International Journal of Mathematics and Computer Research ISSN: 2320-7167

Volume 07 Issue 04 April- 2019, Page no. - 1951-1953 Index Copernicus ICV: 57.55 DOI: 10.31142/ijmcr/v7i04.01

Derivative of Adic Meromorphic Function and Their Applications

Mohammed Mustafa¹, Simon Joseph², Arafa Dawood³

¹Department of Mathematics College of Education Blue Nile University Blue Nile University Damazin , Sudan ²Department of Mathematics College of Education University of Juba Juba , South Sudan ³Department of Mathematics College of Science and Arts for Girls King Khalid University Sarat Obeide , KSA

ARTICLE INFO	ABSTRACT
Published Online:	Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric
01 April 2019	absolute value. Showed that by Kamal Boussaf, Alain Escassut and Jacqueline Ojeda [1] if the
	Wronskian of two entire functions in K is apolynomial, then both functions are polynomials. As a
Corresponding Author:	consequence, if meromorphic sequence of functions f_i on all K is transcendental and has finitely
Mohammed Mustafa	many multiple poles, then f_j takes all values in K infinitely many times. Then study applications to
Mobile:	meromorphic sequence of functions f_j has finitely many zeros, aproblem linkedtothe Hayman
(+249)9118116675	conjecture on adic field.
KEYWORDS AND PHRASES: zeros of p-adic meromorphic functions, derivative, Wronskian	

RETWORDS AND THRASES. 2003 OF p-adic incromorphic functions; derivative

Introduction and Main Results

Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute value |.|Given $\alpha \in K$ and $(1 + \epsilon) \in \mathbb{R}^*_+$ we denote by $d(\alpha, (1 + \epsilon))$ the disk $\{x \in K_{1/2|x-\alpha|} \leq 1 + \epsilon\}$ and by $d(\alpha, (1 + \epsilon)^-)$ the disk $\{x \in K_{\frac{1}{2|x-\alpha|}} \leq 1 + \epsilon\}$ by $\mathcal{A}(K)$ the K-algebra of analytic sequence of functions in K(i.e. these to f_j power series with an infinite radius of convergence), by $\mathcal{M}(K)$ the field of meromorphic sequence of functions in K and by K(x) the field of rational functions. Given $f_j, g^j \in \mathcal{A}(K)$ denote by $\sum_j W^j(f_j, g^j)$ the Wronskian $\sum_j f_j g^j - \sum_j f_j g^j$.

Know that all non-constant entire sequence of functions $f_i \in \mathcal{A}(K)$ takes all values in K.

More precisely, sequence of functions $f_j \in \mathcal{A}(K)$ other than a polynomial takes all values in *K* infinitely many times in [2], [3],[4] next a non-constant meromorphic functions $f_j \in \mathcal{M}(K)$ takes every value in K, except at most one value. And more precisely, a meromorphic sequence of functions $f_j \in \mathcal{M}(K) \setminus K((x))$ takes every value in K infinitely many times except at most one value. Many previous studies were made on Picard's exceptional values for complex and a $(1 + \epsilon)$ -adic sequence of functions and their derivatives in [5],[6] and [7]. Here mean to examine precisely whether the derivative of a transcendental meromorphic sequence of function in K having finitely many multiple poles, may admit a value that is taken finitely many times and then look for applications to Hayman's problem when m = 2 From 4 [6], state the following Theorem A: (See e.g.e,[1])

Theorem A: Let $f_j', I_j \in \mathcal{A}(K)$ satisfy $\sum_j W^j(h_j, I_j) = c \in K$ with h_j non-affine. Then c = 0 and $\frac{h_j}{I_j}$ are constant. Improve Theorem A:

Theorem 1: Let $f_j, g^j \in \mathcal{A}(K)$ be such that $\sum_j W^j(f_j, g^j)$ are non-identically zero polynomial, then both f_i, g^j are polynomials.

Remark: theorem 1 does not hold in a characteristic $\epsilon \neq -1$ indeed suppose the characteristic of K is $\epsilon \neq -1$. Let $\psi^j \in \mathcal{A}(K)$.let $f_j = \mathbf{x}(\psi^j)^{(1+\epsilon)}$ and

let $g^{j} = (\mathbf{x} + 1)(\psi^{j})^{-(1+\epsilon)}$ since $\neq 0$, we have $f_{j}^{'} = (\psi^{j})^{(1+\epsilon)}, g^{j} = (\psi^{j})^{-(1+\epsilon)}$ hence $\sum_{j} W^{j}(\mathbf{f}_{j}, g^{j})$ and this is true for all functions $\psi^{j} = \mathcal{A}(\mathbf{K})$

Theorem 2: Let $f_j \in \mathcal{M}(K)K(x)$ have finitely many multiple poles. Then f_j takes every value $b \in k$ infinitely in any times.

Easily show Corollary 2.1 from Theorem 2, though it is possible to get it through an expansion in simple elements.

Corollary 2.1: Let $f_j \in \mathcal{M}(K) \setminus K(\mathbf{x})$. Then f_j belongs to $\mathcal{M}(K) \setminus K(\mathbf{x})$ look for some applications to Hayman's problem in a $(1 + \epsilon)$ -adic field. Let $f_j \in M(K)$ Recall that in [8] it was shown that if m is an integer ≥ 5 or m = 1, then

 $\sum_{j} f_{j}^{''} + f_{j}^{''}$ has infinitely many zeros that are not zeros of f_{j} . In [9] and [7] but there remain some cases where it is impossible to conclude except when the field has residue characteristic equal to zero . When m = 2, few result are known, recall also that as far as complex meromorphic functions are concerned, $\sum_{j} f_{j}^{'} + \sum_{j} f_{j}^{''}$ has infinitely many zeros that are not zeros of f_{j} for every but obvious counter-example, show this is wrong for m = 1 (with $f_{j}(\mathbf{x}) = e^{\mathbf{x}}$) and for m = 2 (with $f_{j}(\mathbf{x}) = \tan(-\mathbf{x})$).

Here particularly examine functions $\sum_{j} f_{j}^{'} + b \sum_{j} f_{j}^{2}$ with $b \in K^{*}$.

Theorem 3: let $(b^2 + 1) \in K^*$ and let $f_j \in \mathcal{M}(K)$ have finitely many residues at its simple poles equal to $\frac{1}{b^2+1}$ and be such that $\sum_j f_j' + (b^2 + 1)$ has finitely many zeros, then f_j belongs to $K(\mathbf{x})$

Remark: $f_j(x) = \frac{1}{x'}$ the series functions $\sum_j f_j' + (b^2 + 1) \sum_j f_j^2$ has no zero whenever $b \neq 1$

Theorem 4: Let $f_j \in \mathcal{M}(K) \setminus K(x)$ have finitely multiple zeros and let $b \in K$ then

 $\sum_{j} \frac{f_j}{f_j^2} + (b^2 + 1)$ has infinitely many zeros. Moreover if $b \neq 0$ every zero α of

 $\sum_{j} \frac{f_{j}}{f_{j}^{2}} + (b^{2} + 1)$ that is not a zero of $\sum_{j} f_{j}^{'} + (b^{2} + 1) \sum_{j} f_{j}^{'2}$ are simple poles of f_{j} such that the residue of f at α is equal to $\frac{1}{b^{2}+1}$

Corollary 4.1: Let $b \in K^*$ and let $f_j \in \mathcal{M}(K) \setminus K(x)$ have finitely multiple zeros and simple poles. Then $\sum_j f_j' + (b^2 + 1) \sum_j f_j^2$ has infinitely many zeros that are not zeros of f_j .

Remark: in Archimedean analysis, the typical example of a meromorphic sequence of functions f_j such that $\sum_j f_j^{'} + f_j^{2}$ has no zeros in tan(-x) and its residue is 1 at each pole of f_j . here find the same implication but n't find an example satisfying such properties 2 The proofs

Notation: Given $f_j \in \mathcal{A}(K)$ and $\epsilon > -1$, we denote by $\sum_j |f_j| (1 + \epsilon)$ the norm of uniform convergence on the disk $1 + \epsilon(0, 1 + \epsilon)$. This norm is none to be multiplicative in [10] Lemma 1: is well known in [10] :

Lemma 1: Let $f_j \in \mathcal{M}(K)$ then $\sum_j |f_j^{(k-1)}| (1+\epsilon) \le \frac{|\sum_j f_j|(1+\epsilon)}{(1+\epsilon)^{k-1}} \quad \forall \epsilon > -1, \forall k \in \mathbb{N}^*$

Proof of Theorem 1: First, by Theorem A: check that the claim is satisfied when $\sum_{j} W^{j}(f_{j}, g^{j})$ is a polynomial of degree 0., suppose the claim holds when $W^{j}(f_{j}, g^{j})$ are polynomial of certain degree $(1 + \epsilon)$. show it for $(2 + \epsilon)$..Let $f_{j}, g^{j} \in \mathcal{A}(K)$ be such that $\sum_{j} W^{j}(f_{j}, g^{j})$ are non-identically zero polynomial $(1 + \epsilon)$ of degree $(2 + \epsilon)$.

By hypothesis, have $\sum_{j} f_{j}' g^{j} - \sum_{j} f_{j} g_{j}' = 1 + \epsilon$, hence($\sum_{j} f_{j}'' g^{j} - \sum_{j} f_{j} g^{j} = \left(\frac{1+\epsilon}{\epsilon}\right)$. Extract g^{j} and get $\sum_{j} g^{j} = \sum_{j} \frac{f_{j} g^{j-(1+\epsilon)}}{f_{j}}$, consider the function $Q = \sum_{j} f_{j}'' g^{j} - \sum_{j} f_{j}' g^{j}$ and replace g^{j} by what just found: get $Q = \sum_{j} f_{j}'' \left(\frac{f_{j}'' g^{j} - f_{j} g^{j}}{f_{j}}\right) - (1 + \epsilon) \sum_{j} \frac{f_{j}''}{f_{j}}$ replace, $\sum_{j} f_{j}'' g^{j} - \sum_{j} f_{j} g^{j}$ by $\left(\frac{1+\epsilon}{\epsilon}\right)$ and obtain $Q = \sum_{j} \frac{f_{j}'' - (1+\epsilon) f_{j}''}{f_{j}}$ thus in that expression of Q write $|Q|(1 + \epsilon) \leq 1$

 $\sum_{j} \frac{|f_{j}|(1+\epsilon)|1+\epsilon|(1+\epsilon)}{(1+\epsilon)^{2}|f_{j}|(1+\epsilon)} \text{ hence } |Q|(1+\epsilon) \leq \sum_{j} \frac{|1+\epsilon|(1+\epsilon)|}{(1+\epsilon)^{2}}$

 $\forall \epsilon > -1$. But by definition, Q belongs to $\mathcal{A}(K)$ and further, deg($\epsilon - 1$) consequently, Q is polynomial of degree at most($\epsilon - 1$).

Suppose Q is not identically zero. Since $Q = \sum_{j} W^{j} (f_{j}, g^{j})$ and since deg(Q) > $(1 + \epsilon)$, by induction f_{j} and g^{j} are polynomials and so are f_{j} and g^{j} . finally suppose Q = 0. Then $\left(\frac{1+\epsilon}{\epsilon}\right)\sum_{j} f_{j}' - (1 + \epsilon)\sum_{j} f_{j}'' = 0$ and therefore f_{j}' and P are two solutions of the differential equation of order 1 for meromorphic sequence of functions in K: (E)y' = ψ^{j} y with $\psi^{j} = 1$ whereas y belongs to $\mathcal{A}(K)$. The space of solutions of (E) is known to be of dimension 0 or 1. Consequently, there exist $\lambda \in K$ such that $f_{j}' = \lambda(1 + \epsilon)$, hence f_{j} are polynomials, the same holds for g^{j} .

Proof of Theorem 2: Suppose f_j has finitely many zeros. By classical results , write f_j in the form $\sum_j \frac{h_j}{l_j}$ with h_j , $I_j \in \mathcal{A}(K)$, having no common zero. Consequently, all zero of $\sum_j W^j(h_j, I_j)$ are zeros f_j' except if it are multiple zeros, f_j . But since I_j only has finitely many multiple zeros, it appears that $\sum_j W^j(h_j, I_j)$ has finitely many zeros and therefore is a polynomial. Consequently, Both h_j and I_j are polynomials a contradiction because f_j does not belong to $K(\mathbf{x})$, consider of $\sum_j f_j' - b$ whit $b \in k$. It is derivative of $f_j - bx$ whose poles are exactly those of f_j , taking multiplicity into account, consequently $\sum_j f_j' - b$ also has infinitely many zeros.

Notation: given $f_j \in K(k)$, denoted by $\operatorname{res}_a(f_j)$ the residue of f_j at a.

Lemma 2: let $\sum_{j} f_{j} = \sum_{j} \frac{h_{j}}{l_{j}} \in \mathcal{M}(K)$ with $h_{j}, l_{j} \in \mathcal{A}(K)$ having no common zero, let $(b^{2} + 1) \in K^{*}$ and $a \in K$ be a zero of $\sum_{j} \dot{h_{j}} l_{j} - \sum_{j} h_{j} \dot{f_{j}}$ that is not a zero of $\sum_{j} f_{j}^{'} + (b^{2} + 1) \sum_{j} f_{j}^{2}$. Then a simple poles of f_{j} and $\operatorname{res}_{a}(f_{j}) = \frac{1}{b^{2}+1}$.

Proof: Clearly, if (a) $\neq 0$, a is a zero of $\sum_j f_j' + (b^2 + 1) \sum_j f_j^2$. Hence, a zero a of $\sum_j h_j' I_j - \sum_j h_j I_j + b \sum_j h_j^2$ that is not a zeros of $\sum_j z(f_j + (b^2 + 1) \sum_j f_j^2)$ are

"Derivative of Adic Meromorphic Function and Their Applications"

pole of f_j . When $I_j(a) = 0$, we have $h_j(a) \neq 0$ hence $\sum_j \hat{I}_j(a) = (b^2 + 1) \sum_j h_j$ (a) $\neq 0$ and therefore a is a simple pole of f_j such that $\sum_j \frac{h_j(a)}{(I_j)'(a)} = \frac{1}{b^2+1}$ but since a is a simple pole of f_j . have $\operatorname{res}_a \sum_j (f_j) = \sum_j \frac{h_j(a)}{(I_j)'(a)} = \frac{1}{b^2+1}$. Which ends the proof.

Proof Theorem 3 : Let $\sum_j f_j = \sum_j \frac{(1+\epsilon)}{I_j}$ with $(1+\epsilon)$ a polynomial, $I_i \in \mathcal{A}^j(K)$ having no common zero with $(1 + \epsilon)$. Then $\sum_{j} f_{j}^{\prime} + (b^{2} + 1) \sum_{j} f_{j}^{2}$ $= \sum_{j} \frac{(\dot{h_j}) i_j - (\dot{l_j}) (1+\epsilon) (1+\epsilon) (b^2+1) (1+\epsilon)^2}{{l_j}^2}$. By hypothesis, this sequence of functions has finitely many zeros, moreover if a is a zero of $\sum_{i} \dot{h}_{i} I_{i} - \sum_{i} \dot{I}_{i} (1 + \epsilon) (b^{2} + 1)(1 + \epsilon)^{2}$ but is not a zeros of $\sum_{i} f_{i}^{"} + (b^{2} + 1)b \sum_{i} f_{i}^{2}$ then, by lemma 2 a is a simple pole of f_j such that $\operatorname{res}_a(f) = \frac{1}{b^2 + 1}$. Consequently $\left(\frac{1+\epsilon}{\epsilon}\right)\sum_{j} I_{j} - L'(1+\epsilon)(b^{2}+1)(1+\epsilon)^{2}$ has and so finitely many zeros write $\frac{\left(\frac{1+\epsilon}{\epsilon}\right)I_j - I_j(1+\epsilon) + (b^2+1)(1+\epsilon)^2}{I_j^2} = \frac{Q}{I_j^2} \quad \text{with} \quad Q \in K[\boldsymbol{x}] \quad \text{, hence}$ $\left(\frac{1+\epsilon}{\epsilon}\right)\sum_{j} I_{j} - \sum_{j} I_{j} (1+\epsilon) = -(b^{2}+1)(1+\epsilon)^{2} + Q \quad \text{but}$ them by theorem 1:, L is a polynomial, which ends the proof.

Proof Theorem 4: Let $\sum_{j} g^{j} = \frac{f_{j}}{f_{j}^{2}} + (b^{2} + 1)$. Suppose b = 0. Since all zeros of f_{j} are simple zeros except maybe finitely many, g^{j} has finitely many poles of order ≥ 3 , hence a primitive G of g^{j} has finitely many multiple poles (see [11]). Consequently, by Theorem 2, g^{j} has infinitely many zeros. , Suppose $b \neq 0$, let α be zeros of g^{j} and let $\sum_{j} f_{j}^{'} = \sum_{j} \frac{h_{j}}{l_{j}}$ with h_{j} , $I_{j} \in \mathcal{A}(K)$ having no common zero, then $\sum_{j} \frac{f_{j}^{'}}{f_{j}^{2}} + (b^{2} + 1) = \sum_{j} \frac{(\dot{h}_{j}I_{j} - (h_{j})\dot{f}_{j} + (b^{2} + 1)h_{j}^{2}}{h_{j}^{2}}$ since α is a zero of $\sum_{j} \frac{f_{j}^{'}}{f_{j}^{'2}} + (b^{2} + 1)$ it is not a zero of h_{j} and hence it is a zero of $\sum_{j} (\dot{h}_{j}I_{j}) - \sum_{j} h_{j} \dot{f}_{j} + (b^{2} + 1) \sum_{j} h_{j}^{2}$ then lemma 2 if it is not zero of $\sum_{j} f_{j}^{'} + (b^{2} + 1) \sum_{j} f_{j}^{2}$ it is a simple poles of f_{j} such that $\operatorname{res}_{a}(f_{j}) = \frac{1}{(b')^{2}+2}$ which ends the proof of theorem4.

Acknowledgments

The authors would like to thank Colleages for their helpful comments .

References

- 1. Kamal Boussaf, Alain Escassut, Jacqueline Ojeda : Zeros of the derivative of *p*-adic meromorphic functions and applications . Bull. Belg. Math. Soc. Simon , 19(2012), 367-372
- 2. A. Escassut : p-adic Value Distribution. Some

Topicson Value Distribution and Differentiability in Complex and p-adic cAnalysis .Mathematics Monograph,. Science Press, p p 42-138. 2008.

- 3. P.C. Hu and C. C yang : Meromorphic function over non-Archimedeam fields. Kluwer Academic publishers (2000)
- 4. J. Ojeda :distribution de valeurs des functions meromorphes ultrametrique, applications de la theorie de Nevanlina. ,Univesite Blaise Pascal, Clermont-Ferrand, France (2008).
- W. Bergweiler and X. C.: Pang on the derivative of meromorphic functions unih. Multiple zeros. J. Math. Anal. Appl. 278, pp. 285-292 (2003).
- Boussaf Picard : values of *p* -adic meromorphic function. *p*-adic Numbers, Ul- trimetric Analysis and Applications. Vol. 2, N. 4, pp. 285-292 (2010)
- A. Escassut and J. Ojeda : Exceptional values of *p*-adic analytic functions and derivatives. Complex Variables and Elliptic Equations. Vol 56, N. -4, pp. 263-269 (2011).
- [8] J. Ojeda : Hyman's conjecture over a *p*-adic field , Taiwanese Journal of mathematics. Vol. 12, N. 9, pp.2295-2313 (2008).
- k(. Boussaf and J. Ojeda Value distribution of padic meromorphic functions, Bul- letin of the Belgian Mathematical Society - Simon Stevin, Vol 18, n.4, P: 667-678 (2011).
- Escassut, A. : Analytic Elements in *p*-adic Analysis. World Scientific Publishing Co. Pte.Ltd. (Singapore, 1995).
- 11. Simon Joseph , Manal Juma and Isra Mukhtar : Applications on Triagular Subgroups of Sp with Reproducing Groups . American Association for Science and Technolpgy , International Journal of Mathematical Analysis and Applications , Vol.5 , N . 3 , pp : 66 84 , (2018) .