International Journal of Mathematics and Computer Research

Derivative of Adic Meromorphic Function and Their Applications

Mohammed Mustafa ${ }^{1}$, Simon Joseph ${ }^{2}$, Arafa Dawood ${ }^{3}$
${ }^{1}$ Department of Mathematics College of Education Blue Nile University Blue Nile University Damazin, Sudan
${ }^{2}$ Department of Mathematics College of Education University of Juba Juba, South Sudan
${ }^{3}$ Department of Mathematics College of Science and Arts for Girls King Khalid University Sarat Obeide , KSA

ARTICLE INFO

Published Online:
01 April 2019

Corresponding Author:
Mohammed Mustafa Mobile:
(+249)9118116675

Abstract

Let K be an algebraically closed field of characteristic 0 , complete with respect to an ultrametric absolute value. Showed that by Kamal Boussaf, Alain Escassut and Jacqueline Ojeda [1] if the Wronskian of two entire functions in K is apolynomial, then both functions are polynomials. As a consequence, if meromorphic sequence of functions f_{j} on all K is transcendental and has finitely many multiple poles, then f_{j}^{\prime} takes all values in K infinitely many times. Then study applications to meromorphic sequence of functions f_{j} has finitely many zeros, aproblem linkedtothe Hayman conjecture on adic field.

KEYWORDS AND PHRASES: zeros of p-adic meromorphic functions, derivative, Wronskian

Introduction and Main Results

Let K be an algebraically closed field of characteristic 0 , complete with respect to an ultrametric absolute value \mid. | Given $\alpha \in \mathrm{K}$ and $(1+\epsilon) \in \mathbb{R}_{+}^{*}$ we denote by $\mathrm{d}(\alpha,(1+\epsilon))$ the disk $\left\{\boldsymbol{x} \in \boldsymbol{K}_{\mathbf{1} / \mathbf{2}|\boldsymbol{x}-\boldsymbol{\alpha}|} \leq \mathbf{1}+\boldsymbol{\epsilon}\right\}$ and by $\mathrm{d}\left(\alpha,(1+\epsilon)^{-}\right)$the disk $\left\{x \in \mathrm{~K}_{\frac{1}{2|x-\alpha|}} \leq 1+\epsilon\right\}$ by $\mathcal{A}(K)$ the K -algebra of analytic sequence of functions in K (i.e. these to f_{j} power series with an infinite radius of convergence), by $\boldsymbol{\mathcal { M }}(\boldsymbol{K})$ the field of meromorphic sequence of functions in K and by $K(\boldsymbol{x})$ the field of rational functions. Given $f_{j}, g^{j} \in \mathcal{A}(K)$ denote by $\sum_{j} \mathrm{~W}^{j}\left(f_{j}, g^{j}\right)$ the Wronskian $\sum_{j} f_{j}^{\prime} g^{j}-\sum_{j} f_{j} g^{j}$.
Know that all non-constant entire sequence of functions $f_{j} \in \mathcal{A}(\mathrm{~K})$ takes all values in K .
More precisely, sequence of functions $f_{j} \in \mathcal{A}(\mathrm{~K})$ other than a polynomial takes all values in K infinitely many times in [2], [3] ,[4] next a non-constant meromorphic functions $f_{j} \in \mathcal{M}(K)$ takes every value in K, except at most one value. And more precisely, a meromorphic sequence of functions $f_{j} \in \mathcal{M}(K) \backslash K((x))$ takes every value in K infinitely many times except at most one value. Many previous studies were made on Picard's exceptional values for complex and a $(1+\epsilon)$-adic sequence of functions and their derivatives in [5], [6] and [7]. Here mean to examine precisely whether the derivative of a transcendental meromorphic sequence of function in K having finitely many multiple poles, may admit a value that is taken finitely many times and then look
for applications to Hayman's problem when $m=2$ From 4 [6], state the following Theorem A: (See e.g.e,[1])
Theorem A: Let $f_{j}^{\prime}, I_{j} \in \mathcal{A}(\mathrm{~K})$ satisfy $\sum_{j} \mathrm{~W}^{j}\left(h_{j}, I_{j}\right)=\mathrm{c} \in$ K with h_{j} non-affine. Then $\mathrm{c}=0$ and $\frac{h_{j}}{I_{j}}$ are constant. Improve Theorem A:

Theorem 1: Let $f_{j}, g^{j} \in \mathcal{A}(\mathrm{~K})$ be such that $\sum_{j} \mathrm{~W}^{j}\left(\mathrm{f}_{\mathrm{j}}, g^{j}\right)$ are non-identically zero polynomial, then both $\mathrm{f}_{\mathrm{j}}, g^{j}$ are polynomials.

Remark: theorem 1 does not hold in a characteristic $\epsilon \neq-1$ indeed suppose the characteristic of K is $\epsilon \neq-1$. Let $\psi^{j} \in \mathcal{A}(\mathrm{~K})$.let $\mathrm{f}_{\mathrm{j}}=\boldsymbol{x}\left(\psi^{j}\right)^{(1+\epsilon)}$ and
let $g^{j}=(\boldsymbol{x}+1)\left(\psi^{j}\right)^{-(1+\epsilon)}$ since $\neq 0$, we have $f_{j}^{\prime}=$ $\left(\psi^{j}\right)^{(1+\epsilon)}, g^{j}=\left(\psi^{j}\right)^{-(1+\epsilon)}$ hence $\sum_{j} \mathrm{~W}^{j}\left(\mathrm{f}_{\mathrm{j}}, g^{j}\right)$ and this is true for all functions $\psi^{j}=\mathcal{A}(\mathrm{K})$
Theorem 2: Let $f_{j} \in \mathcal{M}(K) K(x)$ have finitely many multiple poles. Then f_{j}^{\prime} takes every value $\mathrm{b} \in \mathrm{k}$ infinitely in any times.
Easily show Corollary 2.1 from Theorem 2, though it is possible to get it through an expansion in simple elements.

Corollary 2.1: Let $f_{j} \in \mathcal{M}(K) \backslash K(\boldsymbol{x})$. Then f_{j}^{\prime} belongs to $\mathcal{M}(\mathrm{K}) \backslash K(x)$ look for some applications to Hayman's problem in a $(1+\epsilon)$-adic field. Let $f_{j} \in M(K)$ Recall that in [8] it was shown that if m is an integer ≥ 5 or $m=1$, then
$\sum_{j} f_{j}{ }^{\prime \prime}+f_{j}{ }^{\prime \prime}$ has infinitely many zeros that are not zeros of f_{j}. In [9] and [7] but there remain some cases where it is impossible to conclude except when the field has residue characteristic equal to zero . When $m=2$, few result are known, recall also that as far as complex meromorphic functions are concerned, $\sum_{j} f_{j}^{\prime}+\sum_{j} f_{j}^{\prime \prime}$ has infinitely many zeros that are not zeros of f_{j} for every but obvious counterexample, show this is wrong for $\mathrm{m}=1$ (with $f_{j}(\boldsymbol{x})=\mathrm{e}^{\boldsymbol{x}}$) and for $\mathrm{m}=2\left(\right.$ with $f_{j}(\boldsymbol{x})=\tan (-\boldsymbol{x})$).
Here particularly examine functions $\sum_{j} f_{j}^{\prime}+\mathrm{b} \sum_{j} f_{j}^{2}$ with $b \in K^{*}$.

Theorem 3: let $\left(\mathrm{b}^{2}+1\right) \in \mathrm{K}^{*}$ and let $f_{j} \in \mathcal{M}(K)$ have finitely many residues at its simple poles equal to $\frac{1}{\mathrm{~b}^{2}+1}$ and be such that $\sum_{j} f_{j}^{\prime}+\left(\mathrm{b}^{2}+1\right)$ has finitely many zeros, then f_{j} belongs to $K(\boldsymbol{x})$
Remark: $f_{j}(\boldsymbol{x})=\frac{1}{x^{\prime}}$ the series functions $\sum_{j} f_{j}^{\prime}+$ $\left(\mathrm{b}^{2}+1\right) \sum_{j} f_{j}^{2}$ has no zero whenever $\mathrm{b} \neq 1$

Theorem 4: Let $f_{j} \in \boldsymbol{\mathcal { M }}(\mathrm{~K}) \backslash \mathrm{K}(\boldsymbol{x})$ have finitely multiple zeros and let $b \in K$ then
$\sum_{j} \frac{f_{j}{ }^{\prime}}{f_{j}{ }^{2}}+\left(\mathrm{b}^{2}+1\right)$ has infinitely many zeros. Moreover if $b \neq 0$ every zero α of
$\sum_{j} \frac{f_{j}{ }^{\prime}}{f_{j}{ }^{2}}+\left(\mathrm{b}^{2}+1\right)$ that is not a zero of $\sum_{j} f_{j}^{\prime}+$ $\left(\mathrm{b}^{2}+1\right) \sum_{j} f_{j}^{2}$ are simple poles of f_{j} such that the residue of f at α is equal to $\frac{1}{b^{2}+1}$

Corollary 4.1: Let $\mathrm{b} \in \mathrm{K}^{*}$ and let $f_{j} \in \mathcal{M}(K) \backslash K(\boldsymbol{x})$ have finitely multiple zeros and simple poles. Then $\sum_{j} f_{j}{ }^{\prime}+$ $\left(\mathrm{b}^{2}+1\right) \sum_{j} f_{j}^{2}$ has infinitely many zeros that are not zeros of f_{j}.
Remark: in Archimedean analysis, the typical example of a meromorphic sequence of functions f_{j} such that $\sum_{j} f_{j}^{\prime}+f_{j}{ }^{2}$ has no zeros in $\tan (-x)$ and its residue is 1 at each pole of f_{j}. here find the same implication but n't find an example satisfying such properties 2 The proofs
Notation: Given $f_{j} \in \mathcal{A}(K)$ and $\epsilon>-1$, we denote by $\sum_{j}\left|f_{j}\right|(1+\epsilon)$ the norm of uniform convergence on the disk $\mathbf{1}+\boldsymbol{\epsilon}(0,1+\epsilon)$. This norm is none to be multiplicative in [10] Lemma 1: is well known in [10] :

Lemma 1: Let $f_{j} \in \mathcal{M}(K)$ then $\sum_{j}\left|f_{j}^{(k-1)}\right|(1+\epsilon) \leq$ $\frac{\left|\sum_{j} \mathrm{f}_{\mathrm{j}}\right|(1+\epsilon)}{(1+\epsilon)^{\mathrm{k}-1}} \forall \epsilon>-1, \forall \mathrm{k} \in \mathrm{N}^{*}$

Proof of Theorem 1: First, by Theorem A: check that the claim is satisfied when $\sum_{j} \mathrm{~W}^{j}\left(\mathrm{f}_{\mathrm{j}}, g^{j}\right)$ is a polynomial of degree 0 ., suppose the claim holds when $\mathrm{W}^{j}\left(\mathrm{f}_{\mathrm{j}}, g^{j}\right)$ are polynomial of certain degree $(1+\epsilon)$. show it for $(2+$ $\epsilon)$..Let $f_{j}, g^{j} \in \mathcal{A}(\mathrm{~K})$ be such that $\sum_{j} \mathrm{~W}^{j}\left(\mathrm{f}_{\mathrm{j}}, g^{j}\right)$ are nonidentically zero polynomial $(1+\epsilon)$ of degree $(2+\epsilon)$.

By hypothesis, have $\sum_{j} f_{j}^{\prime} g^{j}-\sum_{j} f_{j} g_{j}^{\prime}=1+\epsilon$, hence($\sum_{j} f_{j}{ }^{\prime \prime} g^{j}-\sum_{j} f_{j} \dot{g}^{j}=\left(\frac{1+\epsilon}{\epsilon}\right)$. Extract g^{j} and get $\sum_{j} g^{j}=$ $\sum_{j} \frac{\mathrm{f}_{\mathrm{j}} g^{j}-(1+\epsilon)}{\mathrm{f}_{\mathrm{j}}}$, consider the function
$\mathrm{Q}=\sum_{j} f_{j}{ }^{\prime \prime} \bar{g}^{j}-\sum_{j} f_{j}^{\prime} \dot{g}^{j}$ and replace g^{j} by what just found: get $\quad \mathrm{Q}=\sum_{j} f_{j}^{\prime}\left(\frac{f_{j}{ }^{\prime \prime} g^{j}-f_{j} \dot{g}^{j}}{\mathrm{f}_{\mathrm{j}}}\right)-(1+\epsilon) \sum_{j} \frac{f_{j}{ }^{\prime \prime}}{\mathrm{f}_{\mathrm{j}}} \quad$ replace, $\sum_{j} f_{j}{ }^{\prime \prime} g^{j}-\sum_{j} f_{j} g^{j}$ by $\left(\frac{1+\epsilon}{\epsilon}\right)$ and obtain $\mathrm{Q}=\sum_{j} \frac{f_{j}{ }^{\prime \prime}-(1+\epsilon) \mathrm{f}_{\mathrm{j}}{ }^{\prime \prime}}{f_{j}}$ thus in that expression of Q write $|\mathrm{Q}|(1+\epsilon) \leq$ $\sum_{j} \frac{\left|\mathrm{f}_{\mathrm{j}}\right|(1+\epsilon)|1+\epsilon|(1+\epsilon)}{(1+\epsilon)^{2}\left|\mathrm{f}_{\mathrm{j}}\right|(1+\epsilon)}$ hence $|\mathrm{Q}|(1+\epsilon) \leq \sum_{j} \frac{|1+\epsilon|(1+\epsilon)}{(1+\epsilon)^{2}}$
$\forall \epsilon>-1$. But by definition, Q belongs to $\mathcal{A}(\mathrm{K})$ and further, $\operatorname{deg}(\epsilon-1)$ consequently, Q is polynomial of degree at $\operatorname{most}(\epsilon-1)$.
Suppose \mathbf{Q} is not identically zero. Since $\mathbf{Q}=\sum_{j} \mathrm{~W}^{j}\left(f_{j}^{\prime}, g^{j}\right)$ and since $\operatorname{deg}(Q)>(1+\epsilon)$, by induction f_{j}^{\prime} and g^{j} are polynomials and so are f_{j} and g^{j}. finally suppose $\mathrm{Q}=0$. Then $\left(\frac{1+\epsilon}{\epsilon}\right) \sum_{j} f_{j}^{\prime}-(1+\epsilon) \sum_{j} f_{j}^{\prime \prime}=0$ and therefore f_{j}^{\prime} and P are two solutions of the differential equation of order 1 for meromorphic sequence of functions in $\mathrm{K}:(\mathrm{E}) \mathrm{y}^{\prime}=\psi^{j}$ y with $\psi^{j}=1$ whereas y belongs to $\mathcal{A}(\mathrm{K})$. The space of solutions of (E) is known to be of dimension 0 or 1 . Consequently, there exist $\lambda \in \mathrm{K}$ such that $f_{j}^{\prime}=\lambda(1+\epsilon)$, hence f_{j} are polynomials, the same holds for g^{j}.

Proof of Theorem 2: Suppose f_{j} ' has finitely many zeros. By classical results , write f_{j}^{\prime} in the form $\sum_{j} \frac{h_{j}}{I_{j}}$ with $h_{j}, I_{j} \in \mathcal{A}(\mathrm{~K})$, having no common zero. Consequently, all zero of $\sum_{j} \mathrm{~W}^{j}\left(h_{j}, I_{j}\right)$ are zeros f_{j}^{\prime} except if it are multiple zeros f_{j}. But since I_{j} only has finitely many multiple zeros, it appears that $\sum_{j} \mathrm{~W}^{j}\left(h_{j}, I_{j}\right)$ has finitely many zeros and therefore is a polynomial. Consequently, Both h_{j} and I_{j} are polynomials a contradiction because f_{j} does not belong to $\mathrm{K}(\boldsymbol{x})$, consider of $\sum_{j} f_{j}^{\prime}-\mathrm{b}$ whit $\mathrm{b} \in \mathrm{k}$. It is derivative of $f_{j}-\mathrm{bx}$ whose poles are exactly those of f_{j}, taking multiplicity into account, consequently $\sum_{j} f_{j}^{\prime}-\mathrm{b}$ also has infinitely many zeros.
Notation: given $f_{j} \in \mathrm{~K}(\mathrm{k})$, denoted by $\operatorname{res}_{\mathrm{a}}\left(f_{j}\right)$ the residue of f_{j} at a.

Lemma 2: let $\sum_{j} f_{j}=\sum_{j} \frac{h_{j}}{I_{j}} \in \mathcal{M}(\mathrm{~K})$ with $h_{j}, I_{j} \in \mathcal{A}(\mathrm{~K})$ having no common zero, let $\left(b^{2}+1\right) \in K^{*}$ and $a \in K$ be a zero of $\sum_{j} h_{\mathrm{j}} I_{j}-\sum_{j} \mathrm{~h}_{\mathrm{j}} I_{\mathrm{j}}$ that is not a zero of $\sum_{j} f_{j}^{\prime}+$ $\left(\mathrm{b}^{2}+1\right) \sum_{j} f_{j}{ }^{2}$. Then a simple poles of f_{j} and $\operatorname{res}_{\mathrm{a}}\left(f_{j}\right)=$ $\frac{1}{\mathrm{~b}^{2}+1}$.
Proof: Clearly, if $(\mathrm{a}) \neq 0, \mathrm{a}$ is a zero of $\sum_{j} f_{j}^{\prime}+$ $\left(\mathrm{b}^{2}+1\right) \sum_{j} f_{j}^{2}$. Hence, a zero a of $\sum_{j} h_{j}^{\prime} I_{j}-\sum_{j} h_{j} I_{\mathrm{j}}+$ $\mathrm{b} \sum_{j} h_{j}^{2}$ that is not a zeros of $\sum_{j} \mathrm{z}\left(f_{\mathrm{j}}+\left(\mathrm{b}^{2}+1\right) \sum_{j} f_{j}^{2}\right.$. are
pole of f_{j}. When $I_{j}(\mathrm{a})=0$, we have $h_{j}(\mathrm{a}) \neq 0$ hence $\sum_{j} I_{\mathrm{j}}(\mathrm{a})=\left(\mathrm{b}^{2}+1\right) \sum_{j} h_{j}(\mathrm{a}) \neq 0$ and therefore a is a simple pole of f_{j} such that $\sum_{j} \frac{\mathrm{~h}_{\mathrm{j}}(\mathrm{a})}{\left(I_{j}\right)^{\prime}(\mathrm{a})}=\frac{1}{\mathrm{~b}^{2}+1}$ but since a is a simple pole of f_{j}. have $\operatorname{res}_{\mathrm{a}} \sum_{j}\left(\mathrm{f}_{\mathrm{j}}\right)=\sum_{j} \frac{h_{j}(\mathrm{a})}{\left(I_{j}\right)^{\prime}(\mathrm{a})}=\frac{1}{\mathrm{~b}^{2}+1}$. Which ends the proof.
Proof Theorem 3 : Let $\sum_{j} f_{j}=\sum_{j} \frac{(1+\epsilon)}{I_{j}}$ with $(1+\epsilon)$ a polynomial, $\mathrm{I}_{\mathrm{j}} \in \mathcal{A}^{j}(K)$ having no common zero with $(1+\epsilon)$. Then $\sum_{j} f_{j}^{\prime}+\left(\mathrm{b}^{2}+1\right) \sum_{j} f_{j}^{2}$ $=\sum_{j} \frac{\left(\grave{h}_{\mathrm{j}}\right) I_{\mathrm{j}}-\left(I_{\mathrm{j}}\right)(1+\epsilon)(1+\epsilon)\left(\mathrm{b}^{2}+1\right)(1+\epsilon)^{2}}{I_{j}{ }^{2}}$. By hypothesis, this sequence of functions has finitely many zeros, moreover if a is a zero of $\sum_{j} \dot{h}_{\mathrm{j}} I_{j}-\sum_{j} I_{\mathrm{j}}(1+\epsilon)\left(\mathrm{b}^{2}+1\right)(1+\epsilon)^{2}$ but is not a zeros of $\sum_{j} f_{j}{ }^{\prime \prime}+\left(\mathrm{b}^{2}+1\right) \mathrm{b} \sum_{j} f_{j}^{2}$ then, by lemma 2 a is a simple pole of f_{j} such that $\operatorname{res}_{\mathrm{a}}(\mathrm{f})=\frac{1}{\mathrm{~b}^{2}+1}$. Consequently $\left(\frac{1+\epsilon}{\epsilon}\right) \sum_{j} I_{j}-\mathrm{L}^{\prime}(1+\epsilon)\left(\mathrm{b}^{2}+1\right)(1+\epsilon)^{2}$ has finitely many zeros and so write $\frac{\left(\frac{1+\epsilon}{\epsilon}\right) I_{j}-I_{\mathrm{j}}(1+\epsilon)+\left(\mathrm{b}^{2}+1\right)(1+\epsilon)^{2}}{I_{j}{ }^{2}}=\frac{\mathrm{Q}}{I_{j}{ }^{2}}$ with $\mathrm{Q} \in \mathrm{K}[x]$, hence $\left(\frac{1+\epsilon}{\epsilon}\right) \sum_{j} I_{j}-\sum_{j} I_{\mathrm{j}}(1+\epsilon)=-\left(\mathrm{b}^{2}+1\right)(1+\epsilon)^{2}+\mathrm{Q}$ but them by theorem 1: , L is a polynomial, which ends the proof.
Proof Theorem 4: Let $\sum_{j} g^{j}=\frac{f_{j}{ }^{\prime}}{f_{j}{ }^{2}}+\left(\mathrm{b}^{2}+1\right)$. Suppose $\mathrm{b}=0$. Since all zeros of f_{j} are simple zeros except maybe finitely many, g^{j} has finitely many poles of order ≥ 3, hence a primitive G of g^{j} has finitely many multiple poles (see [11]). Consequently, by Theorem $2, g^{j}$ has infinitely many zeros. , Suppose $\mathrm{b} \neq 0$, let α be zeros of g^{j} and let $\sum_{j} f_{j}^{\prime}=\sum_{j} \frac{h_{j}}{I_{j}}$ with $h_{j}, \mathrm{I}_{\mathrm{j}} \in \mathcal{A}(\mathrm{K})$ having no common zero, then $\sum_{j} \frac{f_{j}^{\prime}}{f_{j}{ }^{2}}+\left(\mathrm{b}^{2}+1\right)=\sum_{j} \frac{\left(h_{j} j_{j}-\left(\mathrm{h}_{\mathrm{j}}\right) \hat{I}_{\mathrm{j}}+\left(\mathrm{b}^{2}+1\right) h_{j}{ }^{2}\right.}{h_{j}{ }^{2}}$ since α is a zero of $\sum_{j} \frac{f_{j}^{\prime}}{f_{j}{ }^{2}}+\left(\mathrm{b}^{2}+1\right)$ it is not a zero of h_{j} and hence it is a zero of $\sum_{j}\left(\dot{h}_{\mathrm{j}} I_{j}\right)-\sum_{j} \mathrm{~h}_{\mathrm{j}} \dot{I}_{\mathrm{j}}+\left(\mathrm{b}^{2}+1\right) \sum_{j} h_{j}{ }^{2}$ then lemma 2 if it is not zero of $\sum_{j} f_{j}^{\prime}+\left(\mathrm{b}^{2}+1\right) \sum_{j} f_{j}^{2}$ it is a simple poles of f_{j} such that $\operatorname{res}_{\mathrm{a}}\left(f_{j}\right)=\frac{1}{\left(\mathrm{~b}^{\prime}\right)^{2}+2}$ which ends the proof of theorem 4 .

Acknowledgments

The authors would like to thank Colleages for their helpful comments .

Topicson Value Distribution and Differentiability in Complex and p-adic cAnalysis .Mathematics Monograph,. Science Press, p p 42-138. 2008.
3. P.C. Hu and C. C yang : Meromorphic function over non-Archimedeam fields. Kluwer Academic publishers (2000)
4. J. Ojeda :distribution de valeurs des functions meromorphes ultrametrique, applications de la theorie de Nevanlina. ,Univesite Blaise Pascal, Clermont-Ferrand, France (2008).
5. W. Bergweiler and \boldsymbol{X}. C.: Pang on the derivative of meromorphic functions unih. Multiple zeros . J. Math. Anal. Appl. 278, pp. 285-292 (2003).
6. Boussaf Picard : values of p-adic meromorphic function. p-adic Numbers, Ul- trimetric Analysis and Applications. Vol. 2, N. 4, pp. 285-292 (2010)
7. A. Escassut andJ. Ojeda : Exceptional values of p-adic analytic functions and derivatives. Complex Variables and Elliptic Equations. Vol 56, N. -4, pp. 263-269 (2011).
8. [8] J. Ojeda : Hyman's conjecture over a p-adic field, Taiwanese Journal of mathematics. Vol. 12, N. 9, pp.2295-2313 (2008).
9. k (. Boussaf and J. Ojeda Value distribution of padic meromorphic functions, Bul- letin of the Belgian Mathematical Society - Simon Stevin, Vol 18, n.4, P: 667-678 (2011).
10. Escassut, A. : Analytic Elements in p-adic Analysis. World Scientific Publishing Co. Pte.Ltd. (Singapore, 1995).
11. Simon Joseph , Manal Juma and Isra Mukhtar: Applications on Triagular Subgroups of Sp with Reproducing Groups . American Association for Science and Technolpgy, International Journal of Mathematical Analysis and Applications, Vol.5, N . 3 , pp : 66-84, (2018) .

References

1. Kamal Boussaf, Alain Escassut, Jacqueline Ojeda : Zeros of the derivative of p-adic meromorphic functions and applications . Bull. Belg. Math. Soc. Simon, 19(2012), 367-372
2. A. Escassut : p-adic Value Distribution. Some
