Domination Based Algorithms to Strong Centers of A Graph

A. Anto Kinsley, S. Somasundaram

Associate Professor, Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai, Tirunelveli - 627002, Tamil Nadu, India. antokinsley@yahoo.com

Professor, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli - 627012, Tamil Nadu, India. somutvl@gmail.com

Corresponding Author :- A. Anto Kinsley, M.Sc., M.Phil., M.Tech., Ph.D.
Associate Professor, Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, Tirunelveli, Tamil Nadu, India.

antokinsley@yahoo.com

Abstract

In this paper we consider a strong center location problem, which is based on the dominating set problem. The computation of the minimum dominating sets of a graph is used as a basic step for the determination of strong centers of the graph. The strong centers are developed from strong domination sets. We first study reachable sets, link vectors of the vertices and then introduce two binary operations \(\vee \) and \(\wedge \) for finding the dominating sets. These are used as tools for designing an algorithm to find the strong centers. We investigate the dominating sets of a graph. Some required results for developing algorithms are also proved. Using these concepts we present an algorithm to find all strong centers of a graph.

Keywords: Graph, algorithm, dominating set, central structures.

1. Introduction

Graph theory has immense applications in the field of communication networks, interpersonal relations and several real life situations. In several cases choosing a convenient vertex is always an interesting problem. Such convenient vertices may be center, median or centroid of the graph[5]. P. J. Slater (1975) defined these three central structures and he generalized the concept of centrality. These centrality concepts have applications in facility location problems such as installation of a fire station, hospital etc. In the recent years there is an increasing interest among researchers in the design and analysis of algorithms to solve graph-theoretic problems.

The concept of center of a graph has applications in facility location problem: given \(n \) cities and the distances between them, we wish to select cities as centers so that the maximum distance of a city from its closest center is
In this paper we study reachable sets, link vectors of the vertices and introduce two binary operations \(\lor \) and \(\land \) [2]. We construct dominating sets of a graph and search for strong centers. The computation of the strong dominating set is used as a basic step in the algorithm for finding the strong centers.

In this paper, we consider a finite, connected, undirected simple graph with \(n \) vertices. Terms not defined here are used in the sense of Harary[3].

2. The strong dominating sets

In this section we first see the definition of dominating set and then we prove some important theorems.

Dominating Sets

Definition 2.1

Let \(G = (V, E) \) be a graph. A subset \(S \) of \(V \) is called a dominating set if every vertex in \(V - S \) is adjacent to at least one vertex in \(S \). A dominating set is called minimal if there is no other dominating set, which is contained in it. A dominating set is called minimum if it has minimum cardinality among all dominating sets.

The domination number \(\gamma \) of \(G \) is defined to be the cardinality of a minimum dominating set in \(G \). Note that, if \(S \) is a dominating set of \(G \) then \(S \cup T \) is also a dominating set of \(G \) for every \(T \subseteq V - S \). For any graph \(G \), \(\gamma \geq n / (\overline{V}+1) \), where \(\overline{V} \) is the maximum degree of a vertex of \(G \)[1].

The strong domination number, denoted \(s(G) \), was defined by B.D. Acharya[1]. He characterized the graphs \(G \) for which \(s(G) = \gamma(G) \) and estimated suitable bounds for \(s(G) \).

Definition 2.1

The strong domination number of a graph \(G \) is the least integer \(s(G) \) for which every set of \(s(G) \) vertices of \(G \) is a dominating set of \(G \).

Some required results for developing algorithms are proved. Using these concepts we present an algorithm for finding the strong domination number of an arbitrary graph. Finally we present an algorithm to find the strong domination number of a graph. In all algorithms, we consider a graph with the distance matrix.

The strong domination number \(s(G) \) of a graph \(G \) is the least integer \(s \) for which every \(s \)-subset of \(V \) is dominating. Then we have an immediate result [1].

Theorem 2.2 (B.D. Acharya)[1]

For any graph \(G \) with minimum degree \(\delta \), we have \(\gamma \leq s(G) \leq (n-\delta) \) and the bounds are best possible.

Theorem 2.3

LV of each vertex of \(\bigcap_{i=1}^{n} R_{s}(x_i) \) is full.

Proof

Consider the vertex set \(\{x_1, x_2, \ldots, x_n\} \) of a graph \(G \). Let \(x \in \bigcap_{i=1}^{n} R_{s}(x_i) \). Then \(x \in R_s(x_i) \) for every vertex \(x_i \). That is, \(x \) is reachable to \(x_1, x_2, \ldots, x_n \).

That is, LV of \(x \) is \((1, 1, 1, \ldots, 1) \). Hence \(x' \) is full.

We see a theorem, which follows from the above theorem.

Example

![Figure 2.1 A graph illustrating Theorem 2.2](image)

Consider \(G = C_6 \) where \(V = \{x_1, x_2, x_3, x_4, x_5, x_6\} \).

The sets \(\{x_1, x_4\}, \{x_2, x_3\}, \{x_3, x_6\} \) are minimum dominating sets and so \(\gamma(G) = 2 \).

But every subset of cardinality three is a dominating set and so \(s(G) = 3 \).

Also \((n-\delta) = 4 \).

Theorem 2.4

Each vertex of \(\bigcap_{i=1}^{n} R_{s}(x_i) \) dominates the graph \(G \).

Proof: Let \(x \in \bigcap_{i=1}^{n} R_{s}(x_i) \). Then \(x' \) is full by above theorem. Hence \(x \) is reachable to every vertex of
V. Since \(\lambda = 1 \), \(x \) is adjacent to every vertex of \(V \). Hence \{x\} dominates \(G \). □

We have presented all required results and then we concentrate in the development of algorithms.

Algorithms development

In this section we present three algorithms [6]. Now suppose that a proper subset \(D \) of the vertex set \(V \) of a graph \(G \) is given. We develop the following algorithm to check whether the set \(D \) is a dominating set.

Algorithm: 2.5 (Dominating set confirmation algorithm)

Input: A graph \(G = (V, E) \) and a subset \(D = \{x_1, x_2, \ldots, x_k\} \) of vertices.

Output: \(D \) is a dominating set or not.

Step 1: For \(i = 1 \) to \(k \), find the \(n \)-dimensional link vector \(LV \) of each vertex \(x_i \); say \(x_i' \).

Step 2: Take \(y' \leftarrow (o) \).

Step 3: For \(i = 1 \) to \(k \), \[y' = y' \cup x_i' \]

Step 4: If \(y' \) is full then conclude that \(D \) is a dominating set.

Otherwise \(D \) is not a dominating set.

We prove the correctness and complexity of algorithm 2.5 in the following theorem.

Theorem 2.6

Algorithm 2.5 confirms a given proper subset \(D \) of vertices of a graph \(G \), a dominating set or not. Also this algorithm requires \(O(kn) \) cost of time, where \(k = |D| \) and \(n = |V| \).

Proof

Let \(D = \{x_1, x_2, \ldots, x_k\} \) be a given proper subset of vertices. Step: 2 initialize \(y' \) as null for pair wise \(\cup \) (cup) operation in step 3. Then \(y' = \bigcup_{i=1}^{k} x_i' \) is found by step 4. If \(\bigcup_{i=1}^{k} x_i' \) is full then by theorem 2.4, \(D \) is a dominating set of \(G \). If \(\bigcup_{i=1}^{k} x_i' \) is not full then by definition of link vector, at least one \(x_j \ (k + 1 \leq j \leq n) \) is not adjacent to any vertex of \(D \). In this case, \(D \) is not a dominating set.

Regarding its complexity, the algorithm collects \(LVs \ x_i' \ (1 \leq i \leq k) \) from the distance matrix. By the for loop, step 3 requires \(kn \) comparisons. Thus it requires \(O(kn) \) cost of time[4]. □

Next we develop an algorithm to find all minimum-dominating sets of a graph \(G \). In this algorithm, \(\gamma_0 \) denotes the integer closer to \(n/(\Delta+1) \).

Algorithm 2.7

(Minimum-dominating set Algorithm)

Input: A graph \(G = (V, E) \) with \(V(G) = \{x_1, x_2, \ldots, x_n\} \).

Output: \(D_j \)'s with \(\gamma \) vertices.

Step 1: For \(i = 1 \) to \(n \), find the link vector \(LV \) of each vertex \(x_i \); say \(x_i' \).

Step 2: Take \(k \leftarrow \gamma_0 \).

Step 3: Take all subsets \(D_j \) (1 \leq j \leq \binom{n}{k}) \) of \(V \) with \(k \) vertices.

Step 4: Check whether any \(D_j \) is a dominating set, using algorithm 2.5 (Step 1 to step 4).

Step 5: If any \(D_j \) is a dominating set then find all dominating sets with \(k \) vertices, using step 4 for all \(D_j \).

5.1: Conclude that the above dominating sets \(D_j \)'s are minimum. Stop.

Otherwise continue.

Step 6: Take \(k = k+1 \) and return to step 3.

We prove the correctness of algorithm 2.7 in the following theorem.

Theorem 2.8

Algorithm 2.7 correctly constructs all minimum-dominating sets of a graph \(G \).

Proof

A graph \(G = (V, E) \) is given with its distance matrix. By theorem 2.1, it is enough to investigate \(\gamma \) from the value \(\gamma_0 \), the closest integer to \(n/(\Delta+1) \). Hence initialize \(k = \gamma_0 \) and collect the set \(F_k \) of all subsets of \(k \) vertices. Then the cardinality of \(F_k \) is \(\binom{n}{k} \). Check whether any \(D_j \in F_k \) is a dominating set. For this purpose we use algorithm 2.5. We have already proved that algorithm 2.5 confirms all dominating sets. If any
one of \(D_j \in F_k \) is a dominating set then step 5 investigates all dominating sets of \(F_k \). Then our process will be completed. If no one of \(F_k \) is a dominating set then step 6 increases \(k \) by 1.

The process is repeated until we receive a dominating set. Since we start this algorithm with \(k = \gamma_0 \) we obtain all dominating sets with minimum cardinality.

By theorem 2.5, algorithm 2.7 correctly constructs all minimum-dominating sets of a graph \(G \).

Finally we develop the main algorithm to find the strong domination number of a graph \(G \).

Algorithm 2.9 (Strong Domination Number Algorithm)

Input: A graph \(G = (V, E) \) with \(V(G) = \{x_1, x_2, \ldots, x_n\} \).

Output: \(k \), the strong domination number.

Step 1: For \(i = 1 \) to \(n \),

- find the link vector \(x'_i \) of each vertex \(x_i \);

Step 2: For \(k = \gamma \) to \((n-\delta-1)\)

 2.1: Take all subsets \(D_j \)'s (1 \(\leq j \leq \binom{n}{k} \)) of \(V \) with \(k \) vertices.

 2.2: For \(j = 1 \) to \(\binom{n}{k} \)

 - Check whether \(D_j \) is a dominating set, using algorithm 2.5 (Step 1 to step 4).

 - If \(D_j \) is a dominating set, continue loop of step 2.

 - Otherwise continue loop of step 2

Step 3: Exit loop of step 2.

Step 4: Write the value of \(k \).

End.

Theorem 2.10

Algorithm 2.9 correctly determines the strong domination number of a graph \(G \).

Proof

By theorem 2.2, we can say that the value of \(k \) lies between \(\gamma \) and \((n - \delta)\). Using algorithm 2.5, Step 2.2 checks whether all \(D_j \)'s (1 \(\leq j \leq \binom{n}{k} \)) with \(k \) vertices are dominating sets. If all \(D_j \)'s are dominating sets (the required condition), then by definition the value of \(k \) is the strong domination number of the graph \(G \). Otherwise, Step 2 to step 2.2 will be repeated by increasing the value of \(k \) by 1. This recursive call continues still the required condition is satisfied. If the required condition is not satisfied for all values of \(k \) between \(\gamma \) and \((n - \delta -1)\) then we stop the investigation and conclude that the value of \(k \) is \((n - \delta)\). Hence algorithm 2.9 correctly determines the strong domination number of a graph \(G \).

Next we define a strong center and then we compute it using algorithms.

3. Strong centers

Definition 2.11

In a graph, a strong dominating set is a strong center.

Algorithm 2.12 (Strong center Algorithm)

Input: A graph \(G = (V, E) \) with \(V(G) = \{x_1, x_2, \ldots, x_n\} \).

Output: The strong center.

Step 1: For \(i = 1 \) to \(n \),

- find the link vector \(x'_i \) of each vertex \(x_i \);

Step 2: For \(k = \gamma \) to \((n-\delta-1)\)

 2.1: Take all subsets \(D_j \)'s (1 \(\leq j \leq \binom{n}{k} \)) of \(V \) with \(k \) vertices.

 2.2: For \(j = 1 \) to \(\binom{n}{k} \)

 - Check whether \(D_j \) is a dominating set, using algorithm 2.5 (Step 1 to step 4).

 - If \(D_j \) is a dominating set, continue loop of step 2.2.

 - Otherwise continue loop of step 2

Step 3: Exit loop of step 2.

Step 4: Write the value of \(k \).

End.

Algorithm 2.12 correctly determines the strong domination number of a graph \(G \), by theorem 2.10. The algorithm for finding strong centers is NP-complete[2].

Conclusion

We have designed algorithms to find the strong domination number of a graph \(G \). We have defined a strong center of a graph and found by strong dominating set. The algorithm for finding
strong center is NP-complete. A combinatorial algorithm can be developed for finding the strong center of a graph in future.

4. References