
[Volume 1 issue 9 Oct 2013]
Page No.238-244 ISSN :2320-7167

INTERNATIONAL JOURNAL OF MATHEMATICS AND
COMPUTER RESEARCH

IJMCR www.ijmcr.in| 1:9 |OCt|2013|238-244 | | 238

The role of point and ray picking shape

Algorithm in picking object in Non Immersive Virtual

world

K.Merriliance
 1

, Dr.M.Mohamed Sathik
2

1Lecturer, Department of MCA,

Sarah Tucker College (Autonomous),

Tirunelveli– 627007, Tamilnadu, India

merriliance@gmail.com

2Principal, Sadakathulla Appa College (Autonomous),

Tirunelveli– 627011, Tamilnadu,India

mmdsadiq@gmail.com

Abstract: Picking is an essential task and an interaction

technique in any interactive graphics application. In the field of

VR-like systems, conventional point and ray-picking algorithm is

still widely used. The algorithm gains its performance by utilizing

ray intersection checks to minimize the number of costly nearest

point calculations. To reduce these costly operations on the

precise VR world, we introduce an algorithm that performs ray

intersection test during user interactions. The algorithm is

gaining its performance by reducing these checks dramatically

compared to the naive approach where the checks are carried out

with each 3D cursor movement. The user can also query the

system to see how they can perform a specific task. In this paper I

wish to illustrate how the point and ray picking shape algorithm

works and helpful for the effective virtual object picking process.

Keywords: object picking, ray picking shape, Non immersive VE

1. Introduction
 Non Immersive VE calls 'artificial reality,' requires

no personal hardware. It can combine quite 'real' objects -

tree, whatever – with 'unreal' ones, such as animatronics

figures, holograms, disguised objects, optical illusions, etc

environment - a room, a simulator, etc. - where normal

sensory cues are not cut off, but are supplemented by

additional sounds, images, or other sensations. The

advantage of this type of VR is that it can be a communal

experience, with many people participating at once. In a

sophisticated enough environment, it might be difficult to

determine who the "real" participants are. In the virtual

environment there are virtual objects whose attributes have

to be represented and made interactive with the user by

sophisticated software mechanisms. Different parameters

define the perceptual shape, status and behaviour of the

virtual objects which are manipulability by the user. Other

attributes define the virtual environment itself and are

responsible for light, atmospheric, and physical effects

which can strongly differ from the user’s existing real world

conditions. One of the most basic elements in the complete

taxonomy of three-dimensional interaction is that of object

picking.

 That is, indicating one specific object in the virtual world.

Nearby objects can be directly picked by manually

positioning the spatial interaction device precisely inside its

observed graphical representation. The user can position the

device to control the origin of direct interaction, while the

device rotations control the direction of the ray for remote

interaction. To pick an object we can use a direction picking

or an item picking. In direction picking the user chooses a

direction to pick an object which can be picked whether it is

within reach or not. There are several ways. Item picking

includes all ways to pick an item from an enumerated list

and can be done by several methods: contact-pick, point to

pick, 3d-cursor pick, aperture pick, menu-pick, pick in a

virtual world name to pick, etc. Interaction with the virtual

environment can occur by keyboards, mice and trackballs or

may be enhanced by using 3D interaction devices

environments, user interfaces and interaction, and important

mailto:merriliance@gmail.com
mailto:mmdsadiq@gmail.com

IJMCR www.ijmcr.in| 1:9 |OCt|2013|238-244 | | 239

technologies used in VEs. Interactivity consists of functions

for navigation, manipulation, picking of objects or

information, and communication with other users within the

virtual world. A virtual environment is composed of objects,

which may be brought to life through their behavior and

interaction. Some objects will be static and have no

behavior. Some will have behaviour driven from the real

world, for example by a user. Alternatively, object behavior

may be procedurally defined in a computer program. By

replicating object behavior we reduce the dependency on the

network and therefore make better use of increasing

responsiveness.

2. Object picking process
 The concept of non immersive Virtual Reality is a

three-dimensional, computer-generated environment that

allows for single or multiple users to interact, navigate,

respond, and experience a synthesized world modeled from

the real world. It incorporates the interaction within a VE or

virtual world by the help of various peripheral devices in

order to achieve a multi-sensory and multi-modal

experience. The user interaction in the system is divided into

two different parts. The first one implements the implicit

interaction and is used for inspection of 3D models and for

navigation through them. The second one implements other

user interaction possibilities like object picking and

movement or menu handling. For instance if the non

immersive virtual environment contains a car, the car door

can be given dynamic properties and constrained to allow

them to rotate about their hinges through a specified angle.

The user opens a door by moving the icon of the 3D mouse

towards the position of the doors handle. When the user

activates a button on the mouse, the picking of the door is

confirmed. This is called picking. 3D objects, which are

determined by the number of polygons, shading, lighting,

texture resolution etc. Picking means objects can be picked

from a Virtual world there could be thousands of objects.

The transformation of the 2D mouse position to a 3D

location in the virtual world is an important process in

picking. Because computer display is really a regenerated

2D view of the underlying 3D world.

 Early systems replicated object states but not their

behavior. Each state change to any object was sent across

the network to every replication. The development of object

picking algorithms has become a popular area of research in

recent years with many applications developed. Since, many

picking algorithms are being proposed, objectively

measuring the efficiency of a picking algorithm has become

necessary for comparing the performance of object picking

algorithms. We may pick object within a specific bound

which can be updated dynamically depending on changes in

the view point of a user with in the 3D world using mouse.

Clicking a mouse will create an appropriate picking bound

at a 3D coordinate associated with the current mouse

position. Object within a bound is picked. When no

bounding box intersects with the picking ray, no object is

picked. Now that we have the ability to put objects in virtual

world and move around them, it would also be nice to be

able to choose which object we are focused on. One method

of doing this would be to click on the object on the screen

and have the camera refocus itself around that object. This

method of choosing an object from the screen with the

mouse is called picking. The first thing we have to write

code for setting up the framework for picking and we need

to do is have some input from the mouse to play with and

see if an object in our scene was clicked on. The first part of

picking is simply getting the mouse clicks and sending them

on to our scene. The second thing is for getting the Scene to

pick all of our Objects and to write the next part of the

picking function, converting the 2D point into a 3D ray by

projecting it using an inverse matrix we will create by taking

a few settings. The method for finding out whether an object

was hit by the ray is much simpler to implement. All we

have to do is convert the ray into the local coordinates of the

model we are checking and have the built in Mesh. Intersect

function tells us whether we have hit home or not. Now our

engine will successfully test any mesh based objects that we

load and report back with a true or false whether that object

was clicked on or not. It will also set the clicked on object to

be active in the scene so we can access it and play with other

things once we know what was clicked.

 The shape of a 3D object is commonly

represented by a polygonal mesh, in which the vertices of

the polygons provide depth information on the object

surface. While smooth surfaces are represented by a smaller

number of vertices, surfaces with more detail are

represented by a higher number of vertices. Given an

adequate number of polygons, we are able to describe

complex geometry with high precision. Nevertheless,

complex models demand large storage, and long computing

and rendering time, which may not be suitable for

interactive visualization. The performance of graphics

systems can thus be measured in terms of the number of

polygons (or vertices) updated per second. In other words,

the number of vertices in a model is a good evaluation

metric.

3 Basics of point and ray picking shape algorithm

 Picking the correct 3D objects is the direction of the

picking shape and the virtual world coordinate perspective

projection. This method of choosing an object from the

screen with the mouse is called picking. The first thing we

have to write code for setting up the framework for picking

and we need to do is have some input from the mouse to

play with and see if an object in our scene was clicked on.

The first part of picking is simply getting the mouse clicks

and sending them on to our scene. The second thing is for

getting the Scene to pick all of our Objects and to write the

next part of the picking function, converting the 2D point

into a 3D ray by projecting it using an inverse matrix we

will create by taking a few settings. The method for finding

out whether an object was hit by the ray is much simpler to

implement because DirectX does a lot of this for us. All we

have to do is convert the ray into the local coordinates of the

model we are checking and have the built in Mesh. Intersect

function tell us whether we have hit home or not. Now our

engine will successfully test any mesh based objects that we

load and report back with a true or false whether that object

was clicked on or not. It will also set the clicked on object to

be active in the scene so we can access it and play with other

things once we know what was clicked. An important task

of the interactive 3D environment component is to find

geometric correlates for the semantic meaning of deictic

IJMCR www.ijmcr.in| 1:9 |OCt|2013|238-244 | | 240

terms, such as “that,” “here,” and “there,” as well as to

facilitate picking of objects. The ray is de-fined by the

virtual camera position and the 2D mouse pointer on the

image plane. By intersecting the objects in the scene with

the ray, it is determined which one is picked? Not only

objects but also their topological elements, i.e. faces, edges,

vertices, can be picked, which is especially important in

CAD. In virtual environments 3D picking and/or grabbing is

typically performed by bounding box checks or collision

detection taking the position of a virtual hand and the

objects into account.

 Pick Ray: It is the most basic picking shape and will pick an

object in the same way as a penetrating a ray or radiation.

The picking ray extends in the scene infinitely in a specific

direction and an object intersected will be picked. Here we

obtain local mouse and eye position from the view plane to

3D coordinate. The normalized ray direction that projects

infinitely into the scene is then calculated. The closest

intersected object is retrieved. The user clicks on the screen

at point A. The object that is picked is to determine as there

is only one along the projected vector indicated by the

dashed line. A simple casting of the vector into the scene

graph will reveal what object has been picked and our pick

system will return a reference to it. When picking an object,

typically we are not interested in the entire scene graph tree

to that object, just the actual object that was picked. Since

the object is a visible item, it has no children and the end of

the path is the picked object. The picked item can never be

an item in the middle of the path. Using the pick ray it picks

many objects. How can we determine the exact object? Pick

ray segment overcome this problem. This method maintain a

certain degree by using only a ray with appropriate starting

and ending point. We have to provide the eye direction,

choose two end points of the pick segment. Picking the

correct 3D object is to find the direction of the picking shape

and the virtual world coordinates of the starting point.

4 ray picking shape algorithm

Getting target object is difficulty for users

interacting with these environments. With ray picking we

usually simplify a scene into bounding spheres or boxes.

This makes the calculation a bit easier than testing all of the

individual triangles. We don't need to create a 3d sphere out

of triangles that can be rendered; we just represent the

sphere as a simple function. The premise is that we have a

mathematical formula for the points along a ray, and a

mathematical formula for the points on a sphere. If we

substitute the points on the sphere with the equation for

points on a ray, then we get the intersection of points that

are common to both. It's interesting to do this technique now

because it shows us how we can use the transformation

pipeline in reverse; from 2d screen to a 3d word space by

using the inverse of our matrices. In a 3D environment,

there may be more than one object under the mouse pointer

when it is clicked. Normally, the user's intention is to pick

the object which is visible at this point. The general

approach will be to use the mouse coordinates to generate

corresponding points on the near-plane and far-plane in

world coordinates. These points will form a ray. The ray will

be compared against every object. For intersection if more

than one object is intersected, the object nearest the viewer

is picked. We may pick object within a specific bound

which can be updated dynamically depending on changes in

the view point of a user with in the 3D world using mouse.

Clicking a mouse will create an appropriate picking bound

at a 3D coordinate associated with the current mouse

position.

 Object within a bound is

picked. When no bounding box intersects with the picking

ray, no object is picked. We will be making it so that you

can "pick up" and move objects after you have placed them.

You can use the showBoundingBox method to create a box

around objects. Our basic idea is to disable the bounding

box on the old current object when the mouse is first

clicked, then enable the bounding box as soon as we have

the new object. This approach, which utilizes other

structures in the scene, typically uses a ray from the eye

point through the current pixel to identify the first

intersection point with the scene. This intersection is then

used to compute the position of the 3D object. A ray along

the current mouse position is then used to find the places in

the scene where the constraints are fulfilled and the object is

close to the cursor position. Therefore, we keep the pick ray

connected to the object, but gradually straighten the ray

every time the movement of the user’s hand decreases the

angle to the object, whereas the object’s position is

unchanged. It adds the ability to navigate through a virtual

environment or the capability of picking up objects, or

otherwise interacting with objects found in the virtual

environment, and the basis for the enthusiasm for the

technology becomes readily apparent. Now that we have the

ability to put objects in virtual world and move around them,

IJMCR www.ijmcr.in| 1:9 |OCt|2013|238-244 | | 241

it would also be nice to be able to choose which object we

are focused on.

 One method of doing this would be to click on the

object on the screen and have the camera refocus itself

around that object. This method of choosing an object from

the screen with the mouse is called picking. The first thing

we have to write code for setting up the framework for

picking and we need to do is have some input from the

mouse to play with and see if an object in our scene was

clicked on. The first part of picking is simply getting the

mouse clicks and sending them on to our scene. The second

thing is to convert the 2D point into a 3D ray by projecting it

using an inverse matrix we will create by taking a few

settings. The method for finding out whether an object was

hit by the ray is much simpler to implement. Intersect

function tell us whether we have hit home or not. Now our

engine will successfully test whether that object was clicked

on or not. It will also set the clicked on object to be active in

the scene so we can access it and play with other things once

we know what. It can be used to discover the object at any

X, Y, Z position on the screen. The user clicks the mouse .It

Captures the X, Y and Z position of the click.

 Mouse picking, as the most intuitive way

to interact with 3D scenes, is in many interactive 3D

graphics applications, such as mesh editing, geometry

painting and 3D games. This method is used to calculate the

exact intersection information, that is, the barycentric

coordinate in the intersected triangle. The mouse picking

operation can be performed by an ordinary ray-object

intersection test and accelerated by lots of schemes for high

efficiency. It is possible to triangulate the bounding boxes of

objects as strips and to cull away objects that are positioned

out of the view. mouse picking operation takes the screen

coordinate of the cursor and the scene to be as input, and

outputs the intersection information, such as object id,

triangle id, and even the barycentric coordinate of the

intersection point.

Algorithm

Step 1: Once the user clicks on the screen, compute

the picking ray origin and direction in the view coordinate

system.

Step 2: After the view the bounding boxes consist

 of the visible objects.

Step 3: The bounding boxes of all sub-objects

whose corresponding query returns true.

Again we pass query for each sub-object.

Step 4: For all the surfaces in the 3D part do

1. Determine whether the mouse lies on the

plane by calling the module Pick_Pt_Lies

On()

2. If yes, Set the found Flag and store its

distance to eye in the buffer

distance=sqrt((cx-bpx)2+(cy-bpy)2+(cz-

bpz)2);cx,cy,cz-cursor point ;bpx,bpy,bpz-

boundary point of an object.

 3. Else go to the next surface

Step 5: Sort all the object by its distance

Step 6: Return the top most object from the buffer.

 Lastly, if the occlusion query passes, the triangle

with the minimal distance from the eye-point is picked and

its intersection information can be retrieved from the target.

. Figure 2: ray picking in the non immersive Virtual World

This algorithm performs the object-space-based

ray-triangle intersection test and output a point with picking

information if the object is intersected. The - and -

components of the intersection point are set to 0, and the -

component is assigned as the depth value of the point. Then

the point is passed and Output the picking information

directly in the picked object as a result, the intersection

information is obtained. The intersection test is conducted in

the view space and if it is passed, the - and -components

of its position coordinate are 0 because the render target

used in our algorithm is only one-pixel in size. The -

component is the depth value which is obtained by

IJMCR www.ijmcr.in| 1:9 |OCt|2013|238-244 | | 242

transforming the distance value into the projection space.

Figure 2 show the projection of pick ray in the non

immersive virtual world.Intersection of this ray with the

objects of the virtual world is computed. The visual object

intersecting closest to the image plate is picked for

interaction while interacting with the closest visual object is

the most common picking application; picking operations

are not limited to picking the closest visual object. Some

picking operations produce a list of all intersected objects. In

some cases the interaction is not directly with the picked

object, but with an object along the scene graph path to the

object.

5 Conic volume picking algorithm

This algorithm uses bounding boxes to calculate

conic volume intersections. Pick the object that corresponds

to the pixel at the mouse cursor position. All pickable

objects are rendered twice. The second render pass assigns

unique object identifiers instead of colors. To adapt this

method to 3D picking we change the projection and view

matrices of the second render pass to correspond to the

position and orientation of a pointing device. Hence, the

perspective view frustum of the pointing device represents a

conic picking volume. The opening angle of the picking

volume can be adjusted by changing the field of view of the

perspective projection. Visible pixels of the objects within

the picking volume will be recorded by their identifiers in

the off-screen buffer. Pixel based object statistics can then

be applied to choose the active object. The user can pick

objects that are located within spotlight's cone. To pick

among more objects contained in the cone, it is possible to

use a conic volume technique (Figure 3). It is a modification

of ash light technique where the picking of objects within

the cone is done using a collision plane.

Figure 3: Conic volume technique in Object picking

The conic volume is determined by the position and

orientation of the pointer’s tip, its orientation and a spread angle.

First, we determine which objects are within the range of this

volume. For every object in the scene, every frame, we perform an

"inside"-test of the object and the conic volume. In our current

proof-of-concept we limit our test to the bounding box of an object,

which is typical for the objects in our user tests. We transform the

object’s center point position and radius to the co-ordinate system

of the pointer. In this co-ordinate system we can easily derive the

projection distance on the ray (dr) and the distance from this

projected point to the pointer’s position (dp). Figure 3 shows a

three-dimensional schematic overview of object P inside the conic

volume. Point P lies on a two-dimensional cross section of the

cone. This is a circular surface, with the ray defining both its center

point and normal, while the radius is determined by the cone spread

angle and distance dp.

dr = dist= sqrt((cx-bpx[i])2 + (cy-bpy[i])2 + (cz-bpz[i])2)

 dp = z (2)

If the angle defined by these two distances, is smaller than the o to

be inside of the conic volume. For these objects a scoring value

will be calculated, while other objects will be ignored in the

following stage. pening angle of our cone, we consider the object

The Picking behavior enables picking objects in the scene. A pick

in 3D is usually carried out as Ray Pick. The virtual camera

position and the 2D mouse pointer on the image plane define the

ray. By intersecting the objects in the scene with the ray, it is

determined which one is picked.

Figure 4: picking volume test

 Objects available in the second phase is the basic

interaction task corresponds to an indivisible unit of information

that is meaningful in the context of the application. Typical

composite tasks for interactive 3D applications are model

construction and direct manipulations on this model. This

component provides two basic functionalities: the maintenance of

picking state and the identification mechanism. The identification

occurs when a user “clicks” a pointing device over the output of a

IJMCR www.ijmcr.in| 1:9 |OCt|2013|238-244 | | 243

camera. This process first detects whether that action occurred on

top of some graphic primitive. If that happened, then the element

that contains such primitive is located. The bounding box dragger

allows direct interaction with its eight vertices, twelve edges, and

six faces. In implementing our bounding box manipulator, we

assigned scaling to vertices, rotation to edges, and translation to

faces. Two consecutive positions of a vertex are mapped into a

scaling factor. Two consecutive points over an edge are mapped

into a rotation about an axis, being parallel to the picked edge and

passing through the center of the bounding box. Each pixel position

contains a value that is either zero or an integer number (ID) that

corresponds to an object. Since we set up the projection and

transformations according to the center pixel position c

corresponds to the centre of the picking cone. A popular scoring

metric for instance used by the projected distance d between the

cone center and an object at pixel position p which is

 d = ||c− p||2.

 Picking visual object using conic type of shape will be

advantageous if the object has a cross section or size that is too

small to be picked or intersected by a line. To illustrate the use of

pick cone ray which has a picking shape that corresponds to a cone

with infinite length. Smaller object to be easily picked. To make it

easier to pick lines and points, the ray can be augmented to be a

cone or a cylinder. Things that are picked must fall within this

cone, as follows:

 For points and lines, if any part of the shape falls within this

cone, it is picked.

 For all other shapes, the ray itself must intersect the shape for

it to be picked.

The main benefits of this method are:

(1) It is easy to implement. Additional implementation

code is kept to a minimum.

(2) It reduces picking ambiguity.

3) Bounding volumes can significantly reduce occlusion

problem

4) This technique allows the easy integration of picking

of non-transparent object

5. Ray picking shape algorithm vs conic volume

picking algorithms

Ray-casting and cone-casting are by far the most popular distant

picking algorithms. Attached to the user’s virtual pointer there is a

virtual ray or a small object. The closest object that intersects with

this ray or cone becomes picked. This algorithm allows the user to

easily pick objects at a distance, just by pointing at them. As the

algorithm relates to a flashlight in real life, and since flashlights

have no force feedback, to our opinion, introducing force feedback

will not improve the interaction. The ‘picking volume’ is defined

as the cone between the user’s eye point and the aperture cursor.

This algorithm in fact improves the cone-casting by reducing the

rotation movements of the ray by simple translations of the

aperture cursor. Another way a programmer can reduce the

computation of picking is to use bounds intersection testing instead

of geometric intersection testing. The determination of a pick using

the bounds is significantly easier for all but the simplest geometric

shapes and therefore, results in better performance. The measured

time was analyzed with a paired t-test. Algorithms associated with

this course, time complexity comparisons are more interesting than

space complexity comparisons. A measure of the amount of time

required to execute an algorithm. Feasibility determination of these

algorithms is based on estimating the mean time. Time complexity

expresses the relationship between the size of the input and the run

time to pick an object. When comparing two algorithms that

perform the same task, we often just concentrate on the differences

between algorithms based on Average case for a successful search

and pick the exact object from the virtual world. Detection Rate

and Ray picking shape algorithm, which only measures the

correspondence in the objects which are inside the bounding box

and the objects detected by the picking algorithm with no reference

on how the objects are picked in the non immersive virtual world.

Thus, Ray picking shape algorithm provides information that

allows for detection of errors that affect post-tracking processes

Now suppose that we detect and measure features of the object U

and represent them as Uj, j = 1, ... , N. where N is the number of

objects. The distance may be either Euclidean or any weighted

combination of features. In general, we compute the distance(dist)

of the object from class j as given by

Suppose that we have a scene g[i, j] and we wish to detect its an

object f[i,j]. The impact of virtual object depends on the distance

between the virtual scene and the viewer. Even though distance is

an important factor in perceived quality, we eliminate this factor in

the current version of our proposed evaluation metric by keeping a

fixed distance. Then we scale objects to the largest possible size on

a large monitor to allow observers to have better depth perception.

An obvious thing to do is to place the scene at a location in an

object and to detect its presence at that point by comparing

intensity values in the scene with the corresponding values in the

object. The sum of the squared errors is the most popular measure.

In the case of object picking, this measure can be computed

indirectly and computational cost can be reduced. MSE is a good

predictor for view-independent perceptual quality of 3D objects.

Mean Square Error (MSE) is commonly used as a quality predictor.

MSE is defined as:

where p0 is the original virtual scene consist of set of 3D objects,

Pc is the picked object, M and N are the width and height of the

object respectively.

IJMCR www.ijmcr.in| 1:9 |OCt|2013|238-244 | | 244

Table 1: Time needed to complete the task and precision of

 the resulting models.

The time to complete the task in the Ray picking shape algorithm

found significantly lower compared to the time needed with a

Conic volume picking algorithm in Object picking process. The

mean square error was 3.80 (S.D. 2.55) in the conic volume

picking algorithm compared to 2.90 (S.D. 1.35) at the Ray picking

shape algorithm. Although Ray picking shape algorithm converges

within even fewer iterations, the overall time is slightly more

because one iteration takes more computation due to the additional

parameter estimation. From this result, we recommend Ray picking

shape algorithm for more robustness, and provides faster

performance. SD is the standard deviation, of r at each picked

object, where N is the number of objects.

---------------------(1)

The overall standard deviation is calculated as in Equation (1).

Fortunately, evaluation errors in the results are small and do not

change the overall property of the non immersive virtual scene. It is

therefore important to note that Ray picking shape algorithm

should only be used to estimate perceptual quality of objects for

which geometry is an important component of perceived shape.

Figure 6: An analytical chart between Ray picking shape

Algorithm Vs conic volume Algorithm

6. Conclusion

The performed user study implies that picking 3D object can be

performed faster in ray picking shape algorithm without loss of

precision. Furthermore the study has shown that even users without

a strong virtual reality background can achieve good reliable

results in non immersive virtual environments. Using the ray

picking shape algorithm will further increase the robustness and

reduce the computational costs. The results provide an initial

understanding of how these factors affect selection performance.

Furthermore, the results showed that our new techniques

adequately allowed users to select targets which were not visible

from their initial viewpoint. Our analysis indicated that our

introdu

ced

visual

feedbac

k

played

the

most

critical role in aiding the picking task. Study results have shown the

performance of the ray picking shape algorithm was to be slightly

better than the performance of the conic volume technique. To

efficiently evaluate the performance of the algorithm the features

and behaviour of the object must be analyzed. From the results

presented in the graph need to include information about object

label, size, and location for performance evaluation of the

algorithm is illustrated. The comparison algorithm performs

maximization of the posterior parameters of all known objects. We

plan to increase the strength of our findings by increasing the

number of 3D objects in the model. We also want to check whethe

ray picking shape algorithm was to be slightly better than the

performance of the conic volume shape algorithm.

References

[1] D. A. Bowman and L. F. Hodges. An evaluation of

techniques for grabbing and manipulating remote objects

in immersive virtual environments. In Proc. SI3D 1997,

page 35ff., 1997.

[2] Tobias Rick GPU Implementation of 3D Object Selection by

Conic Volume Techniques in Virtual Environments

[3] Taylor II, R., et al., “The Nanomanipulator: A Virtual-

RealityInterface for a Scanning Tunneling Microscope”,

ComputerGraphics Proceedings, ACM Siggraph, pp. 127-

133, 1993.
[4] Sebastian Knodel.” Navidget for Virtual Environments”

Proceedings of the 2008 ACM symposium on Virtual reality

software and technology.

[5] Williams, G., McDowell, I. E. and M. T. Bolas. Human scale

interaction for virtual model displays: A clear case for real

tools. In Proc. Of The Engineering Reality of Virtual Reality.

[6] Wu, 2002. shin - ting, marcel abrantes, daniel tost, and harlen

costa batagelo ”picking for 3d objects”.

[7] Wu, X. 1992. A linear time simple bounding volume

algorithm. In Graphics Gems III, David Kirk, Ed., chapter

VI, pages 301–306.Academic Press, San Diego, CA.

[8] Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F.

Computer Graphics: Principles and Practice.Addison-

Wesley, 1990.

 [9] Neider, J., Davis, T., and Woo, M. Open GL Programming

Guide: The Official Guide to Learning OpenGL, release 1.

Addison-Wesley, 1993.

[10] Mine.”Virtual Environment Interaction Technique”

 [11] Herman: “Virtual reality a new technology: A new tool

for personal selection”. Journal of neurosurgery, 2002.

[12] A. Steed. Towards a general model for selection in virtual

environments. In 3DUI ’06: Proceedings of the 3D User

Interfaces, pages103–110, 2006.

[13] A. Ulinski, C. Zanbaka, Z. Wartell, P. Goolkasian, and

L. Hodges.Two handed selection techniques for volumetric data. In

3DUI ’07:Proceedings of the 3D

Matching type MSE) S.D

Ray picking shape

algorithm
2.90 1.35

Conic volume picking

algorithm
3.80 2.55

	more

