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1. INTRODUCTION 

 In the present investigation, we denote by   the class of functions of the form  

           
         (1) 

 defined on the unit disk                       normalized by                   The set   denotes the class of 

univalent functions in  . A close observation of the series development of   suggests that finding bound for the coefficient an of 

functions of the form is an important problem. As early as in 1916, Bieberbach conjectured that the     coefficient of an univalent 

function is less than or equal to that of Koebe function. One of the important coefficient estimation is the Hankel determinants. The 

    order Hankel determinants       of     is defined by  

  

         

               

               

   
                    

  

where                        . For our discussion, in this paper we consider the second Hankel determinant. In recent years, 

study of  -analogs of subclasses univalent function is adopted among function theonsb, the sequel , we obtain an upper bound to the 

second Hankel determinant for  - -spirallike functions.  

Definition 1.1.[11] The  -analogue of   is given by  

 

         

          

      
         

                      

                   (2) 

 

Equivalently (2), may be written as  

             
                      

where  

       
    

   
            

                  

  

Note that as     ,       . 

Definition 1.2.  A function     is said to be  - -spiral starlike      
 

 
 , if and only if  

             

    
         (3) 
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The class of  -spiral starlike functions defined and studied by Spacek [29] is denoted by        . In this paper we study the class 

of  - -spiral starlike functions and denoted by          . It is observed when                  .  

Definition 1.3  A function     is said to be convex  - -spiral, where 
  

 
   

 

 
   if it satisfies the condition 

         
    

     

      
          (4) 

The class of convex  -spiral functions defined by Robertson (according to Goodman [9]) is denoted by        . In this paper we 

study the class of convex  - -spiral functions and denoted by          . It is observed when                  . 

Let   denote the class of functions  

               
     

            
               (5) 

 

Lemma 1.1.[4] If the function     is given by the series (1.3) then the following sharp estimate holds:  

                    

 

Lemma 1.2.[8] If the function     is given by the series (1.3), then  

       
        

    (6) 

 

       
        

             
           

             (7) 

 for some     with       and        

 

2. MAIN RESULTS 

Theorem 2.1. If   given by (1) in the class           
 

 
   and             

        near      is the inverse function 

of    then  

 

        
   

                              
 
        

           
     

                       
                                

 
                                

           
     

                      
                                

 
  

           
     

                      
                                

 

 (8) 

where  

                      
                                                                                                 

             
                       

                                  

              
          

           
            

          
   

 
 . 

 

Proof. Since           
                   from the Definition 1.3, there exists an analytic function     in the unit 

disc   with        and          such that  

        
    

     

      
                        

                    (9) 

 

                     

Replacing           
       and      with their equivalent series expressions in the relation (9), we have 

 

           
                      

                       

                                             
                            

                      
          

 

 Upon simplification, we obtain  

 
                       

             
                              

  

                         
       

 (10) 

 

On equating the coefficients of like powers of      and    respectively in (10), after simplifying, we get  

 

    
    

    
          

    

        
      

                

    
    

            
                     

          
                  

 (11 
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 Let         
                   

 

 
   from the definition of inverse function of    we have  

              (12) 

 Using the expression      the relation (12) is equivalent to 

            

             
                             

            
              (13) 

 Using the expression        in (13), we have 

                           
     

                
     

        

          
     

             
 

Using simplification, we obtain  

  
        

                
  

              
            

     
     (14) 

 Equating the coefficients of like powers of        and    on both sides of (14) respectively, after simplifying, we get  

                     
                    

    (15) 

 Using the values of       and    in (11) along with (15) yields 

 

   
     

    
       

   
     

          
                         

               

   
     

             
      

                    
                

               

      (16) 

where 

                  
              

             

Substituting the values of       and    from (16) in the second Hankel function for the function          we have 

        
   

     

          
     

            
                                   

        

          
   

                       
                               

    
          

 where 

                      
            

The above expression is equivalent to 

 

         
   

     

          
     

              
        

      
    (17) 

 where  

 
             

                                       

              
                              

                               
         

 (18) 

 where  

                      
          . 

Substituting the values of    and    from (6) and (7) respectively from Lemma 1.2, on the right-hand side of (17), we have 

 

 

             
        

      
                     

  

                                 
                        

     (19) 

 Using the value of          and    in the relation (18), upon simplification, we obtain 

 

                 

                         
                               

                         

              
                                                       

          
     

(20) 

where 

               
          

   

                 
            

Using the fact      ,upon simplification, we get  

            
                  

                                    (21) 

Since         , using the result                            where        on the right-hand side of the above 

inequality, we get  
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                                    (22) 

Substituting the calculated values from (21) and (22), on the right-hand side of (19), upon simplification, we get 

 

             
      

      
  

                                  
                               

                  
  

            
                                              

          
     

    

      
                                            

    

(23) 

where 

                      
          . 

Choosing           , applying triangle inequality and replacing     by   on the right-hand side of the above inequality, we 

obtain  

             
      

      
  

                                  
                               

                 
  

            
                                             

          
      

      
                                           

                      

(24) 

Where                      
             

Now the function        is maximized on the closed square            .  

Differentiating        in (24) partially with respect to  , we get  

 

  

  
                                                 

          
      

          
                                        

 (25) 

where 

                 
            

For      , for fixed   with       and for 
  

 
   

 

 
, from (25), we observe that 

  

  
   Therefore,       cannot 

have maximum value at any point in the interior of the closed square           . Further, for fixed        , we have 

    
     

                    (26) 

Therefore, replacing   by 1 in       , upon simplification, we obtain  

 
                             

                               
          

                                                                 
    

 (27) 

where 

                      
          , 

              
          

       
                      

        

 
                              

                               
         

                                        
 (28) 

where 

                     
            

              
          

           
            

          
     

 

 
                                

                               
          

                                         
 (29) 

Where 

                      
            

              
          

           
            

          
     

To obtain extreme values of     , consider        . From (28), we get  

                          
                                         

                                          
 (30) 

Where 
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Let us discuss the following cases: 

Case1: If    , then, from (29), we obtain  

                                                       
 

 
  (31) 

Where 

                      
            

              
          

           
            

          
     

From the second derivative test      has minimum value at    . 

Case2: If    , then, from (30), we get  

     
                                    

                      
                                      

   (32) 

Where 

                      
            

              
          

           
            

          
     

Using the value of    obtained from (32) in (30), upon simplification,we obtain  

                                                          
 

 
  

 (33) 

Where 

                      
            

              
          

           
            

          
     

By the second derivative test      has maximum value at  , where    is given in (32). Substituting the value of    in (27), after 

simplifying, we get  

 

   
     

     
                               

 
            

         

                     
                                      

 
                                 

                     
                                      

 
  

                     
                                      

 

 (34) 

Where 

                      
            

                       
                               

    

              
          

           
            

          
   

 
                     

Considering the maximum value of      only  at    , from (24) and (34), upon simplification, we obtain  

 

            
      

      
   

                               
 
            

         

                      
                                      

 
                                 

                      
                                      

 
  

                      
                                      

 

 (35) 

Where 

                      
            

                       
                               

    

              
          

           
            

          
   

 
. 

From (17) and (35), after simplifying, we get  

 

        
   

                               
 
            

         

           
     

                      
                                 

 
                                 

           
     

                      
                                 

 
  

           
     

                      
                                 

 

 (36) 

Where 
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 As      in the above Theorem we obtain the following result proved by Krishna [17]  

Corollary 2.1. If   given by (1) in the class            
 

 
   and             

        near      is the inverse function 

of    then  

         
    

                 

   
   (37) 

 

As       and     in the above Theorem we obtain the following result proved by Krishna [17].  

Remark 2.1.        
   

 

 
. 
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