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Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric
absolute value. Showed that by Kamal Boussaf , Alain Escassut and Jacqueline Ojeda [1] if the

Wronskian of two entire functions in K is apolynomial, then both functions are polynomials. As a
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many multiple poles, then fj' takes all values in K infinitely many times. Then study applications to
meromorphic sequence of functionsf; has finitely many zeros, aproblem linkedtothe Hayman
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Introduction and Main Results

Let K be an algebraically closed field of characteristic O,
complete with respect to an ultrametric absolute value | . |
Given a € K and (1 + €) € R, we denote by d(o, (1 +¢€))

the disk {x € Ky/3)x—q| < 1+ €}and by d(a, (1 +€)7)the
disk {x EK 1 <1 +e} by A(K) the K -algebra of

2|x—af
analytic sequence of functions in K(i.e. these to f; power
series with an infinite radius of convergence),by M (K) the
field of meromorphic sequence of functions in K and by
K(x) the field of rational functions. Given f;, g/ € A(K)

denote by ¥, W/ (f;, g7) the Wronskian 3, f; g/ — 3, f; .

Know that all non-constant entire sequence of functions
f; € A(K) takes all values in K.

More precisely, sequence of functions f; € A(K) other than
a polynomial takes all values in K infinitely many times in
[2], [3] ,[4] next a non-constant meromorphic functions
fj € M (K) takes every value in K, except at most one value.
And more precisely, a meromorphic sequence of functions
f; € M(K)\K((x)) takes every value in K infinitely many
times except at most one value. Many previous studies were
made on Picard's exceptional values for complex and a
(1 + e)-adic sequence of functions and their derivatives in
[5] .[6] and [7]. Here mean to examine precisely whether the
derivative of a transcendental meromorphic sequence of
function in K having finitely many multiple poles, may
admit a value that is taken finitely many times and then look

for applications to Hayman's problem when m = 2 From 4
[6], state the following Theorem A: (See e.g.e,[1])

Theorem A: Let f;,I; € A(K) satisfy ¥; W/ (h;,I; ) =ce€

K with h; non-affine. Then ¢ = 0 and ’;—’ are constant.
]

Improve Theorem A:

Theorem 1: Let f;, g/ €AK) be such that
Y, Wi(f;, g/) are non-identically zero polynomial, then both
f;, g’ are polynomials.

Remark: theorem 1 does not hold in a characteristic
€ # —1 indeed suppose the characteristic of Kise # —1.
Let ¢/ € A(K) .let f; = x(Pp/)**€ and

let g/ = (x+ D)+ since #0 , we have f; =
()9, gi = (/) =+ hence ¥; W/ (f;, g’) and this is
true for all functions §/ = A (K)

Theorem 2: Let f; € M(K)K(x) have finitely many

multiple poles. Then fj' takes every value b € k infinitely in
any times.

Easily show Corollary 2.1 from Theorem 2, though it is
possible to get it through an expansion in simple elements.

Corollary 2.1: Let f; € M (K)\K(x) . Then f; belongs to
M (K)\K(x) look for some applications to Hayman's
problem in a (1 + €)-adic field. Let f; € M(K) Recall that in
[8] it was shown that if m is an integer = 5 or m = 1, then
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Y, f +f has infinitely many zeros that are not zeros
of f;. In[9] and [7] but there remain some cases where it is
impossible to conclude except when the field has residue
characteristic equal to zero . Whenm = 2, few result are
known, recall also that as far as complex meromorphic
functions are concerned, ¥ fj + % f; has infinitely many
zeros that are not zeros of f;for every but obvious counter-
example, show this is wrong for m = 1 (with f;(x) = e¥)
and for m = 2 (with f; (x) = tan(—x)).

Here particularly examine functions ijj' +ijf]-2 with
b € K*.

Theorem 3: let (b2 + 1) € K* and let fi € M(K) have
b;:1
be such that ij]-'+(b2+ 1) has finitely many zeros,
thenf; belongs to K(x)

fix) ==
(b? + 1) ¥, f;* has no zero whenever b # 1

finitely many residues at its simple poles equal to and

Remark: the series functions ¥ f; +

Theorem 4: Let f; € M(K)\K(x) have finitely multiple

zeros and let b € K then

Z}-% + (b% + 1) has infinitely many zeros. Moreover if
]

b # 0 every zero o of

ng—f'z+(b2+1) that is not a zero of ¥, f +

(b%2+1) ijjZ are simple poles of f; such that the residue
1
bZ+1

Corollary 4.1: Let b € K* and let f; € M (K)\K(x) have
finitely multiple zeros and simple poles. Then Z]-fj'+

of fat a is equal to

b%2+1) ijjz has infinitely many zeros that are not zeros
of f;.

Remark: in Archimedean analysis, the typical example of a
meromorphic sequence of functions f; such that ¥, f; + f;°
has no zeros in tan(—x) and its residue is 1 at each pole of
fj- here find the same implication but n't find an example
satisfying such properties 2 The proofs

Notation: Given f; € A(K) and € > —1, we denote by
¥;|f;| (1 + €) the norm of uniform convergence on the disk

1+ €(0,1 + €). This norm is none to be multiplicative in
[10] Lemma 1: is well known in [10] :

Lemma 1: Let fj € M(K) then X,|,*V|(1+e <

|Z] fj |(1+€)

rokT Ve>—-1,Vk €N

Proof of Theorem 1: First, by Theorem A: check that the
claim is satisfied when ¥; W/ (f, g/) is a polynomial of
degree 0., suppose the claim holds when Wi(f;, g/) are
polynomial of certain degree (1 + €). show it for (2 +
€)..Let fj, g’ € A(K) be such that 3; W/(f;, g/) are non-
identically zero polynomial (1 + ¢) of degree(2 + €).

By hypothesis, have ¥ f; g/ =% fig; = 1+€ , hence(
Yifig-Xifd = (1—:6) . Extract gi and get ¥, g/ =
’fjgi—(1+e)

Z] f; ’

]

Q=3 ¢'—X;f ¢ and replace gi by what just found:

A P
get Q=Z,-}j-’(f’gf—if’gj)— (1+€)ijf_; replace,

.o L i -a+e)s”
Xifi 9’ —X;fi g’ by ( %
thus in that expression of Q write |Q|(1+¢€) <

f|(1+e)|1+€ |(1+€) [1+€ |(1+€)
Zj (1+e)?|fj|(1+€) hence |QI(1 + €) < Zj (1+€)?

V € > —1. But by definition, Q belongs to A (K) and further,
deg(e — 1) consequently, Q is polynomial of degree at
most(e — 1).

Suppose Q is not identically zero. Since Q = ¥, W/ (£, g/)

consider the function

1+e€
€

)and obtain Q = %;

and since deg(Q) > (1 +¢€), by induction f,-' and gi are
polynomials and so are fjand g’ . finally suppose Q = 0.

Then (1—:6) Yifi —(+e)X;f; =0and therefore f; and
P are two solutions of the differential equation of order 1 for
meromorphic sequence of functions in K: (E)y’ = {/ y with
y/ = 1 whereas y belongs to A(K). The space of solutions

of (E) is known to be of dimension 0 or 1. Consequently,
there exist A € K such that fj' =A1+e€), hence f; are
polynomials, the same holds for g/.

Proof of Theorem 2: Suppose fj' has finitely many zeros.
By classical results , write fj' in the form Z]-}% with
J

h; ,1; € A(K), having no common zero. Consequently, all
zero of ¥,; W/ (h;, I; ) are zeros f;" except if it are multiple
zeros f;.But sincel; only has finitely many multiple zeros,
it appears that 3:; W/ (k; ,1; ) has finitely many zeros and
therefore is a polynomial. Consequently, Both h; and /; are
polynomials a contradiction because f;does not belong to
K(x), consider of ij]-' —Db whit b € k. It is derivative of
fj —bx whose poles are exactly those of f; , taking
multiplicity into account, consequently Z]-fj' —Db also has
infinitely many zeros.

Notation: givenf; € K(k), denoted by res,(f;) the residue
of f;at a.

Lemma 2: let 3, f; = %;°L € M(K) with hy,I; € AK)
J

having no common zero, let (b>+ 1) e K*anda € K be a

zero of ¥;Ril; —¥;hjl; that is not a zero of ¥;f +

(b2 + 1), f;>. Then a simple poles of f;and res,(f;) =
1

b2+1

Proof: Clearly, if (@)#0, a is a zero of ¥,f +
(b>+1) Y, f;*. Hence, a zero a of ¥ h/l; — X, kil +
bY; h;” that is not a zeros of ¥; z(f; + (b> + 1) X, f;%. are
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pole of f;. When I; (a) =0, we have h;j(a) # 0 hence

Yili@=®*+1X;h (@ +#0 and therefore a is a
,(a)

( ) (@ b2+1

simple pole of f;. have res,Y;(f}) = X;

simple pole of f; such that }; but since a is a

h;j (a) 1
U ) @ b2+1

Which ends the proof.

Proof Theorem 3 : Let Y;f; =3, (1;6) with (1+¢€) a
]

polynomial, Ijecﬂf(K) having no common zero with

(1+e€).Then 3, f; + (b + DX, f;?
=y (A=) (1+e) (1+€ ) (b2 +1) (1+€ )2
J .

I]‘Z
sequence of functions has finitely many zeros, moreover if
ais a zero of X il; — ;1 (1+€) (b2 +1)(1+€)? but
is not a zeros of ¥; f; + (b% + 1)b Y, f;* then, by lemma 2
1

b2+1 °
Consequently ( )ZJI —LU(1+e)®*+1)(1+€)?has
finitely many Zeros and SO write
()1 -fa+e)+(p?+1)A+6)2 g

z =— with Q€ K[x] , hence
I]' Ij

(%E)Zﬂj -Yii(l+e)=—0>+1(1+€)*+Q but

them by theorem 1:

proof.

By hypothesis, this

a is a simple pole of f; such that res,(f) =

, L is a polynomial, which ends the

Proof Theorem 4: Let Z]gf 2 _+ (b2 +1) .Suppose

b = 0. Since all zeros of f;are S|mple zeros except maybe
finitely many, g’ has finitely many poles of order > 3,
hence a primitive G of g/ has finitely many multiple poles
(see [11] ) . Consequently, by Theorem 2 , g/ has infinitely
many zeros. , Suppose b # 0, let a be zeros of g/ and let

ijj'zzj’z with h; , I; € A(K) having no common
(Bl j —~(I+(b2+1)R

2
hj

zero, then Zﬁ—fz +(B*+1)=%; since

a is a zero of Z] 2+(b2+ 1) it is not a zero of h;and

hence it is a zero of i) =i h+ 02+ D)Xk
then lemma 2 if it is not zero onjfj' + (b2 +1) ijjz it is

a simple poles of f; such that res, (f;) = ——— which ends

b62+2
the proof of theorem4.
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