Some Threshold Theorems for a Prey-Predator Model with an Optimal Harvesting of the Prey

B. Ravindra Reddy
Department of Mathematics, JNTUHCEJ, Nachupally, Karimnagar District, India
Email: rbollareddy@gmail.com

Abstract

The present paper is devoted to derive some threshold theorems for a two species model comprising a prey and a predator. Predator is provided with a limited resource of food in addition to the prey and the prey is harvested under optimal conditions. In consonance with the principle of competitive exclusion Gauss, three theorems and ten lemmas has been derived. The model is characterized by a couple of first order non-linear ordinary differential equations.

1 Introduction

Ecology relates to the study of living beings in relation to their living styles. Research in the area of theoretical ecology was initiated by Lotka [1] and by Volterra [2]. Since then many mathematicians and ecologists contributed to the growth of this area of knowledge as reported in the treatises of Meyer [3], Kushing [4], Paul colinvaux [5], Kapur [6] etc. The ecological interactions can be broadly classified as Prey predation, Competition, Commensalim, Ammensalism, Neutralism and so on. N.C.Srinivas [7] studied competitive eco-systems of two species and three species with limited and unlimited resources. Later, Lakshminarayan and Pattabhi Ramacharyulu [8] studied some threshold theorems for a Prey-predator model harvesting. Recently, the present author et al [9-12] investigated mutualism between two species.

2 Basic equations

The model equations for a two species preypredator system are given by the following system of non-linear ordinary differential equations employing the following notation:
N_{1} and N_{2} are population of the prey and predator, a_{1} and a_{2} are the rates of natural growth of the prey and predator, α_{11} is rate of decrease of the prey due to insufficient food, α_{12} is rate of decrease of the prey due to successful attacks by the predator, α_{22} is rate of decrease of the predator due to insufficient food other than the prey, α_{21} is rate of increase of the predator due to successful attacks on the prey, q_{1} is the catch ability co-efficient of the prey, E is the harvesting effort and $q_{1} E N_{l}$ is the catch-rate function based on the CPUE (catch-per-unit-effort) hypothesis].
Further both the variables N_{1} and N_{2} are nonnegative and the model parameters $a_{1}, a_{2}, \alpha_{11}, \alpha_{12}, \alpha_{21}, \alpha_{22}, q_{1}, E$ and $\left(a_{1}-q_{1} E\right)$ are assumed to be non-negative constants. Employing the above terminology, the model equations for a two species prey-predator system is given by the following system of non-linear ordinary differential equations.
(i) Equation for growth rate of prey species (N_{1}):

$$
\begin{align*}
& \frac{d N_{1}}{d t}=a_{1} N_{1}-\alpha_{11} N_{1}^{2}-\alpha_{12} N_{1} N_{2}-q_{1} E N_{1} \\
& \Rightarrow \frac{d N_{1}}{d t}=\left(a_{1}-q_{1} E\right) N_{1}-\alpha_{11} N_{1}^{2}-\alpha_{12} N_{1} N_{2} \tag{2.1}
\end{align*}
$$

(ii) Equation for the growth rate of predator species (N_{2}):
$\frac{d N_{2}}{d t}=a_{2} N_{2}-\alpha_{22} N_{2}^{2}+\alpha_{21} N_{1} N_{2}$

3 Equilibrium states

The system under investigation has four equilibrium states:
I. The fully washed out state with the equilibrium point $\bar{N}_{1}=0 ; \bar{N}_{2}=0$
II. The state in which, only the predator survives and the prey is washed out. The equilibrium point

$$
\begin{equation*}
\text { is } \bar{N}_{1}=0 ; \bar{N}_{2}=\frac{a_{2}}{\alpha_{22}} \tag{3.2}
\end{equation*}
$$

III. The state in which, only the prey survives and the predator is
washed
out
The equilibrium point

$$
\begin{equation*}
\text { is } \bar{N}_{1}=\frac{\left(a_{1}-q_{1} E\right)}{\alpha_{11}} ; \bar{N}_{2}=0 \tag{3.3}
\end{equation*}
$$

IV. The co-existent state (normal steady
state). The equilibrium point is

$$
\begin{gather*}
\bar{N}_{1}=\frac{\alpha_{22}\left(a_{1}-q_{1} E\right)-a_{2} \alpha_{12}}{\alpha_{11} \alpha_{22}+\alpha_{12} \alpha_{21}} \\
\bar{N}_{2}=\frac{a_{2} \alpha_{11}+\alpha_{21}\left(a_{1}-q_{1} E\right)}{\alpha_{11} \alpha_{22}+\alpha_{12} \alpha_{21}} \tag{3.4}
\end{gather*}
$$

This state would exit only when $\alpha_{22}\left(a_{1}-q_{1} E\right)>a_{2} \alpha_{12}$

4 Threshold theorems

In consonance with the principle of competitive exclusion, Gauss [13] three Threshold theorems one for each of the above three not-fully washed equilibrium states has been deduced. The equations are:
$\frac{d N_{1}}{d t}=\frac{\left(a_{1}-q_{1} E\right) N_{1}}{k_{1}}\left\{k_{1}-N_{1}-\beta_{1} N_{2}\right\}$,
$\frac{d N_{2}}{d t}=\frac{a_{2} N_{2}}{k_{2}}\left\{k_{2}-N_{2}-\beta_{2} N_{1}\right\}$
where $k_{1}=\frac{\left(a_{1}-q_{1} E\right)}{\alpha_{11}} ; k_{2}=\frac{a_{2}}{\alpha_{22}} ;$
$\beta_{1}=\frac{\alpha_{12}}{\left(a_{1}-q_{1} E\right)} \quad$ and $\quad \beta_{2}=-\frac{\alpha_{21}}{a_{2}}$
Theorem 1: Principle of Competitive Exclusion for Equilibrium State II:
$\bar{N}_{1}=0 ; \bar{N}_{2}=\frac{a_{2}}{\alpha_{22}}$
When $k_{1}>k_{2}$, then every solution $N_{1}(t), N_{2}(t)$ of (4.1) approaches the equilibrium solution $N_{1}=k_{1}, N_{2}=0$ as t approaches infinity. In other
words, if species 1 and 2 are nearly identical and the microcosm can support more members of species 1 than species 2 , then species 2 will ultimately becomes extinct.
Proof: The first step in proving this is to show that $N_{1}(t)$ and $N_{2}(t)$ can never become negative.
To this end, observe that
$N_{1}(t)=\frac{k_{1} N_{1}(0)}{N_{1}(0)+\left(k_{1}-N_{1}(0)\right) e^{-\left(a_{1}-q_{1} E\right) t}}$
and
$N_{2}(t)=0$
is a solution of (4.1) for any choice of $N_{1}(0)$. The orbit of this solution in the $N_{1}-N_{2}$ plane is the point $(0,0)$ for $N_{1}(0)=0$; the line $0<N_{1}<k_{1}$, $N_{2}=0$ for $0<N_{1}(0)<k_{1}$; the point $\left(k_{1}, 0\right)$ for $N_{1}(0)=k_{1}$; and the line $k_{1}<N_{1}<\infty, N_{2}=0$ for $N_{1}(0)>k_{1}$. Thus the N_{1} axis, for $N_{1} \geq 0$, is the union of four distinct orbits of (4.1). Similarly, the N_{2} axis, for $N_{2} \geq 0$, is the union of four distinct orbits of (4.1).This implies that $N_{1}(t), N_{2}(t)$ of (4.1) which start in the first quadrant $\left(N_{1}(t)>0, N_{2}>0\right)$ of the $N_{1}-N_{2}$ plane must remain there for all future time.

The second step is to split the first quadrant into regions in which both $\frac{d N_{1}}{d t}$ and $\frac{d N_{2}}{d t}$ have fixed signs. This is accomplished in the following manner.
Let l_{1} and l_{2} be the lines
$\left(k_{1}-N_{1}-\beta_{1} N_{2}\right)=0$
and
$\left(k_{2}-N_{2}-\beta_{2} N_{1}\right)=0$
These lines are non-parallel and non-intersecting in $N_{1}-N_{2}$ plane respectively (Ref.Fig.1). Observe that $\frac{d N_{1}}{d t}$ is negative if $\left(N_{1}, N_{2}\right)$ lies above l_{1} and positive if $\left(N_{1}, N_{2}\right)$ lies below l_{1}. Similarly, $\frac{d N_{2}}{d t}$ is negative if $\left(N_{1}, N_{2}\right)$ lies above l_{2} and positive if $\left(N_{1}, N_{2}\right)$ lies below l_{2}. Thus the two lines l_{1} and l_{2} split the first quadrant of the $N_{1}-N_{2}$ plane into three regions in which both $\frac{d N_{1}}{d t}$ and $\frac{d N_{2}}{d t}$ have fixed signs. Both $N_{1}(t), N_{2}(t)$ increases with
time (along any solution of (4.1) in region I; $N_{1}(t)$ increases and $N_{2}(t)$ decreases with time in region II ; and both $N_{1}(t)$ and $N_{2}(t)$ decrease with time in region III . This is illustrated in Fig. 1

Fig. 1
Finally we require the following three lemmas for establishing the threshold theorems.
Lemma 1: Any solution of $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region I at time $t=t_{0}$ must leave this region I at some latter instant of time (Fig..1).
Proof: Suppose that a solution $N_{1}(t), N_{2}(t)$ of (4.1) remain in region I for all time $t \geq t_{0}$. This implies that both $N_{1}(t)$ and $N_{2}(t)$ are monotonic increasing functions of time for $t \geq t_{0}$, with $N_{1}(t)$ and $N_{2}(t)$ less than k_{2}. Consequently both $N_{1}(t)$ and $N_{2}(t)$ have limits ξ, η respectively, as t approaches infinity. This, in turn, implies that (ξ, η) is an equilibrium point of (4.1). Now the only equilibrium points of (4.1) are $(0,0),\left(k_{1}, 0\right)$, $\left(0, k_{2}\right)$ and (ξ, η) obviously cannot equal any of these three points. We conclude, therefore, that any solution $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region I must leave this region at a later time.
Lemma 2: Any solution of $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region II at time $t=t_{0}$ will remain in this region for all future time $t \geq t_{0}$, and ultimately approach the equilibrium solution $N_{1}=k_{1}, N_{2}=0$ (Fig.1).
Proof: Suppose that a solution $N_{1}(t), N_{2}(t)$ of (4.1) leaves region $I I$ at time $t=t^{*}$. Then either $\frac{d N_{1}}{d t}\left(t^{*}\right)$ or $\frac{d N_{2}}{d t}\left(t^{*}\right)$ is zero, since the only way a solution of (4.1) can leave region II is by crossing
l_{1} or l_{2}. Assume that $\frac{d N_{1}}{d t}\left(t^{*}\right)=0$. Differentiation both sides of the first equation of (4.1) with respect to t and setting $t=t *$ gives

$$
\frac{d^{2} N_{1}\left(t^{*}\right)}{d t}=\frac{-\left(a_{1}-q_{1} E\right) \beta_{1} N_{1}\left(t^{*}\right)}{k_{1}} \frac{d N_{2}\left(t^{*}\right)}{d t}
$$

This quantity is positive. Hence $N_{1}(t)$ has a minimum at $t=t^{*}$. However, this is impossible, since $N_{1}(t)$ is increasing whenever a solution of $N_{1}(t), N_{2}(t)$ of (4.1) is in region II.

Similarly, if $\frac{d N_{2}}{d t}\left(t^{*}\right)=0$,
then

$$
\begin{equation*}
\frac{d^{2} N_{2}\left(t^{*}\right)}{d t}=\frac{-a_{2} \beta_{2} N_{2}\left(t^{*}\right)}{k_{2}} \frac{d N_{1}}{d t}\left(t^{*}\right) . \tag{4.7}
\end{equation*}
$$

This quantity is negative, implying that $N_{2}(t)$ has a maximum at $t=t^{*}$, but this is impossible, since $N_{2}(t)$ is decreasing whenever a solution $N_{1}(t), N_{2}(t)$ of (4.1) is in region II.

The previous argument shows that any solution $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region II at time $t=t_{0}$ will remain in region II for all future time $t \geq t_{0}$. This implies that $N_{1}(t)$ is monotonic increasing and $N_{2}(t)$ is monotonic decreasing for $t \geq t_{0}$; with $\quad N_{1}(t)<k_{1}$ and $N_{2}(t)>k_{2}$. Consequently, both $N_{1}(t)$ and $N_{2}(t)$ have limits ξ, η respectively, as t approaches infinity. This in turn, implies that (ξ, η) is an equilibrium point of (4.1). Now (ξ, η) obviously cannot equal $(0,0)$ or $\left(0, k_{2}\right)$. Consequently, $(\xi, \eta)=\left(k_{1}, 0\right)$ and this proves Lemma 2.
Lemma 3: Any solution of $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region III at time $t \geq t_{0}$ and remains there for all future time must approach the equilibrium solution $N_{1}(t)=k_{1}, N_{2}(t)=0$ as t approaches infinity (Fig.1).
Proof: If a solution $N_{1}(t), N_{2}(t)$ of (4.1) remains in region III for $t \geq t_{0}$, then both $N_{1}(t)$ and $N_{2}(t)$ are monotonic decreasing functions of time for $t \geq t_{0}$, with $\quad N_{1}(t)>k_{1} \quad$ and $\quad N_{2}(t)>k_{2}$, consequently, both $N_{1}(t)$ and $N_{2}(t)$ have limits ξ, η respectively, as t approaches infinity. This, in turn implies that (ξ, η) is an equilibrium point
of (4.1). Now, (ξ, η) obviously cannot equal $(0$, 0) or $\left(0, k_{2}\right)$. Consequently $(\xi, \eta)=\left(k_{1}, 0\right)$.
Proof of Theorem: Lemmas 1 and 2 state that every solution ($\left.N_{1}(t), N_{2}(t)\right)$ of (4.1) which starts in region I or $I I$ at time $t=t_{0}$ must approach the equilibrium solution $N_{1}=k_{1}, \quad N_{2}=0 \quad$ as t approaches infinity. Similarly, Lemma 3 shows that every solution $\left(N_{1}(t), N_{2}(t)\right)$ of (4.1) which starts in region III at time $t=t_{0}$ and remains there for all future time must also approach equilibrium solution $N_{1}=k_{1}, N_{2}=0$. Next, observe that any solution ($\left.N_{1}(t), N_{2}(t)\right)$ of (4.1) which starts on l_{1} or l_{2} would soon enter region II. Finally, if a solution $\left(N_{1}(t), N_{2}(t)\right)$ of (4.1) leaves region III, then it must crosses the line l_{1} and immediately afterwards enters region II. Lemma 2 then forces the solution to approach the equilibrium solution $N_{1}=k_{1}, N_{2}=0$. This is illustrated in the Fig.2.

Fig. 2
Theorem 2: Principle of Competitive Exclusion for Equilibrium State III:
$\bar{N}_{1}=\frac{\left(a_{1}-q_{1} E\right)}{\alpha_{11}} ; \bar{N}_{2}=0$
When $k_{1}<k_{2}$, then every solution $N_{1}(t), N_{2}(t)$ of (4.1) approaches the equilibrium solution $N_{1}=0, N_{2}=k_{2}$ as t approaches infinity. In other words, if species 1 and 2 are nearly identical and the microcosm can support more members of species 1 than species 2 , then species 2 will ultimately becomes extinct.
Proof: The first step in our proof is to show that $N_{1}(t)$ and $N_{2}(t)$ can never become negative. To this end, we observe that
$N_{1}=0$ and $N_{2}(t)=\frac{k_{2} N_{2}(0)}{N_{2}(0)+\left(k_{2}-N_{2}(0)\right) e^{-a_{2} t}}$
is a solution of (4.1) for any choice of $N_{2}(0)$. The orbit of this solution in the $N_{1}-N_{2}$ plane is the point $(0,0)$ for $N_{2}(0)=0$; the line $0<N_{1}<k_{1}$, $N_{1}(=0)$ for $0<N_{2}(0)<k_{2}$; the point $\left(0, k_{2}\right)$ for $N_{2}(0)=k_{2}$; and the line $k_{2}<N_{2}<\infty, N_{1}=0$ for $N_{2}(0)>k_{2}$. Thus the N_{2} axis, for $N_{2} \geq 0$, is the union of four distinct orbits of (4.1). Similarly, the N_{1} axis, for $N_{1} \geq 0$, is the union of four distinct orbits of (4.1). This implies that $N_{1}(t), N_{2}(t)$ of (4.1) which starts in the first quadrant $\left(N_{1}(t)>0, N_{2}>0\right)$ of the $N_{1}-N_{2}$ plane must remain there for all future time.
The second step in our proof is to split the first quadrant into regions in which both $\frac{d N_{1}}{d t}$ and $\frac{d N_{2}}{d t}$ have fixed signs. This is accomplished in the following manner.
Let l_{1} and l_{2} be the lines $\left(k_{1}-N_{1}-\beta_{1} N_{2}\right)=0$ and $\left(k_{2}-N_{2}-\beta_{2} N_{1}\right)=0$ respectively. Observe that $\frac{d N_{1}}{d t}$ is negative if $\left(N_{1}, N_{2}\right)$ lies above l_{1} and positive if $\left(N_{1}, N_{2}\right)$ lies below l_{1}. Similarly, $\frac{d N_{2}}{d t}$ is negative if $\left(N_{1}, N_{2}\right)$ lies above l_{2} and positive if $\left(N_{1}, N_{2}\right)$ lies below l_{2}. Thus the two parallel lines l_{1} and l_{2} split the first quadrant of the $N_{1}-N_{2}$ plane into three regions in which both $\frac{d N_{1}}{d t}$ and $\frac{d N_{2}}{d t}$ have fixed signs. Both $N_{1}(t), N_{2}(t)$ increases with time along any solution of (4.1) in region $I ; N_{1}(t)$ increases and $N_{2}(t)$ decreases with time in region $I I$; and both $N_{1}(t)$ and $N_{2}(t)$ decrease with time in region III (Ref. Fig.3). We require the following three lemmas.

Fig. 3
Lemma 4: Any solution of $N_{1}(t), N_{2}(t)$ of .4.1) which starts in region I at time $t=t_{0}$ must leave this region I at some latter time. (Fig.3)
Proof: Suppose that a solution $N_{1}(t), N_{2}(t)$ of (4.1) remain in region I for all time $t \geq t_{0}$. This implies that both $N_{1}(t)$ and $N_{2}(t)$ are monotonic increasing functions of time for $t \geq t_{0}$, with $N_{1}(t)$ and $N_{2}(t)$ less than k_{2}. Consequently both $N_{1}(t)$ and $N_{2}(t)$ have limits ξ, η respectively, as t approaches infinity. This, in turn, implies that (ξ, η) is an equilibrium point of (4.1). Now the only equilibrium points of (4.1) are $(0,0),\left(k_{1}, 0\right)$, $\left(0, k_{2}\right)$ and obviously (ξ, η) cannot equal any of these three points. We conclude, therefore, that any solution $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region I must leave this region at a later time.
Lemma 5: Any solution of $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region II at time $t=t_{0}$ will remain in this region for all future time $t \geq t_{0}$, and ultimately approach the equilibrium solution $N_{1}=0, N_{2}=k_{2}$ (Fig.3).
Proof: Suppose that a solution $N_{1}(t), N_{2}(t)$ of (4.1) leaves region II at time $t=t^{*}$. Then either $\frac{d N_{1}}{d t}\left(t^{*}\right)$ or $\frac{d N_{2}}{d t}\left(t^{*}\right)$ is zero, since the only way a solution of (4.1) can leave region II is by crossing l_{1} or l_{2}. Assume that $\frac{d N_{1}}{d t}\left(t^{*}\right)=0$. Differentiation both sides of the first equation of (4.1) with respect to t and setting $t=t^{*}$ gives

$$
\frac{d^{2} N_{1}\left(t^{*}\right)}{d t}=\frac{-\left(a_{1}-q_{1} E\right) \beta_{1} N_{1}\left(t^{*}\right)}{k_{1}} \frac{d N_{2}\left(t^{*}\right)}{d t}
$$

This quantity is positive. Hence $N_{1}(t)$ has a minimum at $t=t^{*}$. However, this is impossible, since $N_{1}(t)$ is increasing whenever a solution of $N_{1}(t), N_{2}(t)$ of (4.1) is in region II.
Similarly, if $\frac{d N_{2}}{d t}\left(t^{*}\right)=0$,
then $\frac{d^{2} N_{2}\left(t^{*}\right)}{d t}=\frac{-a_{2} \beta_{2} N_{2}\left(t^{*}\right)}{k_{2}} \frac{d N_{1}}{d t}\left(t^{*}\right)$.
This quantity is negative, implying that $N_{2}(t)$ has a maximum at $t=t^{*}$, but this is impossible, since $N_{2}(t)$ is decreasing whenever a solution $N_{1}(t), N_{2}(t)$ of (4.1) is in region II.

The previous argument shows that any solution $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region II at time $t=t_{0}$ will remain in region II for all future time $t \geq t_{0}$. This implies that $N_{1}(t)$ is monotonic increasing and $N_{2}(t)$ is monotonic decreasing for $t \geq t_{0} ; \quad$ with $\quad N_{1}(t)<k_{1}$ and $N_{2}(t)>k_{2}$. Consequently, both $N_{1}(t)$ and $N_{2}(t)$ have limits ξ, η respectively, as t approaches infinity. This in turn, implies that (ξ, η) is an equilibrium point of (4.1). Now (ξ, η) obviously cannot equal $(0,0)$ or $\left(0, k_{2}\right)$. Consequently, $(\xi, \eta)=\left(0, k_{2}\right)$ and this proves Lemma 5.
Lemma 6: Any solution of $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region III at time $t \geq t_{0}$ and remains there for all future time must approach the equilibrium solution $N_{1}(t)=0, N_{2}(t)=k_{2}$ as t approaches infinity (Fig 3).
Proof: If a solution $N_{1}(t), N_{2}(t)$ of (4.1) remains in region III for $t \geq t_{0}$, then both $N_{1}(t)$ and $N_{2}(t)$ are monotonic decreasing functions of time for $t \geq t_{0}, \quad$ with $\quad N_{1}(t)>k_{1} \quad$ and $\quad N_{2}(t)>k_{2}$, consequently, both $N_{1}(t)$ and $N_{2}(t)$ have limits ξ, η respectively, as t approaches infinity. This, in turn implies that (ξ, η) is an equilibrium point of (4.1). Now, (ξ, η) obviously cannot equal $(0$, $0)$ or $\left(k_{1}, 0\right)$. Consequently $(\xi, \eta)=\left(0, k_{2}\right)$.
Proof of Theorem: Lemmas 4 and 5 state that every solution $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region I or $I I$ at time $t=t_{0}$ must approach the equilibrium solution $N_{1}=0, \quad N_{2}=k_{2}$ as t
approaches infinity. Similarly, Lemma 6 shows that every solution $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region III at time $t=t_{0}$ and remains there for all future time must also approach equilibrium solution $N_{1}=0, N_{2}=k_{2}$. Next, observe that any solution $N_{1}(t), N_{2}(t)$ of (4.1) which starts on l_{1} or l_{2} must immediately afterwards enter region $I I$. Finally, if a solution $N_{1}(t), N_{2}(t)$ of (4.1) leaves region III, then it must cross the line l_{1} and immediately afterwards enter region II. Lemma 5 then forces the solution to approach the equilibrium solution $N_{1}=0, N_{2}=k_{2}$. This is illustrated in Fig. 4.

Fig. 4
Theorem 3: Principle of Competitive Exclusion for Equilibrium State IV:
$\bar{N}_{1}=\frac{\left(a_{1}-q_{1} E\right) \alpha_{22}-a_{2} \alpha_{12}}{\alpha_{11} \alpha_{22}+\alpha_{12} \alpha_{21}} ;$
$\bar{N}_{2}=\frac{a_{2} \alpha_{11}+\left(a_{1}-q_{1} E\right) \alpha_{21}}{\alpha_{11} \alpha_{22}+\alpha_{12} \alpha_{21}}$
When $\frac{k_{1}}{\beta_{1}}>k_{2}$ and $\frac{k_{2}}{\beta_{2}}>k_{1}$, then every solution of $N_{1}(t), N_{2}(t)$ of (4.1) approaches the equilibrium solution $N_{1}(t)=\bar{N}_{1}(\neq 0)$ and $N_{2}(t)=\bar{N}_{2}(\neq 0)$ as t approaches infinity. In other words, if species 1 and 2 are nearly identical and the microcosm can support both the members of species 1 and 2 depending up on the initial conditions.
Proof: The first step in our proof is to show that $N_{1}(t)$ and $N_{2}(t)$ can never become negative. To this end, observe that
$N_{1}(t)=\bar{N}_{1}=\frac{\left(a_{1}-q_{1} E\right) \alpha_{22}-a_{2} \alpha_{12}}{\alpha_{11} \alpha_{22}+\alpha_{12} \alpha_{21}}$ and
$N_{2}(t)=\bar{N}_{2}=\frac{a_{2} \alpha_{11}+\left(a_{1}-q_{1} E\right) \alpha_{21}}{\alpha_{11} \alpha_{22}+\alpha_{12} \alpha_{21}}$
is a solution of (4.1) for any choice of $N_{1}(0)$. The orbit of this solution in the $N_{1}-N_{2}$ plane is the point $(0,0)$ for $N_{1}(0)=0$; the line $0<N_{1}<k_{1}$, $N_{2}=0$ for $0<N_{1}(0)<k_{1}$; the point $\left(k_{1}, 0\right)$ for $N_{1}(0)=k_{1}$; and the line $k_{1}<N_{1}<\infty, N_{2}=0$ for $N_{1}(0)>k_{1}$. Thus the N_{1} axis, for $N_{1} \geq 0$ is the union of four distinct orbits of (4.1). Similarly the N_{2} axis, for $N_{2} \geq 0$, is the union of four distinct orbits of (4.1). This implies that all solutions $N_{1}(t), N_{2}(t)$ of (4.1) which start in the first quadrant $\left(N_{1}(t)>0, N_{2}>0\right)$ of the $N_{1}-N_{2}$ plane must remain there for all future time.
The second step in our proof is to split the first quadrant into regions in which both $\frac{d N_{1}}{d t}$ and $\frac{d N_{2}}{d t}$ have fixed signs. This is accomplished in the following manner.
Let l_{1} and l_{2} be the lines $\left(k_{1}-N_{1}-\beta_{1} N_{2}\right)=0$ and $\left(k_{2}-N_{2}-\beta_{2} N_{1}\right)=0$ respectively and the point of their intersection, is $\left(\bar{N}_{1}, \bar{N}_{2}\right)$. Observe that $\frac{d N_{1}}{d t}$ is negative if $\left(N_{1}, N_{2}\right)$ lies above the line l_{1} and positive if $\left(N_{1}, N_{2}\right)$ lies below l_{1}. Similarly, $\frac{d N_{2}}{d t}$ is negative if $\left(N_{1}, N_{2}\right)$ lies above l_{2} and positive if $\left(N_{1}, N_{2}\right)$ lies below l_{2}. Thus the two lines l_{1} and l_{2} split the first quadrant of the $N_{1}-N_{2}$ plane into four regions in which both $\frac{d N_{1}}{d t}$ and $\frac{d N_{2}}{d t}$ have fixed signs.
$N_{1}(t), N_{2}(t)$ both increase with time along any solution of (4.1) in region I;
$N_{1}(t)$ increases and $N_{2}(t)$ decreases with time in region II;
$N_{1}(t)$ decreases and $N_{2}(t)$ increases with time in region III
and both $N_{1}(t)$ and $N_{2}(t)$ decrease with time in region $I V$. In this region both the prey predator compete with each other but do not flourish and at the same time do not get extinct as shown in Fig.5.

Fig. 5

Finally we require the following four lemmas.
Lemma 7: Any solution of $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region I at time $t=t_{0}$ will remain in this region for all future time $t \geq t_{0}$, and ultimately approach the equilibrium solution $N_{1}(t)=\bar{N}_{1}, N_{2}(t)=\bar{N}_{2}($ Fig 5$)$.
Proof: Suppose that a solution $N_{1}(t), N_{2}(t)$ of (4.1) leaves region I at time $t=t^{*}$. Then either $\frac{d N_{1}}{d t}\left(t^{*}\right)$ or $\frac{d N_{2}}{d t}\left(t^{*}\right)$ is zero, since the only way a solution of (4.1) can leave region I is by crossing l_{1} or l_{2}. Assume that $\frac{d N_{1}}{d t}\left(t^{*}\right)=0$. Differentiation both sides of the first equation of (4.1) with respect to t and setting $t=t^{*}$ gives

$$
\frac{d^{2} N_{1}\left(t^{*}\right)}{d t}=\frac{-\left(a_{1}-q_{1} E\right) \beta_{1} N_{1}\left(t^{*}\right)}{k_{1}} \frac{d N_{2}\left(t^{*}\right)}{d t}
$$

< 0
Hence $N_{1}(t)$ is monotonic increasing and it has maximum whenever a solution of $N_{1}(t), N_{2}(t)$ of (4.1) is in region I.

Similarly, if $\frac{d N_{2}}{d t}\left(t^{*}\right)=0, \quad$ then $\frac{d^{2} N_{2}\left(t^{*}\right)}{d t}=\frac{-a_{2} \beta_{2} N_{2}\left(t^{*}\right)}{k_{2}} \frac{d N_{1}}{d t}\left(t^{*}\right)<0$
implies that $N_{2}(t)$ is monotonic increasing and it has maximum whenever a solution $N_{1}(t), N_{2}(t)$ of (4.1) is in region I.

If a solution $N_{1}(t), N_{2}(t)$ of (4.1) remains in region I for $t \geq t_{0}$, then both $N_{1}(t)$ and $N_{2}(t)$ are monotonic increasing functions of time for $t \geq t_{0}$, with $N_{1}(t)<k_{1}$ and $N_{2}(t)<k_{2}$, consequently, both $N_{1}(t)$ and $N_{2}(t)$ have limits ξ, η
respectively, as t approaches infinity. This, in turn implies that (ξ, η) is an equilibrium point of (4.1). Now, (ξ, η) obviously cannot equal $(0,0) ;\left(k_{1}, 0\right)$ or $\left(0, k_{2}\right)$. Consequently $(\xi, \eta)=\left(\bar{N}_{1}, \bar{N}_{2}\right)$.
Lemma 8: Any solution of $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region II at time $t=t_{0}$ will remain in this region for all future time $t \geq t_{0}$, and ultimately approach the equilibrium solution $N_{1}(t)=\bar{N}_{1}, N_{2}(t)=\bar{N}_{2}($ Fig 5).
Proof: Suppose that a solution $N_{1}(t), N_{2}(t)$ of (4.1) leaves region II at time $t=t *$. Then either $\frac{d N_{1}\left(t^{*}\right)}{d t}$ or $\frac{d N_{2}\left(t^{*}\right)}{d t}$ is zero, since the only way a solution of (4.1) can leave region II is by crossing l_{1} or l_{2}. Assume that $\frac{d N_{1}\left(t^{*}\right)}{d t}=0$. Differentiation both sides of the first equation of (4.1) with respect to t and setting $t=t *$ gives
$\frac{d^{2} N_{1}\left(t^{*}\right)}{d t}=\frac{-\left(a_{1}-q_{1} E\right) \beta_{1} N_{1}\left(t^{*}\right)}{k_{1}} \frac{d N_{2}\left(t^{*}\right)}{d t}$
This quantity is positive. Hence $N_{1}(t)$ has a minimum at $t=t^{*}$. However, this is impossible, since $N_{1}(t)$ is increasing whenever a solution of $N_{1}(t), N_{2}(t)$ of (4.1) is in region II.
Similarly, if $\frac{d N_{2}\left(t^{*}\right)}{d t}=0$,
then $\frac{d^{2} N_{2}\left(t^{*}\right)}{d t}=\frac{-a_{2} \beta_{2} N_{2}\left(t^{*}\right)}{k_{2}} \frac{d N_{1}}{d t}\left(t^{*}\right)$
This quantity is negative, implying that $N_{2}(t)$ has a maximum at $t=t^{*}$, but this is impossible, since $N_{2}(t)$ is decreasing whenever a solution $N_{1}(t), N_{2}(t)$ of (4.1) is in region II.

The previous argument shows that any solution $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region II at time $t=t_{0}$ will remain in region II for all future time $t \geq t_{0}$. This implies that $N_{1}(t)$ is monotonic increasing and $N_{2}(t)$ is monotonic decreasing \quad for $t \geq t_{0} ; \quad$ with $\quad N_{1}(t)<k_{1}$ and $N_{2}(t)>k_{2}$. Consequently, both $N_{1}(t)$ and $N_{2}(t)$ have limits ξ, η respectively, as t approaches infinity. This in turn, implies that (ξ, η) is an equilibrium point of (4.1). Now (ξ, η) obviously cannot equal $(0,0) ;\left(0, k_{1}\right)$ or $\left(0, k_{2}\right)$.

Consequently, $(\xi, \eta)=\left(\bar{N}_{1}, \bar{N}_{2}\right)$ and this proves Lemma 8.
Lemma 9: Any solution of $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region III at time $t=t_{0}$ will remain in this region for all future time $t \geq t_{0}$, and ultimately approach the equilibrium solution $N_{1}(t)=\bar{N}_{1}, N_{2}(t)=\bar{N}_{2}($ Fig 5).
Proof: Suppose that a solution $N_{1}(t), N_{2}(t)$ of (4.1) leaves region III at time $t=t^{*}$. Then either $\frac{d N_{1}\left(t^{*}\right)}{d t}$ or $\frac{d N_{2}\left(t^{*}\right)}{d t}$ is zero, since the only way a solution of (4.1) can leave region II is by crossing l_{1} or l_{2}. Assume that $\frac{d N_{1}\left(t^{*}\right)}{d t}=0$. Differentiation both sides of the first equation of (4.1) with respect to t and setting $t=t^{*}$ gives
$\frac{d^{2} N_{1}\left(t^{*}\right)}{d t}=\frac{-\left(a_{1}-q_{1} E\right) \beta_{1} N_{1}\left(t^{*}\right)}{k_{1}} \frac{d N_{2}\left(t^{*}\right)}{d t}$ This
quantity is negative. Hence $N_{1}(t)$ has a maximum at $t=t^{*}$. However, this is impossible, since $N_{1}(t)$ is decreasing whenever a solution of $N_{1}(t), N_{2}(t)$ of (4.1) is in region II.
Similarly, if $\frac{d N_{2}\left(t^{*}\right)}{d t}=0$,
then $\frac{d^{2} N_{2}\left(t^{*}\right)}{d t}=\frac{-a_{2} \beta_{2} N_{2}\left(t^{*}\right)}{k_{2}} \frac{d N_{1}}{d t}\left(t^{*}\right)$
This quantity is positive, implying that $N_{2}(t)$ has a minimum at $t=t^{*}$, but this is impossible, since $N_{2}(t)$ is increasing whenever a solution $N_{1}(t), N_{2}(t)$ of (4.1) is in region III.

The previous argument shows that any solution $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region III at time $t=t_{0}$ will remain in region III for all future time $t \geq t_{0}$. This implies that $N_{1}(t)$ is monotonic increasing and $N_{2}(t)$ is monotonic decreasing \quad for $t \geq t_{0} ; \quad$ with $\quad N_{1}(t)>k_{1}$ and $N_{2}(t)<k_{2}$. Consequently, both $N_{1}(t)$ and $N_{2}(t)$ have limits ξ, η respectively, as t approaches infinity. This in turn, implies that (ξ, η) is an equilibrium point of (4.1). Now (ξ, η) obviously cannot equal (0,0); ($0, k_{1}$) or $\left(0, k_{2}\right)$. Consequently, $\quad(\xi, \eta)=\left(\bar{N}_{1}, \bar{N}_{2}\right)$ and this proves Lemma 9.

Lemma 10: Any solution of $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region VI at time $t=t_{0}$ will remain in this region for all future time $t \geq t_{0}$, and ultimately approach the equilibrium solution $N_{1}(t)=\bar{N}_{1}, N_{2}(t)=\bar{N}_{2}($ Fig 5).
Proof: Suppose that a solution $N_{1}(t), N_{2}(t)$ of (4.1) leaves region $V I$ at time $t=t^{*}$. Then either $\frac{d N_{1}\left(t^{*}\right)}{d t}$ or $\frac{d N_{2}\left(t^{*}\right)}{d t}$ is zero, since the only way a solution of (4.1) can leave region I is by crossing l_{1} or l_{2}. Assume that $\frac{d N_{1}\left(t^{*}\right)}{d t}=0$. Differentiation both sides of the first equation of (4.1) with respect to t and setting $t=t^{*}$ gives

$$
\frac{d^{2} N_{1}\left(t^{*}\right)}{d t}=\frac{-\left(a_{1}-q_{1} E\right) \beta_{1} N_{1}\left(t^{*}\right)}{k_{1}} \frac{d N_{2}\left(t^{*}\right)}{d t} \quad \text { This }
$$

quantity is positive. Hence $N_{1}(t)$ is monotonic decreasing and it has minimum whenever a solution of $N_{1}(t), N_{2}(t)$ of (4.1) is in region VI.
Similarly, if $\frac{d N_{2}\left(t^{*}\right)}{d t}=0$,
then $\frac{d^{2} N_{2}\left(t^{*}\right)}{d t}=\frac{-a_{2} \beta_{2} N_{2}\left(t^{*}\right)}{k_{2}} \frac{d N_{1}}{d t}\left(t^{*}\right)$.
This quantity is positive, implying that $N_{2}(t)$ is monotonic decreasing and it has minimum whenever a solution $N_{1}(t), N_{2}(t)$ of (4.1) is in region VI.

If a solution $N_{1}(t), N_{2}(t)$ of (4.1) remains in region $V I$ for $t \geq t_{0}$, then both $N_{1}(t)$ and $N_{2}(t)$ are monotonic decreasing functions of time for $t \geq t_{0}$, with $\quad N_{1}(t)>k_{1} \quad$ and $\quad N_{2}(t)>k_{2}$, consequently, both $N_{1}(t)$ and $N_{2}(t)$ have limits ξ, η respectively, as t approaches infinity. This, in turn implies that (ξ, η) is an equilibrium point of (4.1). Now, (ξ, η) obviously cannot equal (0 ,

$$
0) ; \quad\left(k_{1}, 0\right) \quad \text { or }\left(0, k_{2}\right) .
$$

Consequently $(\xi, \eta)=\left(\bar{N}_{1}, \bar{N}_{2}\right)$.
Proof of Theorem: Lemmas 7,8,9and 10 state that every solution $N_{1}(t), N_{2}(t)$ of (4.1) which starts in region I,II III or $V I$ at time $t=t_{0}$ and remains there for all future time must also approach equilibrium solution $N_{1}(t)=\bar{N}_{1}$, $N_{2}(t)=\bar{N}_{2} \quad$ as t approaches infinity. Next,
observe that any solution $N_{1}(t), N_{2}(t)$ of (4.1) which starts on l_{1} or l_{2} must immediately afterwards enter regions $I, I I, I I I$ or $V I$. Finally the solution approaches the equilibrium solution $N_{1}(t)=\bar{N}_{1}, N_{2}(t)=\bar{N}_{2}$. This is illustrated in Fig. 6.

Fig. 6

References

[1] Lotka A. J., Elements of Physical Biology, Williams \& Wilking, Baltimore, (1925).
[2] Volterra V., Leconssen La Theorie Mathematique De La Leitte Pou Lavie, Gauthier-Villars, Paris, (1931).
[3] Meyer W.J., Concepts of Mathematical Modeling Mc.Grawhill, (1985).
[4] Kushing J.M., Integro-Differential Equations and Delay Models in Population Dynamics, Lecture Notes in BioMathematics, Springer Verlag, 20, (1977).
[5] Paul Colinvaux A., Ecology, John Wiley, New York, (1986).
[6] Kapur J. N., Mathematical Modelling in Biology and Medicine, Affiliated East West, (1985).
[7] Srinivas N. C., "Some Mathematical Aspects of Modeling in Bio-medical Sciences" Ph.D Thesis, Kakatiya University, (1991).
[8] Lakshmi Narayan K. \& Pattabhiramacharyulu. N. Ch., " Some Threshold Theorems for a Prey-Predator Model with harvesting," International J. of Math. Sci. \& Engg. Appls. (IJMSEA), Vol. 2 No.II (2008), pp179-192 .
[9] Ravindra Reddy, "A Study on Mathematical Models of Ecological Mutualism between Two Interacting Species", Ph.D., Thesis, O.U. (2008)
[10] Ravindra Reddy
B, Srilatha
R, Lakshmi Narayan
K., and Pattabhiramachryulu N.Ch: A model of two mutually interacting species with Harvesting, Atti Della Fondazione Giorgio Ronchi, Anno LXVI, 2011 - N. 3, 317-331.
[11] Ravindra Reddy B: A Model of two mutually interacting Species with Mortality Rate for the Second Species, Advances in Applied Science Research, 2012, 3(2):757-764.
[12] Ravindra Reddy B, Lakshmi Narayan K, and Pattabhiramacharyulu N.Ch: On Global stability of two mutually interacting species with limited resources for both the species, Internatioonal Journal of Contemporary Mathematical Sciences, Vol.6, 2011, no.9, 401-407.
[13] Gauss G. F., The struggle for existence, Williams and Wilkins, Baltimore, 1934.

