ijmcr.in| 1:2 March|2013|61-68 || 66

As shown in the Fig 2 an IPAAS consists

of a proxy server that intercepts HTTP messages

generated during application testing and is given to

extraction phase. Input parameters are classified

during an analysis phase according to one of a set

of possible types. After sufficient data has been

observed, IPAAS derives an input validation policy

based on the types learned for each application

input parameter. This policy is automatically

enforced in the third phase at runtime by rewriting

the application.

4.1.1 Parameter Extraction

 Parameter extraction refers to data

collection step. During testing a proxy server

intercepts the HTTP requests that are exchanged

between web client and application. For each

HTTP requests all the observed parameters in

training phase are parsed into key-value pairs and

are stored in database. Each HTTP response

containing HTML document is processed by

HTML parser and extracts links and forms during

the testing. The key-value pairs that are extracted in

the case of requests are also generated in the case

of links for each string that are extracted.

4.1.2 Parameter analysis and training

 The each parameter that is extracted

during the first phase is labled with a data type

based on the key-values observed on that

parameter. This process is performed by applying

set of validators to test inputs. Validators are

functions that check whether a value meets

particular set of constraints or not. IPAAS applies

set of validators, which checks that an input

belongs to one set of types.

 IPAAS determines the type of parameter

in two sub phases. In the first phase, learning the

types based on the values that are recorded for each

parameter. Next in the second sub phase learning

types are augmented based on the values extracted

from HTML documents.

 In the first sub phase i.e learning, the

analysis begins by retrieving all the resource paths

that were observed during application testing. For

each path, the it retrieves the unique set of

parameters and the complete set of values for each

of those parameters observed during the extraction

phase. Each parameter is assigned an integer score

vector of length equal to the number of possible

validators.

 The actual type learning phase beginss by

passing each value of a parameter to every possible

type validator. If a validator accepts a value, the

corresponding entry in that parameter’s score

vector is incremented by one. In the case that no

validator accepts a value, then the analysis engine

assigns the free-text type to the parameter and stops

processing its values. After all values for a

parameter have been processed, then the score

vector is used to select a type and a validator.

generally, the type with the highest score in the

vector is selected. If there is a tie, then the most

restrictive type is assigned; this corresponds to the

ordering given in Table I.

The second sub phase that is augmenting

the values uses the information that is extracted

from the HTML documents. In this phase initially a

check is performed to determine whether the

parameter is associated with HTML textarea

element or not. If it is associated with that the

parameter is assigned the free text type. Otherwise

it checks whether the parameter belongs to input

element that is one of the check box or radio button

or select list. In this case the observed set of values

are assigned to parameter.

Mounika B |IJMCR www.ijmcr.in| 1:2 March|2013|61-68 || 67

 The analysis engine then derives the input

validation policies for each parameter. For each

resource the path is linked to corresponding

application source file. Then the resource

parameters are grouped by input parameter and are

serialized as a part of input validation policy.

Finally it is written to disk.

The learning sub phase described above is

augmented by static analysis. The static analysis is

performed in order to determine or find parameters

and application resources that are missed during the

training phase. Static analysis tools check the

security of web applications often employ data flow

analysis to track the use of program inputs. The

goal of these systems is to identify program paths

between the location where an input enters the

application and a location where this input is used.

Once such a program path is identified, the tool

checks whether the programmer has properly

sanitized the input on its way from the source to the

sensitive sink(location where input is used).

4.1.3 Runtime enforcement

 After the completion of first two phases a

set of input validation policies for each input

parameter is achieved. This runtime enforcement

occurs during the deployment. During runtime

IPAAS intercepts the incoming requests and checks

each against the validation policy for that

parameter. If the parameters that are present in the

HTTP request does not meet the validation policy

then IPAAS drops that specific request. If that

request meets the input validation policy then it

continues its execution.

 There may be some situations where a

specific HTTP request may contain some

parameters that where not observed during the

learning sub phase or during the static analysis. At

this time the request may either simply dropped or

the request may be accepted and the parameter is

marked as valid. It can be used in further learning

phases to refresh application input validation

policies.

4.2 IPAAS limitations

 The implementation of IPAAS has some

limitations. They are as follows.

1) Type learning can fail when HTTP requests

contain custom query strings. In this case the

parameter extraction phase may not be able to

assign key-value pairs for parameters.

2) The implementation of static analysis is

complex process and is rudimentary.

5. CONCLUSION
 Web applications have become important

part of daily lives of millions of users for their

personal and corporate work. Unfortunately due to

their wider usage by people for business transaction

these web applications are highly prone to different

types attacks. Among these attacks the XSS attack

and SQL attacks are paid most attention by the

researchers due to their vulnerability. Current

techniques to prevent these attacks mainly focus on

output sanitization which is overhead and has lack

of precision.

 In this paper an alternative to output

sanitization that is automated input validation

(IPAAS) is presented for preventing XSS and SQL

attacks. This approach improves the secure

development of web applications by performing

parameter extraction and type learning methods

and by applying robust input validators at runtime.

REFERENCES

[1] Theodoor Scholte, William

Robertson, Davide Balzarotti, Engin

Kirda: Preventing Input Validation

Vulnerabilities in Web Applications

through Automated Type Analysis,

IEEE transaction on computer

softeware and application conference,

july 2012.

[2] Meixing Le, AngelosStavrou, Brent

ByungHoon Kang,” Double Guard:

Detecting Intrusions in Multitier Web

Applications”, IEEE Transactions on

dependable and secure computing,

vol. 9, no. 4, July/august 2012.

[3] Arisholma, E., Briand, L. C., and

Johannessen, E. B. 2010. A

systematic and comprehensive

investigation of methods to build and

evaluate fault prediction models.

Journal of Systems and Software, 83,

1, 217.

[4] Jovanovic, N., Kruegel, C., and

Kirda, E. 2006. Pixy: a static analysis

tool for detecting web application

vulnerabilities. In Proceedings of the

IEEE Symposium on Security and

Privacy. 258-263.

[5] Kieun, A., Guo, P. J., Jayaraman, K.,

and Ernst, M. D. 2009. Automatic

creation of SQL injection and cross-

site scripting attacks. In Proceedings

of the 31st International Conference

on Software Engineering. 199-209.

[6] Martin, M. and Lam, M. S. 2008.

Automatic generation of XSS and

SQL injection attacks with goal-

directed model checking. In

Proceedings of the 17th USENIX

Security Symposium. 31-43.

Mounika B |IJMCR www.ijmcr.in| 1:2 March|2013|61-68 || 68

[7] Shar, L. K. and Tan, H. B. K. 2012.

Mining input sanitization patterns for

predicting SQLI and XSS

vulnerabilities. In Proceedings of the

34th International Conference on

Software Engineering. 1293-1296.

[8] Weinberger, P. Saxena, D. Akhawe,

M. Finifter, R. Shin, and D. Song. An

Empirical Analysis of XSS

Sanitization in Web Application

Frameworks. Technical report, UC

Berkeley, 2011.

[9] Y. Kosuga, k. Kono, m. Hanaoka, m.

Hishiyama, and y. Takahama. Sania:

syntactic and semantic analysis for

automated testing against sql

injection. In acsac, pages 107–117.

Ieee computer society, 2007

