Page No.197-203 ISSN :2320-7167

Fuzzy Prime Ideals And Filters Of Lattices

¹ T.Rama Rao, Ch.Prabhakara Rao, Tigist Embiale, Eyerusalem W/Yohannes Prof. of Mathematics, Vikas Engineering college, Vijayawada. Assoc. Prof. of Mathematics, DIET Engineering college, Anakapalle. ³ (tgembiale@gmail.com). (jerybicha@yahoo.com).

Dept. of Mathematics, University of Gondar, ETHIOPIA.

Abstract

A complete lattice (L, \leq) satisfying the infinite meet distributivity is called a frame. For a given bounded distributive lattice (X, \land, \lor) and a frame *L*, we introduce the notions of prime *L*-fuzzy ideals and *L*-fuzzy prime ideals of *X* and prove certain characterization theorems for these. Using the duality principle in lattices, the results on prime *L*-fuzzy ideals and *L*-fuzzy prime ideals are extended for filters also

Keywords: Lattices, complete lattices, frame, distributive lattice, ideals, filters, prime ideals, prime filters.

Introduction

The concept of prime fuzzy ideal was first introduced by U.M.Swamy and D.V.Raju [6] and later B.B.N.Koguep, C.N.Kuimi and C.Lele [3] discussed certain properties of prime fuzzy ideals of lattices when the truth values are taken from the interval [0, 1] of real numbers. After J.Goguen [2] and U.M.Swamy and

others [5,6 and 7] have asserted that the interval [0, 1] is not sufficient to take the truth values general fuzzy statements, it was found that an abstract frame is most suitable to take the truth values. A complete lattice (*L*, \leq) satisfying the infinite meet distributivity, $aA(supX) = sup\{aA \mid x \in X\}$ for any $a \in L$ and $X \subseteq L$, is called a frame. In this paper, we extended the results of the above works to the case when the truth values are taken from a general frame and obtain certain comprehensive results on

primeness and irreducibility among *L*-fuzzy ideals of general lattices. Even though some of the results are true for general lattices, we concentrate on *L*-fuzzy ideals of bounded distributive lattices. We completely characterize the prime *L*-fuzzy ideals and filters and obtain a one-to-one correspondence between the prime *L*-fuzzy ideals of a distributive lattice *X* and the pairs (*I*, α) where *I* is a prime ideal of *X* and α is an irreducible element in the frame *L*. The discussion here mainly uses the transfert principle of M.Kondo and W.A.Dubek [4] in fuzzy theory.

The required basic concepts and results on the theory of partially ordered sets and lattices are refered to [1], while those on fuzzy sets to those mentioned in the references given at the end.

PRELIMINARIES

A partially ordered set (X, \leq) is called a lattice (complete lattice) if every nonempty finite subset (respectively, every subset) of X has infimum and supremum in X. For any $A \subseteq X$, the iinfimum (supremum) of A, if they exist,

are denoted by *infA* or *A* or *a* (*supA* or *A* or *a* respectively). A $a \in A$ $a \in A$ lattice can also described as an algebra (*X*, ,) where and are binary be $\land \land \land \lor \lor \lor$

operations on X which are both associative, commutative and idempotent and satisfy the absorption laws $a \land (a \lor b) = a = a \lor (a \land b)$; in this case, the partial order \leq on X is defined by $a \leq b \Leftrightarrow a = a \land b(\Leftrightarrow a \lor b = b)$ and $a \land b$ and $a \lor b$ are respectively the infimum and supremum of $\{a, b\}$ in X. A lattice (X, \land, \lor) is said to be distributive if $a \land (b \lor c) = (a \land b) \lor (a \land c)$ for all a, b and c in X and is said to be bounded if there exists elements 0 and 1 in X such that $0 \leq a \leq 1$ for all $a \in X$. A nonempty subset I of a lattice (X, \land, \lor) is said to be an ideal of X if, for any a and $b \in I$, $a \lor b \in I$ and $a \land x \in I$ for all $x \in X$. The set I(X) of all ideals of a bounded lattice X forms a complete lattice under the set inclusion ordering. A complete lattice (X, \leq) satisfying the infinite meet distributivity (that is, $x \land (supA) = sup\{x \land a \mid a \in A\}$ for all $x \in X$ and $A \subseteq X$) is called a frame.

Through out this paper *X* denotes a bounded distributive lattice (X, Λ, V) in which 0 and 1 are the smallest and greatest elements and *L* denotes a frame. Any mapping of *X* into *L* is called an *L*-fuzzy subset of *X*. An *L*-fuzzy subset *A* of *X* is called an *L*-fuzzy ideal of *X* if A(0) = 1 and $A(x \lor y) = A(x) \land A(y)$ for all *x* and $y \in$ *X*. For any *L*-fuzzy subset *A* of *X*, the α -cut $A := \{x \in X \mid \alpha \leq A(x)\}$ is an ideal of *X* for all $\alpha \in L$ if and only if *A* is an *L*-fuzzy ideal of *X*. The set FI_{*L*}(*X*) of all *L*-fuzzy ideals of *X* forms a complete lattice under the pointwise ordering. Since *X* is a distributive lattice, it follows that FI_{*L*}(*X*) is also a distributive lattice. Also, FI_{*L*}(*X*) is an algebraic fuzzy system, in the sense that it is closed under point-wise infimums and closed under pointwise supremums of direct above subclasses. Using these and the fact that *L* is frame, we get that FI_{*L*}(*X*) satisfies the infinite meet distributivity and hence a frame.

PRIME L-FUZZY IDEALS

A proper ideal *P* in a lattice (X, Λ, V) is called prime if, for any *a* and $b \in X$, $a \land b \in P$ implies $a \in P$ or $b \in P$ which is equivalent to saying that, for any ideals *I* and *J* of *X*, $I \cap J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$. In general, an element *p* in a lattice *X* is called prime if *p* is not the largest element and, for any *a* and $b \in P$, $a \land b \leq p$ implies $a \leq p$ or $b \leq p$. This is to say that prime elements in the lattice I(*X*) od ideals of *X* are precisely the prime ideals of *X*. In this section we discuss the prime elements in the lattice FI_L(*X*) of all *L*-fuzzy ideals of *X*. Throughout this paper *X* denotes a bounded distributive lattice and *L* denotes a frame.

De nition 3.1. Let $X = (X, \Lambda, V)$ be a bonded distributive lattice and *L* a frame. An *L*-fuzzy ideal *A* of *X* is called proper if *A* is not the constant map 1; that is, A(X) = 1 for some $x \in X$. A proper *L*-fuzzy ideal *P* of *X* is called a prime *L*-fuzzy ideal of *X* if for any *L*-fuzzy ideals *A* and *B* of *X*,

 $A \land B \leq P \Rightarrow A \leq P \text{ or } B \leq P.$

Since *X* is a distributive lattice, so are the lattice I(X) of ideals of *X* and the lattice $FI_L(X)$ of *L*-fuzzy ideals of *X*. Therefore a proper *L*-fuzzy ideal *P* of *X* is prime if and only if it is irreducible in the sense that, for any *L*-fuzzy ideals *A* and *B* of *X*,

 $P = A \land B = \Rightarrow P = A \text{ or } P = B.$ Denition 3.2. For any ideal *I* of *X* and $\alpha \in L$, define $\alpha_I : X \longrightarrow L$ by { 1, if $x \in I$ $\alpha_I(x) = \alpha$, if $x \in I$.

Then α_I is an *L*-fuzzy ideal of *X* and is called α -level *L*-fuzzy ideal corre-sponding to *I*.

For any fixed $\alpha \neq 1$ in *L*, *I* α_I gives us an embedding of I(*X*) into (FI)_{*L*}(*X*). The following is a method of constructing prime *L*-fuzzy ideals.

Theorem 3.3. Let $X = (X, \Lambda, V)$ be a bounded distributive lattice and L a frame. Let I be an ideal of X and $\alpha \in L$. Then the α -level L-fuzzy ideal α_I is a prime L-fuzzy ideal of X if and only if I is a prime ideal of X and α is a prime element in L.

we have $\alpha_J \land \alpha_K = \alpha_{J \cap K}$ and $\alpha_J \le \alpha_K$ if and only $J \subseteq K$. From these, it follows that *I* is a prime ideal of *X*. For β and $\gamma \in L$, we have

 $\beta \land \gamma \leq \alpha = \Rightarrow (\beta \land \gamma)_I \leq \alpha_I = \Rightarrow \beta_I \land \gamma_I \leq \alpha_I$

$$\Rightarrow \beta_I \leq \alpha_I \text{ or } \gamma_I \leq \alpha_I \Rightarrow \beta \leq \alpha \text{ or } \gamma \leq \alpha.$$

Therefore α is a prime element in *L*.

Conversely suppose that *I* is a prime ideal of *X* and α is a prime element in *L*. Then I = /X and $\alpha < 1$ and hence α_I is a proper *L*-fuzzy ideal of *X*. Let *A* and *B* be any *L*-fuzzy ideals of *X*. Let *A* and *B* be any *L*-fuzzy ideals of *X* such that $A \land B \leq \alpha_I$. Suppose that $A \alpha_I$. Then there exists $x \in X$ such that $A(x) \alpha_I(x)$. Therefore $\alpha_I(x) = /1$ and hence $\alpha_I(x) = \alpha$ and $x \in /I$. Now, for any $y \in /I$, $x \land y \in /I$ (since *I* is prime) and $A(x \land y) \land B(x \land y) = (A \land B)(x \land y) \leq \alpha_I(x \land y) = \alpha$.

Since α is prime, $A(x \land y) \le \alpha$ or $B(x \land y) \le \alpha$. But, since $A(x) \alpha_I(x) = \alpha$ and $A(x) \le A(x \land y)$, we have $A(x \land y) \alpha_I$. Therefore $B(x \land y) \le \alpha$. Since $B(y) \le B(x \land y)$, we get that $B(y) \le \alpha$. Therefore $B(y) \le \alpha_I(y)$ for all $y \in I$ and hence $B \le \alpha_I$. Thus α_I is a prime *L*-fuzzy ideal of *X*.

The above theorem together with the following leads to a characteriza-tion of prime L-fuzzy ideals.

Theorem 3.4. Let P be a proper L-fuzzy ideal of a bounded distributive lat-tice X. Then P is prime if and only if the following conditions are satis ed.

P assumes exactly two values

P(1) is a prime element in L

 $\{x \in X | P(x) = 1\}$ is a prime ideal of X.

Proof. Suppose that *P* satisfies the conditions (1), (2) and (3). Since *P* is antitone, we have $P(1) \le P(x) \le P(0) = 1$ for all $x \in X$. Let $P(1) = \alpha$ and $I = \{x \in X | P(x) = 1\}$. Then *I* is a prime ideal of *X* and α is a prime element in *L*. Also, by (1), α and 1 are the only values of *P*. Therefore $P = \alpha_I$ and hence, by the above theorem, *P* is a prime *L*-fuzzy ideal of *X*.

Conversely suppose that *P* is a prime *L*-fuzzy ideal of *X*. Then $P(1) \le P(x) \le P(0) = 1$ for all $x \in X$. Let *P* (1) = α and *I* = { $x \in X / P(x) = 1$ }. Since *P* is proper, we get that $\alpha < 1$. Let $x \in X$ and $\beta = P(x)$. Then $\alpha \le \beta \le 1$. Put *J* = { $y \in X | \beta \le P(y)$ }. Then *I* and *J* are ideals of *X* and $\beta_I \land \alpha_J \le P$. Since *P* is prime, $\beta_I \leq P$ or $\alpha_J \leq P$. If $\beta_I \leq P$, then $\beta = \beta_I(1) \leq P(1) = \alpha$ and hence $\beta = \alpha$. If $\alpha_J \leq P$, then

 $1 = \alpha_J(x) \le P(x) = \beta$ and hence $\beta = 1$.

Thus *P* assumes exactly two values, namely 1 and α . Now, since *P* is prime and $P = \alpha_I$, it follows from the above theorem, that *I* is a prime ideal of *X* and α is a prime element in *L*. \Box

Corollary 3.5. *P* is a prime *L*-fuzzy ideal of *X* if and only if *P* is of the form α_I for some ideal *I* of *X* and prime element α in *L*.

Corollary 3.6. $(\alpha, I) \rightarrow \alpha_I$ is a one-to-one correspondence between the pairs (α, I) where α is a prime element in L and I is a prime ideal of X and the prime L-fuzzy ideals of X.

L-FUZZY PRIME IDEALS

For any prime *L*-fuzzy ideal *P* of a bounded distributive lattice *X*, each β -cut of *P*, $\beta \in L$, is either a prime ideal of *X* or the whole of *X*. Infact, if $P = \alpha_I$ where α is a prime element of *L* and *I* is a prime ideal of *X* (refer corollary 3.5), the β -cut of *P* is given by P = I or *X* depending on $\beta \alpha$ or $\beta \leq \alpha$ respectively. In the following we characterize the *L*-fuzzy ideals whose α -cuts are either prime ideals of *X* or the whole of *X*.

Theorem 4.1. Let (X, \land, \lor) be a bounded distributive lattice and L a frame. The following are equivalent to each other for any L-fuzzy ideal A of X.

For any $\alpha \in L$, either A = X or A is a prime ideal of X

For any $\alpha \in L$ and x and $y \in X$, $x \land y \in A \Rightarrow x \in A$ or $y \in A$

For any x and $y \in X$, $A(x \land y) = A(x)$ or A(y)

For any x and $y \in X$, $A(x \land y) = A(x) \lor A(y)$ and either $A(x) \le A(y)$ or $A(y) \le A(x)$.

Proof. (1) = \Rightarrow (2) is trivial.

 $(2) \Rightarrow (3)$: Let x and $y \in X$. Put $\alpha = A(x \land y)$ Then $x \land y \in A$. By (2), $x \in A$ or $y \in A$. If $x \in A$, then

 $A(x \land y) = \alpha \le A(x) \le A(x \land y)$ and hence $A(x \land y) = A(x)$. If $y \in A$, then $A(x \land y) = A(y)$.

 $(3) \Rightarrow (4)$: This is a consequence of the fact that $A(x) \leq A(x \land y)$ and $A(y) \leq A(x \land y)$ for all x and $y \in X$. $(4) \Rightarrow (1)$: Let $\alpha \in L$ such that $A \Rightarrow X$. Then A is a proper ideal of X. Let x and $y \in X$ such that $x \land y \in A$. Then

 $\alpha \leq A(x \land y) = A(x) \lor A(y) = A(x) \text{ or } A(y) \text{ (by (4))}$

and hence $x \in A$ or $y \in A$. Therefore A is a prime ideal of X.

De nition 4.2. A proper L-fuzzy ideal A of X is called an L-fuzzy prime ideal of X if it satisfies one (and hence all) of the conditions in Theorem 4.1.

De nition 4.3. Let *I* be an ideal of a bounded distributive lattice *X* and α and β elements of a frame *L*. Define an *L*-fuzzy subset $(\alpha, \beta)_I$ of *X* by

1, if
$$x = 0$$

$$(\alpha, \beta)_I(x) = \alpha, \quad \text{if } 0 \not= x \in I \\ \beta, \quad \text{if } x \in I$$

Note that $(1, \beta)_I = \beta_I$ and $(1, 0)_I = \chi_I$, the characteristic map of *I*. In the following two results, whose proof are easy verifications, we observe that the prime ideals of *X* can be identified with *L*-fuzzy prime ideals of *X*.

Theorem 4.4. The following are equivalent to each for any proper ideal I of X.

I is a prime ideal of X

 $(1, \beta)_I$ is an L-fuzzy prime ideal of X for any $\beta < 1$ in L

The characteristic map χ_I (= (1, 0)_{*I*}) *is an L-fuzzy prime ideal of X.*

Theorem 4.5. Suppose that *I* is a proper ideal of the lattice *X* and the least element 0 in *X* is prime. Then *I* is a prime ideal of *X* if and only if $(\alpha, \beta)_I$ is an *L*-fuzzy prime ideal of *X* for all $1 \neq \beta \leq \alpha \in L$.

It can be easily verified that any prime L-fuzzy ideal of X is an L-fuzzy prime ideal of X and that the converse is not true. In the following we describe a method for constructing L-fuzzy prime ideals.

Theorem 4.6. Let X be a bounded distributive lattice and C be a chain in a frame L such that $1 \in C$ and $supD \in C$ for all $D \subseteq C$. Let $\{I\}_{\in C}$ be a class of ideals of X such that $\cap I = X$ or I is a prime ideal of X for each $\alpha \in C$ and, for any $D \subseteq C$, $I = I_{supD}$. De ne an L-fuzzy subset P of $\in D$ X by $P(x) = sup\{\alpha \in C \mid x \in I\}$

for any $x \in X$. Then P is an L-fuzzy prime ideal of X if P is proper. Conversely, every L-fuzzy prime ideal of X is obtained by the above procedur

 $\Rightarrow x \in I$

=⇒I =

Proof. First note that $0 = \sup \phi \in C$. Also, by hypothesis, for any x and $y \in X$,

 $x \land y \in I \iff x \in I \text{ or } y \in I$

and therefore we have

 $P(x) \land P(y) = \sup\{\alpha \in C \mid x \in I\} \land \sup\{\beta \in C \mid y \in I\}$

 $= \sup\{\alpha \land \beta \mid \alpha, \beta \in C, x \in I, y \in I\} \text{ (by the infinite meet distributivity in } L) = \sup\{\gamma \in C \mid x \lor y \in I\} = P$ $(x \lor y) \text{ (since } I \cup I \subseteq I_{\land} \text{).}$

Therefore *P* is an *L*-fuzzy ideal of *X*. Also, clearly $I \subseteq P$, the α -cut of *P*, for each $\alpha \in C$. On the other hand

 $\begin{aligned} x \in P &= \Rightarrow \alpha \le P(x) = \sup\{\beta \in C \mid x \in I\} \\ &= \Rightarrow \alpha = \alpha \land P(x) = \sup\{\alpha \land \beta \mid \beta \in C, x \in I\} \\ &\cap \\ &\{I_{\land} \mid \beta \in C, x \in I\} \end{aligned}$

(since $I \subseteq I_A$).

Also, we have $x \land y \in I \Leftrightarrow x \in I$ or $y \in I$ for any $\alpha \in C$ and x and $y \in X$. From this, it follows that

 $P(x \land y) = P(x) \lor P(y)$ and $P(x) \le P(y)$ or $P(y) \le P(x)$

since *P*(*x*) and *P*(*y*) are in the chain *C*. Thus, if *P* is proper, then *P* is an *L*-fuzzy ideal of *X*. For the converse, one can take $C = \{P(x) \mid x \in X\}$. \Box

In the above, note that P is proper if and only if I is a proper ideal of X for some $\alpha \in C$.

PRIMENESS IN L-FUZZY FILTERS

It is well known that by interchanging the operations Λ and V in a lattice (X, Λ, V) we get another lattice (X, V, Λ) which is called the dual of X and is denoted by X^d ; The partial orders in X and X^d are inverses to each other. The ideals of X^d are known as filters of X. In other words, a nonempty subset F of a lattice $X = (X, \Lambda, V)$ is called a filter of X if a and $b \in F \Rightarrow a \Lambda b \in F$ and $a \lor x \in F$ for all $x \in X$. De nition 5.1. An L-fuzzy subset F of a lattice (X, Λ, V) is called an L-fuzzy filter of X if F(1) = 1 and

 $F(x \land y) = F(x) \land F(y)$ for all x and $y \in X$.

Clearly every *L*-fuzzy filter of *X* is an isotone, in the sense that $x \le y$ in $X \Rightarrow F(x) \le F(y)$ in *L*. The set FF_{*L*}(*X*) of all *L*-fuzzy filters of any lattice is a lattice under point-wise ordering and FF_{*L*}(*X*) is a complete lattice if and only if *X* has greatest element. Also, FF_{*L*}(*X*) is distributive if and only if so is *X*. Recall that the

De nition 5.2. An *L*-fuzzy filter *F* of *X* is said to be proper if $F(x) \neq 1$ for some $x \in X$. Let *P* be a proper *L*-fuzzy filter of a lattice *X*.

(1) *P* is said to be prime *L*-fuzzy filter of *X* if, for any *L*-fuzzy filters *F* and *G* of *X*,

prime ideals of the dual lattice X^d are called prime filters of a lattice X.

 $F \land G \leq P \Rightarrow F \leq P \text{ or } G \leq P$

P is said to be *L*-fuzzy prime filter of *X* if $P(x \lor y) = P(x)$ or P(y) for any *x* and $y \in X$.

It is clear that, when X is a bounded distributive lattice, a proper *L*-fuzzy filter *P* of X is prime if and only if, for any *L*-fuzzy filters *F* and *G* of X, $P = F \land G = \Rightarrow P = ForP = G$. All the results proved for prime *L*-fuzzy ideals and *L*-fuzzy prime ideals in the previous two sections hold good for filters also, since filters of X are simply the ideals of the dual lattice X^d . In particular, we have the following two characterization theorems.

Theorem 5.3. Let (X, Λ, V) be a bounded distributive lattice and L a frame. A proper L-fuzzy lter P of X is prime if and only if there exist a unique prime lter F of X and a unique prime element α in L such that $P = \alpha_F$;

that is,

1, if $x \in F$ P(x) = α , if $x \in /F$. {

Theorem 5.4. Let *P* be a proper *L*-fuzzy lter of a bounded distributive lattice *X*. Then *P* is an *L*-fuzzy prime lter of *X* if and only if, for any $\alpha \in L$, the α -cut *P* is either a prime lter of *X* or the whole of The Authors thank Prof. U.M.Swamy for his help in preparing this paper.

References

Birkhoff, G., Lattice Theory, Amer. Math. Soc. colloq. publ, 1967

Goguen, J., L-fuzzy sets, Jour. Math. Anal. Appl, 18(1967), 145-174

Koguep, B.B.N., NKuimi, C. and Lele, C., on fuzzy prime ideals of lattices, SAMSA Journal of pure and Applied Mathematics, 3(2008), 1-11

Kondo, M and Dudek, W. A., on the transfert principle in fuzzy theory, *Matheware of soft computing*, 12 (2005), 41 - 55

Swamy, U. M and Raju, D.V., Irreducibility in algebraic Fuzzy systems, *Fuzzy sets and Systems*, 41(1991), 233 -241

Swamy, U. M. and Raju, D.V., Fuzzy ideals and congruences of lattices, Fuzzy sets and systems, 95(1998), 249-253.

Swamy, U.M. and Swamy, K.L.N., Fuzzy prime ideals of rings, Jour. Math Anal. Appl, 134 (1988), 94 - 103

Zadeh, L., Fuzzy sets, Information and Control, 8(1965), 338-353.

Proof. Suppose that α_I is a prime *L*-fuzzy ideal of *X*. Then α_I is a proper and hence *I* is a proper ideal of *X* and $\alpha = /1$. For any ideals *J* and *K* of *X*