International Journal of Mathematics and Computer Science ISSN: 2320-7167 Volume 06 Issue 08 August-2018, Page no. - 1912-1918 Index Copernicus ICV: 57.55 DOI: 10.31142/ijmcr/v6i8.02

Fuzzy open Sets In fuzzy Tri Topological Space

Ranu Sharma¹, Bhagyashri A. Deole², Smita Verma³

^{1,2,3}SGSITS, Indore (M.P.), India,

ARTICLE INFO	ABSTRACT
Published Online:	The main aim of this paper is to studyfuzzy open sets and fuzzy trib-open sets in fuzzy tri
24 August 2018	topological spaces along with their several properties and characterization .We studyfuzzy tri
Corresponding Author:	continuous, fuzzy tri separation, fuzzy trib-continuous, fuzzy tri-b separation and obtain few of their
Ranu Sharma	basic properties.
KEYWORDS: Fuzzy Tritopology, fuzzy tri open sets, fuzzy tri continuousfunction, fuzzy tri separation, fuzzy tri b-open	
sets, fuzzy tri b-continuous function, fuzzy tri-b separation.	
AMS Mathematics Subject Classification (2010): 54A40	

1. Introduction

In 1996, D. Andrijvic [1] introduced b-open sets. In 1961 J .C. Kelly [6] introduced the concept of bitopological space. Al-Hawary& A. Al-omari [3] defined the b-open set in bitopological space .Abo Khadra and Nasef [2] discussed bopen set in bitopological spaces. Martin M. Kovar[8] studied tri topological space.

S. Palaniammal [9] studied tri topological space.123 open set in tri topological spaces was studied byN.F. Hameed & Mohammed Yahya Abid[7].P. Priyadharsini and A. Parvathi [10] introduced tri-b open sets in tri topological spaces. We [11] studied properties of tri-b open sets in tri topological spaces.

fuzzy topological spaces introduced by Change C.L. [4]. Kandil A. [5] introduced fuzzy bitopological spaces in 1991. Palaniammal S.[9] introduced fuzzy tri topological space.

The present paper introducefuzzy tri open sets and fuzzy tri b-open sets in fuzzy tri topological space and studied their fundamental properties in fuzzy tri topological space.

2. Preliminaries

Definition 2.1[9]: "Let X be a nonempty set and T_1, T_2 and T_3 are three topologies on X. The set X together with three topologies is called a tri topological space and is denoted by (X, T_1, T_2, T_3) ".

Definition 2.2[9]: "Let X be a non-empty set. Let F_1, F_2, F_3 be fuzzy topologies on X. Then (X, F_1, F_2, F_3) is called fuzzy tri topological space".

Definition 2.3[1]: "A subset A of a topological space (X, τ) is called a b-open sets if $A \subseteq cl(int(A)) \cup int(cl(A))$ and bclosed if $cl(int(A)) \cup int(cl(A)) \subseteq A$ ".

3. Fuzzy Tri-Separation Axioms in Fuzzy Tri Topological Space

Definition 3.1: Let $(X, \sigma_1, \sigma_2, \sigma_3)$ be a fuzzy tri topological space Then a subset *B* of *X* is called fuzzytri open set *(Ftri)* if $B \prec F_1 \cup F_2 \cup F_3$.

Note 3.2: Fuzzy tri-interior(resp. Fuzzy tri -closure) of any subset B is denoted by Ftriint(B) (Ftricl(B)).

Definition 3.3: A fuzzy tri topological space $(X, \sigma_1, \sigma_2, \sigma_3)$ is called $F tri - T_0$ space iff to given pair of different points

 χ_{μ_1} , χ_{μ_2} in χ_{μ} , \exists a fuzzy tri- open set consisting one point but not the other.

Example 3.4: Let $X = \{1, 2, 3\}$ be a non-empty fuzzy set, consider three fuzzy topologies on X are $\tau_1 = \{\tilde{1}_X, \tilde{0}_X\}$, $\tau_2 = \{\tilde{1}_X, \tilde{0}_X, \chi_{\{1\}}\}, \tau_3 = \{\tilde{1}_X, \tilde{0}_X, \chi_{\{2,3\}}\}$

Fuzzy tri open sets of fuzzy tri topological spaces are union of all fuzzy tri topologies.

Then fuzzy tri open sets of $X = \{\tilde{1}_X, \tilde{0}_X, \chi_{\{1\}}, \chi_{\{2,3\}}\}$

So $(X, \sigma_1, \sigma_2, \sigma_3)$ is $F tri - T_0$ space.

Definition 3.5: A fuzzy tri topological space X is called fuzzy tri- T_1 space iff for any given pair of different fuzzy points

 $\mathcal{X}_{\{x_1\}}, \mathcal{X}_{\{y_1\}} \text{ of } X \text{ there be two fuzzy tri-open sets } \mathcal{X}_{\lambda_1}, \mathcal{X}_{\delta_1} \text{ such that } \mathcal{X}_{\{x_1\}} \leq \mathcal{X}_{\lambda_1}, \mathcal{X}_{\{y_1\}} \succ \mathcal{X}_{\lambda_1} \text{ and } \mathcal{X}_{\{y_1\}} \leq \mathcal{X}_{\delta_1}, \mathcal{X}_{\{x_1\}} \succ \mathcal{X}_{\delta_1}.$

Theorem 3.6: Everyfuzzy tri- T_1 space is a fuzzy tri- T_0 space.

Definition 3.7: fuzzy tri topological space X is called fuzzy tri- T_2 space iff for $\mathcal{X}_{\{x_1\}}$, $\mathcal{X}_{\{y_1\}} \leq \tilde{l}_X$, $\mathcal{X}_{\{x_1\}} \neq \mathcal{X}_{\{y_1\}}$ there be two disjoint fuzzy tri- open sets \mathcal{X}_{λ} , \mathcal{X}_{δ} in X such that $\mathcal{X}_{\{x_1\}} \leq \mathcal{X}_{\lambda}$, $\mathcal{X}_{\{y_1\}} \leq \mathcal{X}_{\delta}$. **Theorem 3.8**: Every fuzzy tri- T_2 space is fuzzy tri- T_1 space.

Proof: Suppose X is a fuzzy tri- T_2 space and let $\mathcal{X}_{\{x_1\}}$, $\mathcal{X}_{\{y_1\}}$ in X with $\mathcal{X}_{\{x_1\}} \neq \mathcal{X}_{\{y_1\}}$, so by assumption \exists two different fuzzy tri-open,say \mathcal{X}_{λ} , \mathcal{X}_{δ} such that $\mathcal{X}_{\{x_1\}} \leq \mathcal{X}_{\lambda}$, $\mathcal{X}_{\{y_1\}} \leq \mathcal{X}_{\delta}$ but $\mathcal{X}_{\lambda} \wedge \mathcal{X}_{\delta} = \widetilde{O}_X$ hence $\mathcal{X}_{\{x_1\}} \succ \mathcal{X}_{\delta}$, $\mathcal{X}_{\{y_1\}} \succ \mathcal{X}_{\lambda}$ i.e. X isa fuzzy tri- T_1 space.

Theorem 3.9: Every fuzzy tri-b- T_3 space is a fuzzy tri- T_2 space.

Proof: Suppose $(X, \sigma_1, \sigma_2, \sigma_3)$ be a fuzzy tri- T_3 space and let $\mathcal{X}_{\{x_1\}}, \mathcal{X}_{\{y_1\}}$ are two different fuzzy points of X. By definition, X is afuzzy tri- T_1 space & therefore $\mathcal{X}_{\{x_1\}}$ is a fuzzy tri- closed set .furthermore $\mathcal{X}_{\{y_1\}} \succeq \mathcal{X}_{\{x_1\}}$. Since $(X, \sigma_1, \sigma_2, \sigma_3)$ is a fuzzy tri- regular space, \exists fuzzy tri- open sets \mathcal{X}_{λ} and \mathcal{X}_{δ} such that $\mathcal{X}_{\{x_1\}} \prec \mathcal{X}_{\lambda}, \mathcal{X}_{\{y_1\}} \prec \mathcal{X}_{\delta}$ and $\mathcal{X}_{\lambda} \land \mathcal{X}_{\delta} = \tilde{O}_X$. Also $\mathcal{X}_{\{x_1\}} \prec \mathcal{X}_{\lambda} \Longrightarrow \mathcal{X}_{\{x_1\}} \leq \mathcal{X}_{\lambda}$ Thus $\mathcal{X}_{\{x_1\}}, \mathcal{X}_{\{y_1\}}$ belong respectively to different fuzzy tri- open sets \mathcal{X}_{λ} and \mathcal{X}_{δ} . According $(X, \sigma_1, \sigma_2, \sigma_3)$ is a *Ftri*- T_2 space.

4. Fuzzy Tri-g Open Sets in Tri Topological Space

Definition 4.1: A fuzzy subset χ_{λ_1} of a fuzzy tri topological space $(X, \rho_1, \rho_2, \rho_3)$ is called fuzzy tri-g-closed if $Ftri - cl(\chi_{\lambda_1}) \prec \chi_{\delta_1}$ whenever $\chi_{\lambda_1} \prec \chi_{\delta_1}$ and χ_{δ_1} is fuzzy tri open set.

Remarks 4.2:

(i) The complement of fuzzy tri-g closed is fuzzy tri-g open.

(ii) Fuzzy tri-g-closure of χ_{δ} is denoted by $Ftrigcl(\chi_{\delta})$ and fuzzy tri-g-interior of χ_{δ} is denoted by $Ftrigint(\chi_{\delta})$.

5. Fuzzy Tri-b Open Sets in Fuzzy Tri Topological Space

Definition 5.1:Let $(X, \rho_1, \rho_2, \rho_3)$ is a Fuzzy tri topological space. Then $B \subset X$ is called Fuzzytri-b open set if $B \subset Ftri - cl(Ftri - int B) \cup Ftri - int(Ftri - clB)$.

Available at: www.ijmcr.in

Not 5.2: Fuzzy tri-interior(resp. Fuzzy tri -closure) of any subset B is denoted by Ftri-bint(B) (Ftri-bcl(B)) and Ftri-bclA is the intersection of all Fuzzy tri -b closed sets containing A.

Theorem5.3: Let $(X, \sigma_1, \sigma_2, \sigma_3)$ be afuzzy tri topological space and $\chi_\mu \prec X$, then

- (a) $Ftri bcl \chi_{\mu} = Fscl \chi_{\mu} \wedge Fpcl \chi_{\mu}$.
- (b) Ftri b int $\chi_{\mu} = F \sin t \chi_{\mu} \vee Fp$ int χ_{μ} .

Theorem 5.4: If χ_{λ} is a subset of a fuzzy tri topological space $(X, \tau_1, \tau_2, \tau_3)$, then

$$Ftri-bint (Ftri-bcl \chi_{\lambda}) = Ftri-bcl(Ftri-bint \chi_{\lambda}).$$

$$Proof: Let (X, \tau_{1}, \tau_{2}, \tau_{3}) be a fuzzy tri topological space.$$

$$Now, Ftri-bint (Ftri-bcl (\chi_{\lambda})) = Fsint(Ftri-bcl\chi_{\lambda}) \lor Fpint(Ftri-bcl\chi_{\lambda})$$

$$= Ftri-bcl(Fsint \chi_{\lambda}) \lor Fpint(Ftri-bcl\chi_{\mu})$$

$$= Ftri-bcl(Ftri-bint \chi_{\lambda}) = Ftri-bcl(Fsint \chi_{\mu} \lor Fpint \chi_{\mu})$$

$$= Ftri-bcl(Fsint \chi_{\mu}) \lor Ftri-bcl(Fpint \chi_{\mu})$$

$$= Fscl(Fsint \chi_{\mu}) \lor Fpint(Fpcl\chi_{\mu})$$

$$= Ftri-bint (Ftri-bcl \chi_{\lambda}) = Ftri-bcl(Ftri-bint \chi_{\lambda}).$$
(ii)

Corollary 5.5: A subset χ_{λ} in a fuzzy tri topological space $(X, \sigma_1, \sigma_2, \sigma_3)$ is fuzzy tri-b open if and only if it contains fuzzy tri pre-open set but not its fuzzy tri pre-closure.

6. Fuzzy Tri-b Continuous Function in Fuzzy Tri Topological Space

Dentition6.1: $f:(X, \tau_1, \tau_2, \tau_3) \to (Y, \rho_1, \rho_2, \rho_3)$ iscalled fuzzy tri-b closed (resp. fuzzy tri-b open) if for every fuzzy tri-b closed (resp. fuzzy tri-b open) subset χ_{λ} of X, $f(\chi_{\lambda})$ is fuzzy tri b-closed (resp. fuzzy tri b-open) in Y.

Definition 6.2:Let $(X, \tau_1, \tau_2, \tau_3)$ and $(Y, \rho_1, \rho_2, \rho_3)$ are two fuzzy tri-topological spaces. A fuzzy function $f: I^X \to I^Y$ is called fuzzy tri-b open map (fuzzy tri-b closed map) if $f(\chi_\lambda)$ is fuzzy tri-b open(fuzzy tri-b closed) in Y for every fuzzy tri-b open set(fuzzy tri-b closed) χ_λ in X.

Definition 6.3: Consider two fuzzy tri topological spaces $(X, \tau_1, \tau_2, \tau_3)$, $(Y, \sigma_1, \sigma_2, \sigma_3)$. A fuzzy function $f: I^X \to I^Y$ is called a fuzzy tri-b continuous function if χ_{λ} is fuzzy tri-b open in X, for every tri-b open set χ_{λ} in Y.

Theorem 6.4: A function $f:(X, \tau_1, \tau_2, \tau_3) \rightarrow (Y, \sigma_1, \sigma_2, \sigma_3)$ is fuzzy tri-b continuous iff the inverse image of every fuzzy tri-b open set in *Y* is fuzzy tri-b open in *X*.

Theorem 6.5: Let $(X, \tau_1, \tau_2, \tau_3)$ and $(Y, \sigma_1, \sigma_2, \sigma_3)$ be two fuzzy tri topological spaces. Then, $f : I^X \to I^Y$ is fuzzy tri-b continuous function if and only if $f^{-1}(\chi_\lambda)$ is fuzzy tri-b closed in X whenever χ_λ is fuzzy tri-b closed in Y.

Theorem 6.6: Let $(X, \tau_1, \tau_2, \tau_3)$ and $(Y, \sigma_1, \sigma_2, \sigma_3)$ be two fuzzy tri topological spaces. Then $f: I^X \to I^Y$ is fuzzy tri-b continuous function if and only if $f(Ftri-bcl(\chi_{\lambda})) \prec Ftri-bcl(f(\chi_{\lambda})) \forall \chi_{\lambda} \prec \tilde{1}_X$

).

Proof: Suppose $f: I^X \to I^Y$ is a fuzzy tri-b continuous function. Since $Ftri-bcl[f(\chi_\lambda)]$ is fuzzy tri closed in Y.So using theorem (3.4) $f^{-1}[F \operatorname{tri} - bcl(f(\chi_{\lambda}))]$ is fuzzy tri closed in X, $Ftri-bcl(f^{-1}(Ftri-bclf(\chi_{\lambda}))) = f^{-1}(Ftri-bclf(\chi_{\lambda})) = ---(1)$ Now: $f(\chi_{\lambda}) \prec Ftri - bcl(f(\chi_{\lambda})), \ \chi_{\lambda} \prec f^{-1}(f(\chi_{\lambda})) \prec f^{-1}(Ftri - bclf(\chi_{\lambda})).$ Then $Ftri-bcl(\chi_{\lambda}) \prec Ftri-bcl(f^{-1}(Ftri-bclf(\chi_{\lambda}))) = f^{-1}(Ftri-bclf(\chi_{\lambda}))$ by (1). Then $f(F \operatorname{tri} - bcl(\chi_{\lambda})) \prec Ftri - bcl(f(\chi_{\lambda}))$. Conversely, Let $f(F \operatorname{tri}-bcl(\chi_{\lambda})) \prec Ftri-bcl(f(\chi_{\lambda})) \forall \chi_{\lambda} \prec \tilde{1}_{\chi}$. Let χ_{δ} be fuzzy tri closed set in Y, So that $Ftri-bcl(\chi_{\delta}) = \chi_{\delta}$. Now $f^{-1}(\chi_{\delta}) \prec \tilde{1}_{\chi}$, by supposition, $f(F\operatorname{tri}-bcl(f^{-1}(\chi_{\delta}))) \prec Ftri-bcl(f(f^{-1}(\chi_{\delta}))) \prec Ftri-bcl(\chi_{\delta}) = \chi_{\delta}.$ Therefore, $Ftri-bcl(f^{-1}(\chi_{\delta}) \prec f^{-1}(\chi_{\delta})$. But $f^{-1}(\chi_{\delta}) \prec Ftri-bcl(f^{-1}(\chi_{\delta}))$ always. Hence $Ftri - bcl(f^{-1}(\chi_{\delta}) = f^{-1}(\chi_{\delta})$ and so $f^{-1}(\chi_{\delta})$ is fuzzy triclosed in X. Hence by theorem (6.5) f is fuzzy tri continuous function. **Theorem 6.7:** Let $(X, \tau_1, \tau_2, \tau_3)$ and $(Y, \sigma_1, \sigma_2, \sigma_3)$ be two fuzzy tri topological spaces. Then $f: I^X \to I^Y$ is fuzzy tri continuous function if and only if $f^{-1}(F \operatorname{tri}-bint(\chi_{\lambda})) \prec Ftri-bint(f^{-1}(\chi_{\lambda})) \quad \forall \chi_{\lambda} \prec \tilde{1}_{Y}$. **Proof:** Let $f: I^X \to I^Y$ be a fuzzy tri continuous function. Since $Ftri - bint(\chi_\lambda)$ is fuzzy tri-b open in Y, then by theorem (3.3) $f^{-1}(F \operatorname{tri}-b\operatorname{int}(\chi_{\lambda}))$ is fuzzy tri open in X and therefore Now F tri-bint(χ_{λ}) $\prec \chi_{\lambda}$, then $f^{-1}(F \operatorname{tri}-b\operatorname{int}(\gamma_1)) \prec f^{-1}(\gamma_1)$ Then $F \operatorname{tri}-b\operatorname{int}(f^{-1}(F \operatorname{tri}-b\operatorname{int}(\chi_{\lambda}))) \prec Ftri-b\operatorname{int}(f^{-1}(\chi_{\lambda}))$ By (1) **Conversely:** Let the condition hold and let \mathcal{X}_{δ} be any fuzzy tri open set in Y so that $F \operatorname{tri}-b\operatorname{int}(\chi_{\delta}) = \chi_{\delta}$ By hypothesis

 $f^{-1}(\operatorname{tri-int}(\chi_{\delta})) \prec tri - \operatorname{int} f^{-1}(\chi_{\delta})$ Since $f^{-1}(\operatorname{tri-int}(\chi_{\delta})) = f^{-1}(\chi_{\delta})$ then

 $f^{-1}(\chi_{\delta}) \prec tri - int(f^{-1}(\chi_{\delta}))$ But $int(f^{-1}(\chi_{\delta})) \prec f^{-1}(\chi_{\delta})$ always

So, tri-int
$$(f^{-1}(\chi_{\delta})) = f^{-1}(\chi_{\delta})$$
.

Therefore $f^{-1}(\chi_{\delta})$ is fuzzy tri open in X. Consequently by theorem (6.4) f is fuzzy tri continuous function.

7. Fuzzy Tri-gb Open Sets in Tri Topological Space

Definition 7.1: A fuzzy subset χ_{λ} of a fuzzy tri topological space $(X, \sigma_1, \sigma_2, \sigma_3)$ is said to be fuzzy tri-gb-closed if

 $Ftri-bcl(\chi_{\lambda}) \prec \chi_{\delta}$ whenever $\chi_{\lambda} \prec \chi_{\delta}$ and χ_{δ} is fuzzy tri open set.

Remarks 7.2:

(i) The complement of fuzzy tri-gb closed is fuzzy tri-gb open.

(ii) Fuzzy tri-gb-closure of χ_{δ} is denoted by $Ftri - gb - cl(\chi_{\delta})$ and fuzzy tri-gb-interior of χ_{δ} denoted by $Ftri - gb \operatorname{int}(\chi_{\delta})$ is c

Theorem 7.3: Fuzzy tri closed subset χ_{λ} of a fuzzy tri topological space $(X, \sigma_1, \sigma_2, \sigma_3)$ is fuzzy tri-b closed.

Proof: Suppose $\chi_{\lambda} \prec \chi_{\delta}$ is a fuzzy tri closed set, since Ftri int $\chi_{\lambda} \prec Ftricl(int \chi_{\lambda})$, hence Ftri int(int χ_{λ}) \prec *Ftricl*(int(int χ_{λ})) hence *Ftri* int $\chi_{\lambda} \prec \chi_{\lambda}$ for any subset χ_{λ} , hence Ftri int(int χ_{λ}) \prec *Ftricl*(int(int χ_{λ})) and *Ftri* int $\chi_{\lambda} \prec Ftricl(Ftri int \chi_{\lambda})) \lor Ftricl(Ftri int(Ftriint \chi_{\lambda}))$ hence *Ftri* int χ_{λ} is fuzzy tri-b

open set, hence χ_{λ} is fuzzy tri-b open set.

Theorem 7.4: fuzzy tri-b closed subset χ_{λ} of a fuzzy tri topological space $(X, \sigma_1, \sigma_2, \sigma_3)$ is a fuzzy tri-gbclosed.

8. Fuzzy Tri-b Separation AxiomsinFuzzy Tri Topological Space

Definition 8.1: A fuzzy tri topological space $(X, \sigma_1, \sigma_2, \sigma_3)$ is called $Ftri - b - T_0$ space iff to given pair of different points

 $\chi_{\lambda_1}, \chi_{\lambda_2}$ in χ_{λ} , \exists a fuzzy tri-b open set consisting one point but not the other

Example 8.2:Let $X = \{1, 2, 3\}$ be a non-empty fuzzy set, consider three fuzzy topologies on X $\tau_1 = \{\tilde{1}_X, \tilde{0}_X\}$, $\tau_2 = \{\tilde{1}_X, \tilde{0}_X, \chi_{\{1\}}\}, \tau_3 = \{\tilde{1}_X, \tilde{0}_X, \chi_{\{2,3\}}\}$

Fuzzy tri open sets of fuzzy tri topological spaces are union of all fuzzy tri topologies.

Then fuzzy tri open sets of $X = \{\tilde{1}_X, \tilde{0}_X, \chi_{\{1\}}, \chi_{\{2,3\}}\}$ Fuzzy tri-b open set of X is $Ftri - BO(X) = \{\tilde{1}_X, \tilde{0}_X, \chi_{\{1,2\}}, \chi_{\{3\}}, \chi_{\{1,3\}}, \chi_{\{2,3\}}\}$. So $(X, \tau_1, \tau_2, \tau_3)$ is $Ftri - b - T_0$ space.

Theorem 8.3: If $\chi_{\{x_1\}}$ is a fuzzy tri-b-open for some $\chi_{\{x_1\}} \leq \chi_{\lambda}$ then $\chi_{\{x_1\}} \leq Ftri - b - cl(\chi_{\{y_1\}})$, for all $\chi_{\{y_1\}} \neq \chi_{\{x_1\}}$.

Proof: Let $\chi_{\{x_1\}}$ be a fuzzy tri-b-open for some $\chi_{\{x_1\}} \leq \chi_{\lambda}$, then $\chi_{\lambda} - \chi_{\{x_1\}}$ is fuzzy tri-. If $\chi_{\{x_1\}} \leq Ftri - b(\chi_{\{y_1\}})$, for some $\chi_{\{y_1\}} \neq \chi_{\{x_1\}}$, then $\chi_{\{y_1\}}, \chi_{\{x_1\}}$ are in fuzzy tri-gb-closed sets containing $\chi_{\{y_1\}}$, so $\chi_{\{x_1\}} \leq \chi_{\lambda} - \chi_{\{x_1\}}$ which is denial, hence $\chi_{\{x_1\}} \leq Ftri - b(\chi_{\{y_1\}})$

Theorem 8.4: In fuzzy tri topological space $(X, \sigma_1, \sigma_2, \sigma_3)$, any fuzzy distinct points have distinct fuzzy tri-b-closure.

Proof: Let $\chi_{\{y_1\}}, \chi_{\{x_1\}} \leq \tilde{1}_X$ with $\chi_{\{y_1\}} \neq \chi_{\{x_1\}}$ and let $\chi_{\lambda} = \chi_{\{x_1\}^c}$ hence $Ftri - b - cl(\chi_{\lambda}) = \chi_{\lambda}$ or χ_{δ} . Now if then $Ftri - b - cl(\chi_{\lambda}) = \chi_{\lambda}$, then χ_{λ} is fuzzy tri-b-closed so $\tilde{1}_X - \chi_{\delta} = \chi_{\{x_1\}}$ is fuzzy tri-b open & not containing $\chi_{\{y_1\}}$. So by theorem(8.3) $\chi_{\{x_1\}} \succ Ftri - b - cl(\chi_{\{y_1\}}) \& \chi_{\{y_1\}} \leq Ftri - b - cl(\chi_{\{y_1\}})$ which implies that $Ftri - b - cl(\chi_{\{y_1\}})$ and $Ftri - b - cl(\chi_{\{x_1\}})$ are distinct. If $Ftri - b - cl(\chi_{\lambda}) = \tilde{1}_X$ then χ_{δ} is fuzzy tri-b open, hence $\chi_{\{x_1\}}$ is fuzzy tri-b closed, which mean that $Ftri - b - cl(\chi_{\{x_1\}}) = \chi_{\{x_1\}}$ which is not equal to $Ftri - b - cl(\chi_{\{y_1\}})$.

Available at: www.ijmcr.in

Theorem 8.5: In any fuzzy tri topological space $(X, \sigma_1, \sigma_2, \sigma_3)$, if different fuzzy points have different fuzzy tri-b closure then

$$\chi_{\lambda}$$
 is $Ftri - b - T_0$ space.

Proof:Let $\chi_{\{x_1\}}, \chi_{\{y_1\}} \leq \chi_{\lambda}$ with $\chi_{\{x_1\}} = \chi_{\{y_1\}}$, with $Ftri - b - cl(\chi_{\{y_1\}})$ is not equal to $Ftri - b - cl(\chi_{\{x_1\}})$, hence there exists $\chi_{\{z\}} \leq \chi_{\lambda}$ such that $\chi_{\{z\}} \leq Ftri - b - cl(\chi_{\{x_1\}})$ but $\chi_{\{z\}} \succ Ftri - b - cl(\chi_{\{y_1\}})$ or $\chi_{\{z\}} \leq Ftri - b - cl(\chi_{\{x_1\}})$ but now without loss of generality, let $\chi_{\{z\}} \leq Ftri - b - cl(\chi_{\{x_1\}})$

But $\chi_{\{z\}} \succ Ftri - b - cl(\chi_{\{x_1\}})$, If $\chi_{\{x\}} \leq Ftri - b - cl(\chi_{\{y_1\}})$, then $Ftri - b - cl(\chi_{\{x_1\}})$ is contained in $Ftri - b - cl(\chi_{\{y_1\}})$, hence $\chi_{\{z\}} \leq Ftri - b - cl(\chi_{\{y_1\}})$, which is a opposition, this mean that $\chi_{\{x\}} \succ Ftri - b - cl(\chi_{\{y_1\}})$ hence $\chi_{\{z\}} \succ Ftri - b - cl(\chi_{\{y_1\}})$ $\chi_{\{x_1\}} \leq Ftri - cl - b(\chi_{\{y_1\}})$, hence X is fuzzy tri-b $-T_0$ space.

Definition 8.6: A fuzzy tri topological space X is called fuzzy tri-b- T_1 space iff for any given pair of different fuzzy points $\chi_{\{x_1\}}, \chi_{\{y_1\}}$ of $X \exists$ two fuzzy tri-b-open sets $\chi_{\lambda_1}, \chi_{\delta_1}$ such that $\chi_{\{x_1\}} \leq \chi_{\lambda_1}, \chi_{\{y_1\}} \succ \chi_{\lambda_1}$ and $\chi_{\{y_1\}} \leq \chi_{\delta_1}, \chi_{\{x_1\}} \succ \chi_{\delta_1}$.

Theorem 8.7: Everyfuzzy tri- T_1 space is a fuzzy tri-b- T_0 space.

Definition 8.8: A fuzzy tri topological space X is called fuzzy tri-b- T_2 space iff for $\chi_{\{x_1\}}$, $\chi_{\{y_1\}} \leq \tilde{1}_X$, $\chi_{\{x_1\}} \neq \chi_{\{y_1\}} \equiv$ two disjoint fuzzy tri-b open sets χ_{λ} , χ_{δ} in X such that $\chi_{\{x_1\}} \leq \chi_{\lambda}$, $\chi_{\{y_1\}} \leq \chi_{\delta}$.

Theorem 8.9: Every fuzzy tri-b- T_2 space is fuzzy tri-b- T_1 space.

Proof: Let X is a fuzzy tri-b T_2 space and let $\mathcal{X}_{\{x_1\}}$, $\mathcal{X}_{\{y_1\}}$ in X with $\mathcal{X}_{\{x_1\}} \neq \mathcal{X}_{\{y_1\}}$, so by theory \exists two disjoint fuzzy trib open, say χ_{λ} , χ_{δ} such that $\chi_{\{x_1\}} \leq \chi_{\lambda}$, $\chi_{\{y_1\}} \leq \chi_{\delta}$ but $\chi_{\lambda} \wedge \chi_{\delta} = \tilde{O}_X$ hence $\chi_{\{x_1\}} \succ \chi_{\delta}$, $\chi_{\{y_1\}} \succ \chi_{\lambda}$ i.e. X is a fuzzy tri-b- T_1 space.

Theorem 8.10: Every fuzzy tri-b- T_3 space is afuzzy tri-b- T_2 space.

Proof: Let $(X, \sigma_1, \sigma_2, \sigma_3)$ be a fuzzy tri-b T_3 space and let $\mathcal{X}_{\{x_1\}}$, $\mathcal{X}_{\{y_1\}}$ are two different fuzzy points of X. According to definition, X is a fuzzy tri-b- T_1 space and so $\mathcal{X}_{\{x_1\}}$ is a fuzzy tri-closed set .Also $\mathcal{X}_{\{y_1\}} \succeq \mathcal{X}_{\{x_1\}}$.Since $(X, \tau_1, \tau_2, \tau_3)$ is a fuzzy tri-b regular space, \exists fuzzy tri-b open sets \mathcal{X}_{λ} and \mathcal{X}_{δ} such that $\mathcal{X}_{\{x_1\}} \prec \mathcal{X}_{\lambda}$, $\mathcal{X}_{\{y_1\}} \prec \mathcal{X}_{\delta}$ and $\mathcal{X}_{\lambda} \land \mathcal{X}_{\delta} = \tilde{O}_X$. Also $\mathcal{X}_{\{x_1\}} \prec \mathcal{X}_{\lambda} \Longrightarrow \mathcal{X}_{\{x_1\}} \leq \mathcal{X}_{\lambda}$ Thus $\mathcal{X}_{\{x_1\}}, \mathcal{X}_{\{y_1\}}$ belongs to disjoint fuzzy tri-b open sets \mathcal{X}_{λ} and \mathcal{X}_{δ} . Hence $(X, \sigma_1, \sigma_2, \sigma_3)$ is a *Ftri*-b-T₂ space.

Conclusion

In thispaper , fuzzy tri continuity, fuzzy tri separation, fuzzy tri –b separationand fuzzy tri-b continuity in fuzzy tri topological spaces wereintroduced and studied .

References

- 1. Andrijevic D., b-open sets, Matematicki Vesnik,1996,48, 59-64.
- 2. Abo khadraA,Nasef A. A., on extension of certain concepts from a topological space to a bitopologicalspace. Proc. Math. Phys. Soc. Egypt. 79(2003), 91-102.
- Al-Hawary T. & Al-omari A., b-open set& bcontinuity in bitologicalspaces, Al-Manarah, 13(3), 89-101(2007).
- Change C.L., Fuzzy topological spaces, (1968) J. Math. Anal. Appl. 24,182-190.

- 5. Kandil A., Biproximities and fuzzy bitopological spaces, Simon Steven 63(1989), 45-66.
- 6. Kelly J. C, Bitopologicalspaces, Proc. London Math. oc., 1963, 3, 17-89.
- Hameed N.F. & Mohammed Yahya Abid,Certain types of separation axioms in tri topological spaces, Iraqi journal of science, 2011,Vol 52,(2),212-217.
- Kovar, M. On 3-Topological version of Thet-Reularity, Internat. J. Matj, Sci., 2000, 23(6), 393-398.
- 9. PalanianmalS., Study of tri topological spaces, Ph.D Thesis, 2011.
- 10. Priyadharsini P. & Parvathi A., Tri-b-continuous function in tri topological spaces, International Journal of Mathematics and its Applications.
- Sharma R., Bhagyashri.A. Deole and S. Verma, Some Properties of Tri-b Open Sets in Tri Topological Space, Accepted for publication in journal International Journal of Mathematics and its Applications.
- 12. Zadeh L.A., Fuzzy sets, information and control (1965),8,338-353.