
[Volume 1 issue 2 March 2013]
Page No.69-72 ISSN :2320-7167 [International Journal Of Mathematics And Computer Research]

Vaibhav Jagannathan |IJMCR www.ijmcr.in| 1:2 March|2013|69-72 | | 69

Low Cost Networked Storage
Vaibhav Jagannathan, Shounak Kamalapurkar, Ameya Mahabal, Gaurang Davda , Mukesh Tiwari,

Kuldip Wagh, Btech(Electronics) student , VJTI college of Engineering.

Abstract

Technology today is becoming increasingly mobile. It is

now possible to all the work, which would require a large

desktop computer a few years back, on a handheld tablet or

a mobile phone. Today most people do not possess just one

such device but a multiple devices. An individual may own

laptops, tablets, cellular phones, desktops, any combination

of such devices. Also the widespread popularity of wireless

internet connections (wi-fi or mobile internet) has ensured

that all these devices are connected to the „World Wide

Web‟ almost all the time. It is essential for the users to be

able to share and synchronize data and files between these

devices and the simplest way is to have a common

repository of files on a server that can be accessed through

the web. Existing services charge huge amounts for large

amounts of storage and also the files are stored on servers

that the user does not directly control and can be accessed

by the company also making privacy and security matters of

concern. This paper details the development of a low cost,

personalized, network attached storage that will be

accessible over the internet. The low cost Raspberry Pi

board will be used as the hardware on which the server is

hosted. The linux based Raspbian OS was used on the

Raspberry Pi. The http server was implemented in server

side javascript using node.js. The one time cost of the setup

along with minimal recurring charges makes this solution

feasible.

Keywords:

Cloud storage, Raspberry Pi, Raspbian, Network Protocols,

Wireless Network.

I. INTRODUCTION

he Raspberry Pi is used as a remote http server. This

server is used to host a website that allows the clients to

access the storage attached to the server. This storage

service can be used to upload any file from a remote

location to the server. It can be used to browse through and

download the files previously stored on the server.

II. THE SERVER

The assembly consists of a Raspberry Pi board which acts

as the server. Raspberry Pi has a single core ARM

processor and cannot efficiently handle multithread

programming because of the large overhead associated with

it and the limited computing power of the ARM processor.

It is more efficient to implement a server using single thread

asynchronous programming. Thus single threaded event

driven programming can be efficiently executed on the

single core processor of the Raspberry Pi.

A. Raspberry Pi

The Raspberry Pi is a low cost ($35), compact development

board containing an ARM-11 System on Chip. It is possible

to run operating systems on this device. It has a SD card

slot. It contains an Ethernet port which can be used to

connect the board to a local area network or the internet. It

also contains 2 USB 2.0 ports which can be used for I/O

devices like mice, keyboards, hubs, or storage devices. The

operating system used in this project is the linux based

Raspbian(wheezy) OS.

a. Raspbian OS

Raspbian is an operating system which is developed

specifically to run on Raspberry Pi. Its operating system is

based on debian so the name Raspbian. It is built with

compilation settings adjusted to produce optimized „hard

float‟ code for the Raspberry Pi. The floating point

arithmetic operations are significantly faster due to this. The

advanced instructions of the ARMv6 CPU in the Raspberry

Pi improve the performance of the many other applications.

b. Connecting to Internet

The Raspberry Pi can be connected to the internet using an

Ethernet cable. One end is plugged into Raspberry Pi

Ethernet port and the other into the back of the home

network. The network LEDs will start to flicker. If the

router is configured for DHCP (Dynamic host configuration

protocol) then the IP address is provided to the Raspberry

Pi and it is now connected to the internet. If DHCP is not

turned on, on network router, then connect to its

management console using a different computer that is

already connected. Using tunneling the localhost can be

made visible over the internet by associating the localhost

with a domain name (DNS). A simpler approach could be to

T

Vaibhav Jagannathan |IJMCR www.ijmcr.in| 1:2 March|2013|69-72 | 70

assign a static IP address to the Raspberry Pi, using port

forwarding and Dynamic DNS the localhost can be accessed

through the web.

c. USB storage

There are 2 USB ports in the model B of Raspberry Pi. The

uploaded data can be stored by the memory card put in the

memory card slot of the Raspberry Pi. This capacity can be

increased by inserting „pen drives‟, „flash drives‟, or „hard

disks‟ into the USB port provided on the Raspberry Pi. This

way the data storage space can be altered as required. A

USB hub may be used and multiple pen drives may be

connected to increase the capacity. But a number of low-

cost powered USB hubs are known to have caused

problems. If a powered hub and the Raspberry Pi PSU

together are powered from the same power bar with switch,

they can turned on simultaneously, and if the HUB tries to

feed the Raspberry Pi through the interconnect cable, due to

the 100 mA limiting fuse in the Raspberry Pi, the Raspberry

Pi will be partially powered which may cause unwanted

write problems to the SD card. Another disadvantage of

low-cost hubs is the speed limitation they impose. However

connecting a portable hard disk requires some modifications

since the drive is not self powered. So an external power

supply is required to power the hard disk.

B. NODE.JS

Node.js is a server-side software system designed for

writing scalable Internet applications, notably web servers.

It allows the server-side execution of Javascript code i.e. the

code is run in the backend, outside a browser. The

Javascript code is interpreted as well as executed using

Google‟s V8 VM (Google Chrome‟s Javascript Runtime

Environment).

Node.js makes use of an event driven, non-blocking I/O

model that makes it lightweight and efficient, perfect for a

data-intensive applications that runs on a single core

processor with limited processing power, like the Raspberry

Pi‟s single core ARM processor. The resulting Node web

applications are both fast and scalable with minimum

overhead for the processor.

Node.js is essentially comprised of a runtime environment

and a library. The library is a collection of modules which

are themselves Javascript code providing abstractions from

the basic hardware to form a simpler Application

Programming Interface (API).

a. Javascript

JavaScript (JS) is an interpreted computer programming

language formalized in the ECMAScript language standard.

It was originally developed and implemented as part of web

browser so that client-side scripts may interact with the user

to control the data displayed on a webpage. Over time it was

standardized and became a “complete” programming

language that could be used to achieve any output that other

languages could produce. One such use of Javascript is as a

server-side scripting language (e.g. Node.js, Netscape

Enterprise Server).

b. Event Driven Programming

The “traditional” mode of web servers has always been one

of the thread-based model. You launch Apache or any other

web server and it starts receiving connections. When it

receives a connection, it holds that connection open until it

has performed the request for the page or whatever other

transaction was sent. If it takes a few microseconds to

retrieve a page from disk or write results to a database, the

web server is blocking on that input/output operation. (This

is referred to as “blocking I/O”.) To scale this type of web

server, additional copies of the server need to be launched

(referred to as “thread-based” because each copy typically

requires another operating system thread).

In contrast, Node.js uses an event-driven model where the

web server accepts the request, spins it off to be handled,

and then goes on to service the next web request. When the

original request is completed, it gets back in the processing

queue and when it reaches the front of the queue the results

are sent back (or whatever the next action is). This model is

highly efficient and scalable because the web server is

basically always accepting requests because it‟s not waiting

for any read or write operations. (This is referred to as

“non-blocking I/O” or “event-driven I/O“.)

c. Callbacks

The Node library consists of numerous asynchronous

functions. At least one argument of these functions is

another function called the “callback function”.

For example “function foo(a,b, bar(){}); Here the function

foo() takes two parameters a,b and on completion executes

callback bar(). Such asynchronous functions run in the

background and do not halt the execution of the program

making it non-blocking. The Node runtime environment

contains an Event Loop. Once the execution of a program is

finished the execution shifts to the Event Loop where, Node

waits for an event to occur. When an event occurs the

associated callback function is executed. Thus Event Driven

I/O is achieved through use of callbacks.

d. Modules

The Node library contains several modules which are

Javascript codes providing API to the user. This makes

building web applications in Node easier as the user does

not have to start from scratch. Many modules come built-in

with node but the user is not restricted to the use of only

these modules as, a vast repository of user created external

modules is also available if required. Node implements

CommonJS Modules 1.0 which specifies the standard of all

node modules. Some important modules used for

implementation of this project:

e. HTTP:

This module is used to implement a http server.

The “CreateServer” function takes a callback which is

executed on the request event. The callback is passed two

objects - request and response. The request object details

the request made to the server and the response object is

used to send the appropriate data to the client.

f. FS:

It stands for File System. This module contains API to

read/write files, read directories, create/delete directories,

rename files etc. Most of the functions have both

synchronous and asynchronous versions. Synchronous

versions are “blocking” and should be avoided if the

operation will be time consuming.

g. Formidable

External module for handling file uploads. File is uploaded

from an html page as a POST data multipart form. The data

is parsed together to obtain the file which is saved to the

disk. The upload directory and other such parameters can be

set by the user.

C. User Interface

Provided the server is running, on accessing the Domain

Name associated with the server through a browser, the user

is taken to the file system of the Raspberry Pi. Folders are

denoted by a [+] sign to the left of their name and files by [-

] sign. All the folders present in the directory are shown one

below the other with their date and time of creation or latest

modification shown in the adjacent column. If there is a file,

in addition to the date, the size of the file in bytes is also

displayed in the third column. Clicking on a folder takes the

user to that particular directory. To guide the user while

browsing, the path of the current directory is also shown on

the top of each page. The 'Back' button of the browser can

be used to go to the previous directories. A 'Go Back' link is

also provided on each page for the same purpose. To

download a file from the server, the user simply has to click

on the filename. He will be given options to either open the

file directly or save it on his computer. For example, if a rar

file is opened, only the extracted contents will be saved on

the computer. To upload a file to the server, an option to

browse files on his computer and upload a file is provided

on each page. The user must first go to the destination

directory and then use the 'Browse' button to select a file

from his computer. On selecting a particular file and

clicking 'Upload' button, the file will be uploaded to that

directory. Provided the operation is successful, the user will

be shown the name of the file uploaded and the destination

directory.

D. Approximate cost:

The prime advantage of this project is the low cost involved

in setting up the server. The cost of the Raspberry Pi board

is $35(Rs. 1925). The concerned accessories like the

charger, an 8GB SD card can be estimated to collectively

cost Rs. 500. Hence, the minimalistic cost of the entire

system with approximately 6 GB storage is Rs. 2425. This

cost is incurred only once and hence there are no recurring

costs. Additional space, if needed, may be obtained by

using a USB hub to connect as many hard drives or flash

drives as needed. Alternatives like 'Dropbox', Sky Drive,

iCloud and Google Drive cost more with their monthly or

yearly billing cycles and also offer lesser options in terms of

space. Shown below is a comparison of the pricing of

various products offered for web based storage of 500 GB.

Product
Raspberry

Pi

Sky

Drive

Google

Drive
Dropbox iCloud

Pricing

(INR)

5425 (

including

the cost of

a 500GB

HDD)

12500 15000 25000 50000

It should be noted that the expenditure mentioned for

Raspberry Pi is one time whereas that for all others is

annual.

E. Speed results:

Speed is an important criterion for a server. The Pi supports

USB 2.0 which allows maximum transfer speeds of 60

Mbytes/sec. Also the Ethernet standard on the Pi uses 100

Mbits/sec. When Pi is connected in home network via

Ethernet, transfer speeds of up to 8 Mbytes/sec are

obtained. The Pi boots from SDcard. The minimum transfer

speeds from SDcard to processor varies from 2 Mbytes/sec

to 10 Mbytes/sec.

F. Factors affecting speed:

Though the maximum USB transfer speed is 60 Mbytes/sec,

this speed is never achieved due to factors like NAND

limitations on USB flash drives and so the maximum speeds

achieved range between 30 – 35 Mbytes/sec whereas

external HD and other magnetic/optical storage lower the

maximum transfer speeds to 25 Mbytes/sec. These are serial

access speeds. For better random access speeds, external

HD with rootfs file system on it is preferred over flash

drives. Also the Class of flash drive or SDcard being used

contributes to the transfer speed. Class 2, 4, 6 and 10 have

their minimum transfer speeds of 2, 4, 6 and 10 Mbytes/sec

when the SDcard or flash drive is empty. The speed varies

depending on the amount of free space left and also on the

file system being used for that drive. The file systems used

for USB flash drives i.e. NTFS, exFAT are faster and

efficient than ext1, ext2, ext3, ext4, FAT32 etc used for

Vaibhav Jagannathan |IJMCR www.ijmcr.in| 1:2 March|2013|69-72 | 72

SDcard. For optical/magnetic devices like external HD, “x”

rating is used to indicate transfer speed like x100, x125,

x150. This rating is multiplied with standard CDRom drive

speed of 150 Kbytes/sec to obtain the transfer speed. Higher

the rating better is the speed. So, depending on the speed

and capacity requirement, an External HD or USB flash

drive can be chosen. When an user outside the home

network tries to upload or download a file from the Pi, the

Pi provides 100 Mbits/sec transfer speed but the bandwidth

is limited depending on the user‟s ISP. Smaller the

bandwidth lesser is the transfer speed of the user.

.

III. CONCLUSION

The purpose of designing and implementing a low cost

networked storage is achieved by using ARM-11 based

Raspberry Pi board running the Linux based Raspbian OS.

The HTTP server is implemented with the use of Node.js.

The system can be used to store, browse through and

retrieve data from the server to any remote location through

the web. The prime advantage of the system is low and non-

recurring cost for the setting up of the system. Also storage

can be added and removed as and when required. This

design can be widely used for personal as well as industrial

applications.

ACKNOWLEDGMENT

All the authors would like to thank Dr. R.D. Daruwala for

the valuable guidance throughout the implementation of the

project.

REFERENCES

[1] HTTP://NODEJS.ORG/

[2] HTTP://NODEJS.ORG/ABOUT/

[3] HTTP://WWW.NODEBEGINNER.ORG/

[4] HTTP://EN.WIKIPEDIA.ORG/WIKI/NODEJS

[5] HTTP://CODE.DANYORK.COM/2011/01/25/NODE-JS-DOCTORS-

OFFICES-AND-FAST-FOOD-RESTAURANTS-UNDERSTANDING-

EVENT-DRIVEN-PROGRAMMING/

[6] HTTP://NODEJS.ORG/API/

[7] HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVASCRIPT

[8] HTTPS://GITHUB.COM/FELIXGE/NODE-FORMIDABLE

[9] HTTP://NODEJS.ORG/API/FS.HTML

[10] HTTP://NODEJS.ORG/API/HTTP.HTML
[11] http://www.raspberrypi.org/faqs
[12] https://support.google.com/drive/bin/answer.py?hl=en&answe

r=2375123
[13] http://windows.microsoft.com/en-us/skydrive/compare
[14] https://www.dropbox.com/upgrade
[15] http://support.apple.com/kb/ht4874

[16] HTTP://WWW.RASPBIAN.ORG/RASPBIANABOUT
[17] http://www.raspberrypi.org/phpBB3/viewtopic.php?f=46&t=3245

4
[18] http://en.wikipedia.org/wiki/Secure_Digital
[19] http://en.wikipedia.org/wiki/Flash_memory
[20] http://www.tomshardware.com/forum/248184-32-best-drives

http://nodejs.org/
http://nodejs.org/about/
http://www.nodebeginner.org/
http://en.wikipedia.org/wiki/Nodejs
http://code.danyork.com/2011/01/25/node-js-doctors-offices-and-fast-food-restaurants-understanding-event-driven-programming/
http://code.danyork.com/2011/01/25/node-js-doctors-offices-and-fast-food-restaurants-understanding-event-driven-programming/
http://code.danyork.com/2011/01/25/node-js-doctors-offices-and-fast-food-restaurants-understanding-event-driven-programming/
http://nodejs.org/api/
http://en.wikipedia.org/wiki/JavaScript
https://github.com/felixge/node-formidable
http://nodejs.org/api/fs.html
http://nodejs.org/api/http.html
http://www.raspberrypi.org/faqs
https://support.google.com/drive/bin/answer.py?hl=en&answer=2375123
https://support.google.com/drive/bin/answer.py?hl=en&answer=2375123
http://windows.microsoft.com/en-us/skydrive/compare
https://www.dropbox.com/upgrade
http://support.apple.com/kb/ht4874
http://www.raspbian.org/RaspbianAbout
http://www.raspberrypi.org/phpBB3/viewtopic.php?f=46&t=32454
http://www.raspberrypi.org/phpBB3/viewtopic.php?f=46&t=32454
http://en.wikipedia.org/wiki/Secure_Digital
http://en.wikipedia.org/wiki/Flash_memory
http://www.tomshardware.com/forum/248184-32-best-drives

