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Abstract 

Mathematical modeling of numerous physical phenomena often leads to high-dimensional partial 

differential equations and thus the higher dimensional nonlinear evolution equations come into further 

attractive in many branches of physical sciences. In this works, we construct the traveling wave solutions 

involving parameters of the fifth-order KdV equation by using the new approach of generalized ( GG / )-

expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained 

by this method and the wave solutions are expressed in terms of the hyperbolic, trigonometric, and rational 

functions. It is shown that the new approach of generalized )/( GG -expansion method is a powerful and 

concise mathematical tool for solving nonlinear partial differential equations. 
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1. Introduction 

The importance of nonlinear evolution equations is now well established, because these equations arise in 

various areas of science and engineering, especially in fluid mechanics, solid-state physics, biophysics, 

chemical kinematics, geochemistry, electricity, propagation of shallow water waves, plasma physics, high-
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energy physics, condensed matter physics, quantum mechanics, optical fibers, elastic media and so on. As a 

key problem, finding their analytical solutions is of great interest, and is actually performed through various 

powerful and prolific methods such as the homogeneous balance method [1], the tanh-function method [2], 

the extended tanh-function method [3, 4], the Exp-function method [5, 6], the sine-cosine method [7], the 

modified Exp-function method [8], the generalized Riccati equation [9], the Jacobi elliptic function 

expansion method [10, 11], the Hirota’s bilinear method [12], the Miura transformation [13], the )/( GG -

expansion method [14-18], the novel )/( GG -expansion method [19, 20], the modified simple equation 

method [21, 22], the improved )/( GG -expansion method [23], the inverse scattering transform [24], the 

Jacobi elliptic function expansion method [25, 26], the new generalized )/( GG -expansion method [27-31], 

the Adomian decomposition method [32, 33], the method of bifurcation of planar dynamical systems [34, 

35], the wave of translation method [36], the ansatz method [37, 38], the Cole-Hopf transformation [39]   

and so on. 

The objective of this article is to apply the new generalized )/( GG  expansion method to construct the exact 

solutions for nonlinear evolution equations in mathematical physics via the renowned fifth-order KdV 

equation. 

The outline of this paper is organized as follows: In Section 2, we give the description of the new 

generalized )/( GG  expansion method. In Section 3, we apply this method to the fifth-order KdV equation. 

In Section 4, Discussions are given. Conclusions are given in Section 5. 

2. Description of the new generalized ( / )G G -expansion method 

Let us consider a general nonlinear PDE in the form 

( , , , , , , ) 0t x tt t x xxP u u u u u u  ,       (1) 

where ),( txuu  is an unknown function, P  is a polynomial in ( , )u x t and its derivatives in which highest 

order derivatives and nonlinear terms are involved and the subscripts stand for the partial  derivatives. 

Step 1: We combine the real variables x  and t  by a complex variable  , 

)(),( utxu  ,    tVx  ,        (2) 
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where V  is the speed of the traveling wave. The traveling wave transformation (2) converts Eq. (1) into an 

ordinary differential equation (ODE) for ( )u u  : 

  ( , , , , ) 0Q u u u u    ,         (3) 

where Q  is a polynomial of u  and it derivatives and the superscripts indicate the ordinary derivatives with 

respect to  . 

Step 2: According to possibility, Eq. (3) can be integrated term by term one or more times, yields 

constant(s) of integration. The integral constant may be zero for simplicity. 

Step 3: Suppose the traveling wave solution of Eq. (3) can be expressed as follows: 

i
N

i

i

i
N

i

i HdbHdau 



  )()()(
10

 ,                (4) 

where either Na  or Nb  may be zero, but both Na  and Nb could be zero at a time, ia  ),,2,1,0( Ni   and ib  

),,2,1( Ni   and d  are arbitrary constants to be determined later and  )(H  is given by 

  )/()( GGH           (5) where 

)(GG   satisfies the following auxiliary nonlinear ordinary differential equation: 

  0)( 22  GCGEGBGGAG       (6) 

where the prime stands for derivative with respect to  ; A , B ,C  and E  are real parameters. 

Step 4: To determine the positive integer N , taking the homogeneous balance between the highest order 

nonlinear terms and the derivatives of the highest order appearing in Eq. (3). 

Step 5: Substitute Eq. (4) and Eq. (6) including Eq. (5) into Eq. (3) with the value of N  obtained in Step 4, 

we obtain polynomials in 
NHd )(  ),2,1,0( N  and 

NHd  )(  ),2,1,0( N . Then, we collect each 

coefficient of the resulted polynomials to zero yields a set of algebraic equations for ia  ),,2,1,0( Ni   

and ib  ),,2,1( Ni  , d  and V . 

Step 6: Suppose that the value of the constants ia  ),,2,1,0( Ni  , ib  ),,2,1( Ni  , d  and V  can be 

found by solving the algebraic equations obtained in Step 5. Since the general solution of Eq. (6) is well 
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known to us, inserting the values of ia  ),,2,1,0( Ni  , ib  ),,2,1( Ni   , d  and V  into Eq. (4), we 

obtain more general type and new exact traveling wave solutions of the nonlinear partial differential 

equation (1). 

Using the general solution of Eq. (6), we have the following solutions of Eq. (5): 

Family 1: When ,0B  CA  and ,0)(42  CAEB  
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Family 2: When ,0B  CA  and ,0)(42  CAEB  
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Family 3: When ,0B  CA  and ,0)(42  CAEB  
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Family 4: When ,0B  CA  and ,0 E  
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Family 5: When ,0B  CA  and ,0 E  
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3. Application of the method 
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In this section, we will employ the new generalized ( GG / )-expansion method to look for the exact 

solutions and then the solitary wave solutions to fifth-order KdV equation. Let us consider fifth-order KdV 

equation, 

,0102030 2  xxxxxxxxxxxxt uuuuuuuu      (12) 

where ),( txuu  is a differentiable function. Eq. (12) is a special case (Lax case) of the standard fifth-order 

KdV equation and it can be written as: 

  0))((5)(10)(10 5
23  xxxxxxxt uuuuuu      (13) 

Using the wave variable Vtx  , Eq. (13) is carried to an ODE. Then integrating it once, we obtain 

          ,0)(51010 )4(23  uuuuuVuK      (14) 

where K  is an integral constant which is to be determined. 

Taking homogeneous balance between )4(u  and uu   in Eq. (14), we obtain 2N . Therefore, the solution 

of Eq. (15) is of the form 

,)()()()()( 2
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  HdbHdbHdaHdaau     (15)  

where 21210 ,,,, bbaaa  and d  are constants to be determined. 

Substituting Eq. (15) together with Eqs. (5) and (6) into Eq. (14), the left-hand side is converted into 

polynomials in  N
Hd  ),2,1,0( N  and   N

Hd


 ),2,1( N . We collect each coefficient of these 

resulted polynomials to zero, yields a set of simultaneous algebraic equations (for simplicity which are not 

presented here) for 0a , 1a , 2a , 1b , 2b , d , K  and V . Solving these algebraic equations with the help of 

symbolic computation software, such as, Maple, we obtain following: 
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)2(
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where ,CA  ,00 aa  ,A ,B C  and E  are free parameters. 

Case 2: 
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where ,CA ,00 aa  ,A ,B C  and E  are free parameters. 
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where ,CA  ,00 aa   ,A  ,B  C  and E  are free parameters. 
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Where ,CA ,00 aa  ,A ,B C  and E  are free parameters. 
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Where ,CA ,00 aa  ,A ,B C  and E  are free parameters. 
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Where ,CA ,00 aa  ,A ,B C  and E  are free parameters. 

For case 1, substituting Eq. (16) into Eq. (15), along with Eq. (7) and simplifying, our traveling wave 

solutions become (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (16) into Eq. (15), along with Eq. (8) and simplifying, yields exact solutions (if 01 C  but 

;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (16) into Eq. (15), along with Eq. (9) and simplifying, our obtained  solution becomes: 
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Substituting Eq. (16) into Eq. (15), together with Eq. (10) and simplifying, yields  following traveling wave  

solutions (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (16) into Eq. (15), along with Eq. (11) and simplifying, our exact solutions become (if 

01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Similarly, For case 2, substituting Eq. (17) into Eq. (15), together with Eq. (7) and simplifying, yields 

following traveling wave solutions (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (17) into Eq. (15), along with Eq. (8) and simplifying, we obtain following  solutions (if 

01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (17) into Eq. (15), along with Eq. (9) and simplifying, our obtained  solution becomes: 
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Substituting Eq. (17) into Eq. (15), along with Eq. (10) and simplifying, yields  following exact traveling 

wave  solutions (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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substituting Eqs. (17) into Eq. (15), along with Eq. (11) and simplifying, our obtained exact solutions 

become (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Similarly, For case 3, substituting Eq. (18) into Eq. (15), together with Eq. (7) and simplifying, yields 

following traveling wave solutions (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (18) into Eq. (15), along with Eq. (8) and simplifying, we obtain following  solutions (if 

01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (18) into Eq. (15), along with Eq. (9) and simplifying, our obtained  solution becomes: 
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Substituting Eq. (18) into Eq. (15), along with Eq. (10) and simplifying, yields  following exact traveling 

wave  solutions (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (18) into Eq. (15), along with Eq. (11) and simplifying, our obtained exact solutions 

become (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Similarly, For case 4, substituting Eq. (19) into Eq. (15), together with Eq. (7) and simplifying, yields 

following traveling wave solutions (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (19) into Eq. (15), along with Eq. (8) and simplifying, we obtain following  solutions (if 

01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (19) into Eq. (15), along with Eq. (9) and simplifying, our obtained  solution becomes: 
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Substituting Eq. (19) into Eq. (15), along with Eq. (10) and simplifying, yields  following exact traveling 

wave  solutions (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (19) into Eq. (15), along with Eq. (11) and simplifying, our obtained exact solutions 

become (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Similarly, For case 5, substituting Eq. (20) into Eq. (15), together with Eq. (7) and simplifying, yields 

following traveling wave solutions (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (20) into Eq. (15), along with Eq. (8) and simplifying, we obtain following  solutions (if 

01 C  but ;02 C 02 C  but 01 C ) respectively: 

)
2

(tan
4

)
2

(cot
2

3
)( 2

2

22

2053





A

b

AA
au







 , 

)
2

(cot
4

)
2

(tan
2

3
)( 2

2

22

2054





A

b

AA
au







 , 

Substituting Eqs. (20) into Eq. (15), along with Eq. (9) and simplifying, our obtained  solution becomes: 

2

21

2
2

2

21

2

2

2

05 )()(
6

)(
5














CC

C
b

CC

C

A
au , 



 295 

Substituting Eq. (20) into Eq. (15), along with Eq. (10) and simplifying, yields  following exact traveling 

wave  solutions (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (20) into Eq. (15), along with Eq. (11) and simplifying, our obtained exact solutions 

become (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Similarly, For case 6, substituting Eq. (21) into Eq. (15), together with Eq. (7) and simplifying, yields 

following traveling wave solutions (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (21) into Eq. (15), along with Eq. (8) and simplifying, we obtain following  solutions (if 

01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (21) into Eq. (15), along with Eq. (9) and simplifying, our obtained  solution becomes: 
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Substituting Eq. (21) into Eq. (15), along with Eq. (10) and simplifying, yields  following exact traveling 

wave  solutions (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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Substituting Eqs. (21) into Eq. (15), along with Eq. (11) and simplifying, our obtained exact solutions 

become (if 01 C  but ;02 C 02 C  but 01 C ) respectively: 
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4. Discussions 

The advantages and validity of the method over the basic )/( GG -expansion method have been discussed in 

the following: 

Advantages: The crucial advantage of the new approach against the basic )/( GG -expansion method is that 

the method provides more general and large amount of new exact traveling wave solutions with several free 

parameters. The exact solutions have its great importance to expose the inner mechanism of the physical 

phenomena. Apart from the physical application, the close-form solutions of nonlinear evolution equations 

assist the numerical solvers to compare the accuracy of their results and help them in the stability analysis. 
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Comparison: In Ref. [40] Gao and Zhao used the linear ordinary differential equation as auxiliary equation 

and traveling wave solutions presented in the form 



m

i

i

i GGau
0

,)/()(  where 0ma . It is noteworthy to 

point out that some of our solutions are coincided with already published results, if parameters taken 

particular values which authenticate our solutions. Moreover, in Ref. [40] Gao and Zhao investigated the 

well-established fifth-order KdV equation to obtain exact solutions via the basic )/( GG -expansion method 

and achieved only four solutions (A.1)-(A.4) (see appendix). Moreover, in this article fifty four solutions of 

the well-known fifth-order KdV equation are constructed by applying the new approach of generalized 

)/( GG -expansion method. 

Conclusion: In this article, the new generalized ( / )G G -expansion method is used to find the exact 

traveling wave solutions of the fifth-order KdV equation. Abundant traveling wave solutions with arbitrary 

parameters are successfully obtained by this method which are expressed in terms of hyperbolic, 

trigonometric and rational functions. This study shows that the new generalized )/( GG -expansion method 

is quite efficient and practically well suited to be used in finding exact solutions of NLEEs. Also, we 

observe that the new generalized )/( GG -expansion method is straightforward and can be applied to many 

other nonlinear evolution equations.      

Appendix: Gao and Zhao solutions
 
[40] 

Gao and Zhao [40] established exact solutions of the well-known the fifth-order KdV equation by using the 

basic )/( GG -expansion method which are as follows: 
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When ,042    

,
)(
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xCC

C
u




  

where 21 ,CC  are arbitrary constants. 
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00    and 21 ,CC  are arbitrary constants. 
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