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Abstract 
 

The present paper is devoted to derive some 

threshold theorems for a two species model 

comprising a prey and a predator.  Predator is 

provided with a limited resource of food in 

addition to the prey and the prey is harvested 

under optimal conditions.  In consonance with the 

principle of competitive exclusion Gauss, three 

theorems and ten lemmas has been derived. The 

model is characterized by a couple of first order 

non-linear ordinary differential equations. 

 

1 Introduction 

 

Ecology relates to the study of living beings 

in relation to their living styles.  Research in the 

area of theoretical ecology was initiated by Lotka 

[1] and by Volterra [2].  Since then many 

mathematicians and ecologists contributed to the 

growth of this area of knowledge as reported in 

the treatises of Meyer [3], Kushing [4], Paul 

colinvaux [5], Kapur [6] etc.  The ecological 

interactions can be broadly classified as Prey – 

predation, Competition, Commensalim, 

Ammensalism, Neutralism and so on.  

N.C.Srinivas [7] studied competitive eco-systems 

of two species and three species with limited and 

unlimited resources.  Later, Lakshminarayan and 

Pattabhi Ramacharyulu [8] studied some threshold 

theorems for a Prey-predator model harvesting.  

Recently, the present author et al [9-12] 

investigated mutualism between two species.  

 

2 Basic equations 

 

The model equations for a two species prey-

predator system are given by the following system 

of non-linear ordinary differential equations 

employing the following notation: 

1N  and 2N are population of the prey and 

predator, 1a  and 2a  are the rates of natural growth 

of the prey and predator, 11  is rate of decrease of 

the prey due to insufficient food, 12  is rate of 

decrease of the prey due to successful attacks by 

the predator, 22  is rate of decrease of the 

predator due to insufficient food other than the 

prey, 21  is rate of increase of the predator due to 

successful attacks on the prey, 1q  is the catch 

ability co-efficient of the prey, E is the harvesting 

effort and 1q EN1 is the catch-rate function based 

on the  CPUE (catch-per-unit-effort) hypothesis]. 

Further both the variables 1N and 2N are non-

negative and the model parameters     

1a , 2a , 11 , 12 , 21 , 22 , 1q , E and  1 1a q E  are 

assumed to be non-negative constants. Employing 

the above terminology, the model equations for a 

two species prey-predator system is given by the 

following system of non-linear ordinary 

differential equations. 

(i) Equation for growth rate of  

      prey species ( 1N ):     

21
1 1 11 1 12 1 2 1 1

dN
a N N N N q EN

dt
      

  21
1 1 1 11 1 12 1 2

dN
a q E N N N N

dt
                                                    

(2.1) 

(ii) Equation for the growth rate of predator 

species ( 2N ): 

22
2 2 22 2 21 1 2

dN
a N N N N

dt
          (2.2) 

 

3 Equilibrium states 

 

The system under investigation has four 

equilibrium states:                                                                                     
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I. The fully washed out state with the 

equilibrium point 
21

0; 0N N        

           (3.1)          

II. The state in which, only the predator 

survives and the prey is washed out. 

            The equilibrium point       

             is
1

0N  ; 2

2

22

a
N


            (3.2) 

III.      The state in which, only the prey 

           survives and the predator is            washed 

out                  

           The equilibrium point 

           is
 1 1

1

11

a q E
N





 ;
2

0N       (3.3) 

IV.      The co-existent state (normal steady 

state). The equilibrium point is 

            22 1 1 2 12

1

11 22 12 21

( )a q E a
N

 

   

 



;      

             2 11 21 1 1

2

11 22 12 21

( )a a q E
N

 

   

 



                 

               (3.4) 

 This state would exit only when   

 22 1 1 2 12a q E a                                                

 

4 Threshold theorems  
In consonance with the principle of 

competitive exclusion, Gauss [13] three Threshold 

theorems one for each of the above three not-fully 

washed equilibrium states has been deduced. The 

equations are: 

 
 1 1 11

1 1 1 2
1

,
a q E NdN

k N N
dt k




        

 

 2 2 2
2 2 2 1

2

dN a N
k N N

dt k
             (4.1) 

where    
 1 1

1

11

a q E
k




 ; 2

2

22

a
k


 ;  

 
12

1

1 1a q E


 


   and     21

2

2a


    

Theorem 1: Principle of Competitive Exclusion 

for Equilibrium State II: 

1
0N  ; 2

2

22

a
N


  

When 1 2k k , then every solution 1 2( ), ( )N t N t of 

(4.1)  approaches the equilibrium solution 

1 1N k , 2 0N   as t approaches infinity. In other 

words, if species 1 and 2 are nearly identical and 

the microcosm can support more members of 

species 1 than species 2, then species 2 will 

ultimately becomes extinct. 

Proof: The first step in proving this is to show 

that 1 ( )N t  and 2 ( )N t  can never become negative. 

To this end, observe that 

 
 1 1

1 1
1

1 1 1

 t

(0)
( )

(0) (0)
a q E

k N
N t

N k N e
 



 

    and  

2 ( ) 0N t              (4.2) 

 is a solution of (4.1) for any choice of 1 (0)N . The 

orbit of this solution in the 1 2N N  plane is the 

point (0, 0) for 1(0) 0N  ; the line 1 10 N k  , 

2 0N   for 1 10 (0)N k  ; the point 1( ,0)k  for 

1 1(0)N k ; and the line 1 1k N   , 2 0N   for 

1 1(0)N k . Thus the 1N  axis, for 1 0N  , is the 

union of four distinct orbits of (4.1).Similarly, the 

2N  axis, for 2 0N  , is the union of four distinct 

orbits of (4.1).This implies that 1 2( ), ( )N t N t  of 

(4.1) which start in the first quadrant 

 1 2( ) 0, 0N t N   of the 1 2N N  plane must 

remain there for all future time. 

The second step is to split the first 

quadrant into regions in which both 1dN

dt
 and 

2dN

dt
 have fixed signs. This is accomplished in the 

following manner. 

Let 1l and 2l  be the lines 

 1 1 1 2 0k N N               (4.3) 

and  

 2 2 2 1 0k N N                (4.4) 

These lines are non-parallel and non-intersecting 

in 1 2-N N  plane respectively (Ref.Fig.1). Observe 

that 1dN

dt
 is negative if 1 2( , )N N lies above 1l  and 

positive if 1 2( , )N N  lies below 1l . Similarly, 2dN

dt
 

is negative if 1 2( , )N N  lies above 2l  and positive 

if 1 2( , )N N  lies below 2l . Thus the two lines 1l  and 

2l  split the first quadrant of the 1 2N N  plane 

into three regions in which both 1dN

dt
 and 2dN

dt
 

have fixed signs. Both 1 2( ), ( )N t N t  increases with 
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time (along any solution of (4.1) in region I ; 

1 ( )N t  increases and 2 ( )N t  decreases with time in 

region II ; and both 1 ( )N t  and 2 ( )N t  decrease 

with time in region III . This is illustrated in Fig.1 

Fig.1 

Finally we require the following three lemmas for 

establishing the threshold theorems. 

Lemma 1: Any solution of 1 ( )N t , 2 ( )N t  of (4.1) 

which starts in region I at time 0t t  must leave 

this region I at some latter instant of time (Fig..1). 

Proof: Suppose that a solution 1 ( )N t , 2 ( )N t  of 

(4.1) remain in region I for all time 0t t . This 

implies that both 1 ( )N t  and 2 ( )N t  are monotonic 

increasing functions of time for 0t t , with 1 ( )N t  

and 2 ( )N t  less than 2k . Consequently both 1 ( )N t  

and 2 ( )N t  have limits ,  respectively, as t 

approaches infinity. This, in turn, implies that 

( , )   is an equilibrium point of (4.1). Now the 

only equilibrium points of (4.1) are (0, 0), ( 1k , 0), 

(0, 2k ) and ( , )  obviously cannot equal any of 

these three points. We conclude, therefore, that 

any solution 1 2( ), ( )N t N t of (4.1) which starts in 

region I must leave this region at a later time. 

Lemma 2: Any solution of 1 2( ), ( )N t N t  of (4.1) 

which starts in region II at time 0t t  will remain 

in this region for all future time 0t t , and 

ultimately approach the equilibrium solution 

1 1N k , 2 0N  (Fig.1). 

Proof: Suppose that a solution 1 2( ), ( )N t N t  of 

(4.1) leaves region II at time *t t . Then either 

1 ( *)
dN

t
dt

 or 2 ( *)
dN

t
dt

 is zero, since the only way a 

solution of (4.1) can leave region II is by crossing 

1l  or 2l . Assume that 1 ( *) 0
dN

t
dt

 . Differentiation 

both sides of the first equation of (4.1) with 

respect to t and setting *t t  gives  
2

1 1 1 1 1 2

1

( *) ( ) ( *) ( *)d N t a q E N t dN t

dt k dt

 
                            

This quantity is positive. Hence 1 ( )N t  has a 

minimum at *t t . However, this is impossible, 

since 1 ( )N t  is increasing whenever a solution of 

1 2( ), ( )N t N t  of (4.1) is in region II.  

Similarly, if 2 ( *) 0
dN

t
dt

 ,  

then 
2

12 2 2 2

2

( *) ( *)
( *)

d N t a N t dN
t

dt k dt


 .                  

                         (4.7) 

This quantity is negative, implying that 2 ( )N t  has 

a maximum at *t t , but this is impossible, since 

2 ( )N t  is decreasing whenever a solution 

1 2( ), ( )N t N t  of (4.1) is in region II. 

The previous argument shows that any 

solution 1 2( ), ( )N t N t  of (4.1) which starts in 

region II at time 0t t  will remain in region II for 

all future time 0t t . This implies that 1 ( )N t  is 

monotonic increasing and 2 ( )N t is monotonic 

decreasing for 0t t ; with 1 1( )N t k  

and 2 2( )N t k . Consequently, both 1 ( )N t  and 

2 ( )N t  have limits ,  respectively, as t 

approaches infinity. This in turn, implies that 

( , )   is an equilibrium point of (4.1). Now ( , )   

obviously cannot equal (0, 0) or 2(0, )k . 

Consequently, 1( , ) ( ,0)k    and this proves 

Lemma 2. 

Lemma 3: Any solution of 1 2( ), ( )N t N t  of (4.1) 

which starts in region III at time  0t t  and 

remains there for all future time must approach 

the equilibrium solution 1 1( )N t k , 2 ( ) 0N t   as t 

approaches infinity (Fig.1). 

Proof: If a solution 1 2( ), ( )N t N t  of (4.1) remains 

in region III for 0t t , then both 1 ( )N t  and 2 ( )N t  

are monotonic decreasing functions of time for 

0t t , with 1 1( )N t k  and 2 2( )N t k , 

consequently, both 1 ( )N t  and 2 ( )N t  have limits 

 ,  respectively, as t approaches infinity. This, 

in turn implies that ( , )   is an equilibrium point 
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of (4.1). Now, ( , )   obviously cannot equal (0, 

0) or 2(0, )k . Consequently 1( , ) ( ,0)k   . 

Proof of Theorem: Lemmas 1 and 2 state that 

every solution ( 1 2( ), ( )N t N t ) of (4.1) which starts 

in region I or II at time 0t t  must approach the 

equilibrium solution 1 1N k , 2 0N   as t 

approaches infinity. Similarly, Lemma 3 shows 

that every solution ( 1 2( ), ( )N t N t ) of (4.1) which 

starts in region III at time 0t t  and remains there 

for all future time must also approach equilibrium 

solution 1 1N k , 2 0N  . Next, observe that any 

solution ( 1 2( ), ( )N t N t ) of (4.1) which starts on 1l  

or 2l  would soon enter region II. Finally, if a 

solution ( 1 2( ), ( )N t N t  ) of (4.1) leaves region III, 

then it must crosses the line 1l  and immediately 

afterwards enters region II. Lemma 2 then forces 

the solution to approach the equilibrium 

solution 1 1N k , 2 0N  . This is illustrated in the 

Fig.2. 

 
Fig.2 

Theorem 2: Principle of Competitive Exclusion 

for Equilibrium State III: 

 1 1

1

11

a q E
N




 ;

2
0N   

When 1 2k k , then every solution 1 2( ), ( )N t N t of 

(4.1) approaches the equilibrium solution 

1 0N  , 22N k  as t approaches infinity. In other 

words, if species 1 and 2 are nearly identical and 

the microcosm can support more members of 

species 1 than species 2, then species 2 will 

ultimately becomes extinct. 

Proof: The first step in our proof is to show that 

1 ( )N t  and 2 ( )N t  can never become negative. To 

this end, we observe that 

1 0N  and 

 

2 2
2  

2
2 2 2

(0)
( )

- t
(0) (0)

k N
N t

a
N k N e


 

 

is a solution of (4.1) for any choice of 2 (0)N . The 

orbit of this solution in the 1 2N N  plane is the 

point (0, 0) for 2 (0)N =0; the line 1 10 N k  , 

1( 0)N   for 2 20 (0)N k  ; the point 2(0, )k  for 

2 2(0)N k ; and the line 2 2k N   , 1 0N   for 

2 2(0)N k . Thus the 2N  axis, for 2 0N  , is the 

union of four distinct orbits of (4.1). Similarly, the 

1N  axis, for 1 0N  , is the union of four distinct 

orbits of (4.1). This implies that 1 2( ), ( )N t N t  of 

(4.1) which starts in the first quadrant 

 1 2( ) 0, 0N t N   of the 1 2N N  plane must 

remain there for all future time. 

The second step in our proof is to split the first 

quadrant into regions in which both 1dN

dt
 and 

2dN

dt
 have fixed signs. This is accomplished in the 

following manner. 

Let 1l and 2l  be the lines  1 1 1 2 0k N N    and 

 2 2 2 1 0k N N    respectively. Observe that 

1dN

dt
 is negative if 1 2( , )N N lies above 1l  and 

positive if 1 2( , )N N  lies below 1l . Similarly, 2dN

dt
 

is negative if 1 2( , )N N  lies above 2l  and positive 

if 1 2( , )N N  lies below 2l . Thus the two parallel 

lines 1l  and 2l  split the first quadrant of the 

1 2N N  plane into three regions in which both 

1dN

dt
 and 2dN

dt
 have fixed signs. Both 

1 2( ), ( )N t N t increases with time along any 

solution of (4.1)  in region I ; 1 ( )N t  increases and 

2 ( )N t  decreases with time in region II ; and both 

1 ( )N t  and 2 ( )N t  decrease with time in 

region III (Ref. Fig.3). We require the following 

three lemmas. 
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Fig.3 

Lemma 4: Any solution of 1 ( )N t , 2 ( )N t  of .4.1) 

which starts in region I at time 0t t  must leave 

this region I at some latter time. (Fig.3) 

Proof: Suppose that a solution 1 ( )N t , 2 ( )N t  of 

(4.1) remain in region I for all time 0t t . This 

implies that both 1 ( )N t  and 2 ( )N t  are monotonic 

increasing functions of time for 0t t , with 1 ( )N t  

and 2 ( )N t  less than 2k . Consequently both 1 ( )N t  

and 2 ( )N t  have limits ,  respectively, as t 

approaches infinity. This, in turn, implies that 

( , )   is an equilibrium point of (4.1). Now the 

only equilibrium points of (4.1) are (0, 0), ( 1k ,0), 

(0, 2k ) and obviously ( , )   cannot equal any of 

these three points. We conclude, therefore, that 

any solution 1 2( ), ( )N t N t of (4.1) which starts in 

region I must leave this region at a later time. 

Lemma 5: Any solution of 1 2( ), ( )N t N t  of (4.1) 

which starts in region II at time 0t t  will remain 

in this region for all future time 0t t , and 

ultimately approach the equilibrium 

solution 1 0N  , 2 2N k (Fig.3). 

Proof: Suppose that a solution 1 2( ), ( )N t N t  of 

(4.1) leaves region II at time *t t . Then either 

1 ( *)
dN

t
dt

 or 2 ( *)
dN

t
dt

 is zero, since the only way a 

solution of (4.1) can leave region II is by crossing 

1l  or 2l . Assume that 1 ( *) 0
dN

t
dt

 . Differentiation 

both sides of the first equation of (4.1) with 

respect to t and setting *t t  gives  

 2
1 1 1 11 2

1

( *)( *) ( *)a q E N td N t dN t

dt k dt

 
              

This quantity is positive. Hence 1 ( )N t  has a 

minimum at *t t . However, this is impossible, 

since 1 ( )N t  is increasing whenever a solution of 

1 2( ), ( )N t N t  of (4.1) is in region II.  

Similarly, if 2 ( *) 0
dN

t
dt

 , 

 then
2

12 2 2 2

2

( *) ( *)
( *)

d N t a N t dN
t

dt k dt


 .                                               

This quantity is negative, implying that 2 ( )N t  has 

a maximum at *t t , but this is impossible, since 

2 ( )N t  is decreasing whenever a solution 

1 2( ), ( )N t N t  of (4.1) is in region II. 

The previous argument shows that any 

solution 1 2( ), ( )N t N t  of (4.1) which starts in 

region II at time 0t t  will remain in region II for 

all future time 0t t . This implies that 1 ( )N t  is 

monotonic increasing and 2 ( )N t is monotonic 

decreasing for 0t t ; with 1 1( )N t k  

and 2 2( )N t k . Consequently, both 1 ( )N t  and 

2 ( )N t  have limits ,  respectively, as t 

approaches infinity. This in turn, implies that 

( , )   is an equilibrium point of (4.1). Now ( , )   

obviously cannot equal (0, 0) or 2(0, )k . 

Consequently, 2( , ) (0, )k    and this proves 

Lemma 5. 

Lemma 6: Any solution of 1 2( ), ( )N t N t  of (4.1) 

which starts in region III at time  0t t  and 

remains there for all future time must approach 

the equilibrium solution 1( ) 0N t  , 2 2( )N t k  as t 

approaches infinity (Fig 3). 

Proof: If a solution 1 2( ), ( )N t N t  of (4.1)  remains 

in region III for 0t t , then both 1 ( )N t  and 2 ( )N t  

are monotonic decreasing functions of time for 

0t t , with 1 1( )N t k  and 2 2( )N t k , 

consequently, both 1 ( )N t  and 2 ( )N t  have limits 

 ,  respectively, as t approaches infinity. This, 

in turn implies that ( , )   is an equilibrium point 

of (4.1). Now, ( , )   obviously cannot equal (0, 

0) or ,1( 0)k . Consequently 2( , ) (0, )k   . 

Proof of Theorem: Lemmas 4 and 5 state that 

every solution 1 2( ), ( )N t N t  of (4.1) which starts in 

region I or II at time 0t t  must approach the 

equilibrium solution 1 0N  , 2 2N k  as t 
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approaches infinity. Similarly, Lemma 6 shows 

that every solution 1 2( ), ( )N t N t  of (4.1) which 

starts in region III at time 0t t  and remains there 

for all future time must also approach equilibrium 

solution 1 0N  , 2 2N k . Next, observe that any 

solution 1 2( ), ( )N t N t  of (4.1) which starts on 1l  or 

2l  must immediately afterwards enter region II. 

Finally, if a solution 1 2( ), ( )N t N t  of (4.1) leaves 

region III, then it must cross the line 1l  and 

immediately afterwards enter region II. Lemma 5 

then forces the solution to approach the 

equilibrium solution 1 0N  , 2 2N k .This is 

illustrated in Fig.4. 

 
Fig.4 

       

Theorem 3: Principle of Competitive Exclusion 

for Equilibrium State IV: 

1 1 22 2 12

1

11 22 12 21

( )a q E a
N

 

   

 



;  

2 11 1 1 21

2

11 22 12 21

( )a a q E
N

 

   

 



 

When 1

2

1

k
k


  and 2

1

2

k
k


 , then every solution of 

1 2( ), ( )N t N t of (4.1) approaches the equilibrium 

solution 11( )N t N ( 0 ) and 22 ( )N t N ( 0 ) as 

t approaches infinity. In other words, if species 1 

and 2 are nearly identical and the microcosm can 

support both the members of species 1 and 2 

depending up on the initial conditions. 

Proof: The first step in our proof is to show that 

1 ( )N t  and 2 ( )N t can never become negative. To 

this end, observe that 

1 1 22 2 12
1 1

11 22 12 21

( )
( )

a q E a
N t N

 

   

 
 


and 

2 11 1 1 21
2 2

11 22 12 21

( )
( )

a a q E
N t N

 

   

 
 


 

is a solution of (4.1) for any choice of 1 (0)N . The 

orbit of this solution in the 1 2N N plane is the 

point (0, 0) for 1(0) 0N  ; the line 1 10 N k  , 

2 0N   for 1 10 (0)N k  ; the point 1( ,0)k  for 

1 1(0)N k ; and the line 1 1k N   , 2 0N   for 

1 1(0)N k . Thus the 1N axis, for 1 0N   is the 

union of four distinct orbits of (4.1). Similarly the 

2N axis, for 2 0N  , is the union of four distinct 

orbits of (4.1). This implies that all solutions 

1 2( ), ( )N t N t of (4.1) which start in the first 

quadrant  1 2( ) 0, 0N t N   of the 1 2N N plane 

must remain there for all future time. 

The second step in our proof is to split the first 

quadrant into regions in which both 1dN

dt
and 2dN

dt
 

have fixed signs. This is accomplished in the 

following manner. 

Let 1l and 2l be the lines  1 1 1 2 0k N N    and 

 2 2 2 1 0k N N   respectively and the point of 

their intersection, is 1 2( , )N N . Observe that 1dN

dt
is 

negative if 1 2( , )N N  lies above the line 1l  and 

positive if 1 2( , )N N  lies below 1l . Similarly, 2dN

dt
 

is negative if 1 2( , )N N lies above 2l  and positive if 

1 2( , )N N lies below 2l . Thus the two lines 1l  and 2l  

split the first quadrant of the 1 2N N plane into 

four regions in which both 1dN

dt
 and 2dN

dt
 have 

fixed signs. 

1 2( ), ( )N t N t  both increase with time along any 

solution of (4.1)  in region I; 

1 ( )N t  increases and 2 ( )N t decreases with time in 

region II;  

1 ( )N t  decreases and 2 ( )N t increases with time in 

region III  

 and both 1 ( )N t and 2 ( )N t  decrease with time in 

region IV.  In this region both the prey predator 

compete with each other but do not flourish and at 

the same time do not get extinct as shown in 

Fig.5. 
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Fig.5 

 

Finally we require the following four lemmas. 

Lemma 7: Any solution of 1 2( ), ( )N t N t of (4.1) 

which starts in region I at time 0t t  will remain 

in this region for all future time 0t t , and 

ultimately approach the equilibrium solution 

1 1( )N t N , 2 2( )N t N (Fig 5). 

Proof: Suppose that a solution 1 2( ), ( )N t N t  of 

(4.1) leaves region I at time *t t . Then either 

1 ( *)
dN

t
dt

 or 2 ( *)
dN

t
dt

 is zero, since the only way a 

solution of (4.1) can leave region I is by crossing 

1l  or 2l . Assume that 1 ( *) 0
dN

t
dt

 . Differentiation 

both sides of the first equation of (4.1) with 

respect to t and setting *t t  gives  

 
 2

1 1 1 11 2

1

( *)( *) ( *)a q E N td N t dN t

dt k dt

 
  

< 0                        

Hence 1 ( )N t  is monotonic increasing and it has 

maximum whenever a solution of 1 2( ), ( )N t N t  of 

(4.1) is in region I.  

Similarly, if 2 ( *) 0
dN

t
dt

 , then 

2
12 2 2 2

2

( *) ( *)
( *)

d N t a N t dN
t

dt k dt


 <0                                   

implies that 2 ( )N t  is monotonic increasing and it 

has maximum whenever a solution 1 2( ), ( )N t N t  of 

(4.1) is in region I. 

If a solution 1 2( ), ( )N t N t  of (4.1) remains in 

region I for 0t t , then both 1 ( )N t  and 2 ( )N t  are 

monotonic increasing functions of time for 0t t , 

with 1 1( )N t k  and 2 2( )N t k , consequently, 

both 1 ( )N t  and 2 ( )N t  have limits  ,  

respectively, as t approaches infinity. This, in turn 

implies that ( , )   is an equilibrium point of (4.1). 

Now, ( , )   obviously cannot equal (0, 0); 1( ,0)k  

or 2(0, )k . Consequently
1 2

( , ) ( , )N N   . 

Lemma 8: Any solution of 1 2( ), ( )N t N t of (4.1) 

which starts in region II at time 0t t  will remain 

in this region for all future time 0t t , and 

ultimately approach the equilibrium solution 

1 1( )N t N , 2 2( )N t N (Fig 5). 

Proof: Suppose that a solution 1 2( ), ( )N t N t  of 

(4.1) leaves region II at time *t t . Then either 

1( *)dN t

dt
 or 2 ( *)dN t

dt
 is zero, since the only way a 

solution of (4.1) can leave region II is by crossing 

1l  or 2l . Assume that 1( *)dN t

dt
=0. Differentiation 

both sides of the first equation of (4.1) with 

respect to t and setting *t t  gives  

 2
1 1 1 11 2

1

( *)( *) ( *)a q E N td N t dN t

dt k dt

 
                      

This quantity is positive. Hence 1 ( )N t  has a 

minimum at *t t . However, this is impossible, 

since 1 ( )N t  is increasing whenever a solution of 

1 2( ), ( )N t N t  of (4.1) is in region II.  

Similarly, if 2 ( *)dN t

dt
=0, 

then 
2

12 2 2 2

2

( *) ( *)
( *)

d N t a N t dN
t

dt k dt


                        

This quantity is negative, implying that 2 ( )N t  has 

a maximum at *t t , but this is impossible, since 

2 ( )N t  is decreasing whenever a solution 

1 2( ), ( )N t N t  of (4.1) is in region II. 

The previous argument shows that any 

solution 1 2( ), ( )N t N t  of (4.1) which starts in 

region II at time 0t t  will remain in region II for 

all future time 0t t . This implies that 1 ( )N t  is 

monotonic increasing and 2 ( )N t is monotonic 

decreasing for 0t t ; with 1 1( )N t k  

and 2 2( )N t k . Consequently, both 1 ( )N t  and 

2 ( )N t  have limits ,  respectively, as t 

approaches infinity. This in turn, implies that 

( , )   is an equilibrium point of (4.1). Now ( , )   

obviously cannot equal (0, 0); ( 10, k ) or 2(0, )k . 



B. Ravindra Reddy  IJMCR www.ijmcr.in| 1:3 April|2013|129-137 |  136 

 

Consequently, 
1 2

( , ) ( , )N N    and this proves 

Lemma 8. 

Lemma 9: Any solution of 1 2( ), ( )N t N t of (4.1) 

which starts in region III at time 0t t  will 

remain in this region for all future time 0t t , and 

ultimately approach the equilibrium solution 

1 1( )N t N , 2 2( )N t N (Fig 5). 

Proof: Suppose that a solution 1 2( ), ( )N t N t  of 

(4.1) leaves region III at time *t t . Then either 

1( *)dN t

dt
 or 2 ( *)dN t

dt
 is zero, since the only way a 

solution of (4.1) can leave region II is by crossing 

1l  or 2l . Assume that 1( *)dN t

dt
=0. Differentiation 

both sides of the first equation of (4.1) with 

respect to t and setting *t t  gives  

 2
1 1 1 11 2

1

( *)( *) ( *)a q E N td N t dN t

dt k dt

 
 This 

quantity is negative. Hence 1 ( )N t  has a maximum 

at *t t . However, this is impossible, since 

1 ( )N t  is decreasing whenever a solution of 

1 2( ), ( )N t N t  of (4.1) is in region II.  

Similarly, if 2 ( *)dN t

dt
=0, 

then  
2

12 2 2 2

2

( *) ( *)
( *)

d N t a N t dN
t

dt k dt


  

This quantity is positive, implying that 2 ( )N t  has 

a minimum at *t t , but this is impossible, since 

2 ( )N t  is increasing whenever a solution 

1 2( ), ( )N t N t  of (4.1) is in region III. 

The previous argument shows that any 

solution 1 2( ), ( )N t N t  of (4.1) which starts in 

region III at time 0t t  will remain in region III 

for all future time 0t t . This implies that 1 ( )N t  is 

monotonic increasing and 2 ( )N t is monotonic 

decreasing for 0t t ; with 1 1( )N t k  

and 2 2( )N t k . Consequently, both 1 ( )N t  and 

2 ( )N t  have limits ,  respectively, as t 

approaches infinity. This in turn, implies that 

( , )   is an equilibrium point of (4.1). Now ( , )   

obviously cannot equal (0, 0);( 10, k ) 

or 2(0, )k . Consequently, 
1 2

( , ) ( , )N N   and 

this proves Lemma 9. 

Lemma 10: Any solution of 1 2( ), ( )N t N t of (4.1) 

which starts in region VI at time 0t t  will remain 

in this region for all future time 0t t , and 

ultimately approach the equilibrium solution 

1 1( )N t N , 2 2( )N t N (Fig 5). 

Proof: Suppose that a solution 1 2( ), ( )N t N t  of 

(4.1) leaves region VI at time *t t . Then either 

1( *)dN t

dt
 or 2 ( *)dN t

dt
 is zero, since the only way a 

solution of (4.1) can leave region I is by crossing 

1l  or 2l . Assume that 1( *)dN t

dt
=0. Differentiation 

both sides of the first equation of (4.1) with 

respect to t and setting *t t  gives  

 2
1 1 1 11 2

1

( *)( *) ( *)a q E N td N t dN t

dt k dt

 
  This 

quantity is positive. Hence 1 ( )N t  is monotonic 

decreasing and it has minimum whenever a 

solution of 1 2( ), ( )N t N t  of (4.1) is in region VI.  

Similarly, if 2 ( *)dN t

dt
=0, 

then   
2

12 2 2 2

2

( *) ( *)
( *)

d N t a N t dN
t

dt k dt


 .                 

This quantity is positive, implying that 2 ( )N t  is 

monotonic decreasing and it has minimum 

whenever a solution 1 2( ), ( )N t N t  of (4.1) is in 

region VI. 

If a solution 1 2( ), ( )N t N t  of (4.1) remains 

in region VI for 0t t , then both 1 ( )N t  and 2 ( )N t  

are monotonic decreasing functions of time for 

0t t , with 1 1( )N t k  and 2 2( )N t k , 

consequently, both 1 ( )N t  and 2 ( )N t  have limits 

 ,  respectively, as t approaches infinity. This, 

in turn implies that ( , )   is an equilibrium point 

of (4.1). Now, ( , )   obviously cannot equal (0, 

0); 1( ,0)k  or 2(0, )k .  

Consequently
1 2

( , ) ( , )N N   . 

Proof of Theorem: Lemmas 7,8,9and 10 state 

that every solution 1 2( ), ( )N t N t  of (4.1) which 

starts in region I ,II III or VI at time 0t t  and 

remains there for all future time must also 

approach equilibrium solution 11( )N t N , 

22 ( )N t N  as t approaches infinity. Next, 
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observe that any solution 1 2( ), ( )N t N t  of (4.1) 

which starts on 1l  or 2l  must immediately 

afterwards enter regions I, II, III or VI. Finally the 

solution approaches the equilibrium 

solution 1 1( )N t N , 2 2( )N t N . This is illustrated 

in Fig. 6. 

 
Fig.6 
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