
[Volume 4 issue 04 April 2016] 

 PageNo.1304-1316 ISSN : 2320-7167 

INTERNATIONAL JOURNAL OF MATHEMATICS 

AND COMPUTER RESEARCH 

 

IJMCR  www.ijmcr.in| 4:4|April|2016|1304-1316  1304 

 

Results on Collapsing of Non Homogeneous Markov Chains 
Agnish Dey 

University of Florida 
 

Abstract 

Let X(0), X(1), X(2),... be a discrete Markov chain with state space S = {1,2,...,m}. Let S be the disjoint union of 

sets S1, S2, ..., Sr which form a partition of S . De ne Y (n) = i if and only if X(n) ∈ Si for i = 1,2,...,r . Is the Y (n) 

chain Markov? Such questions come up in learning theory and in other contexts, when the experimenter 

observes the derived chain Y (n) rather than the original chain X(n). In the homogeneous case, this problem 

has been studied in details. In this note this problem is studied when the X(n) chain is non-homogeneous and 

Markov. 

Keywords: Markov chains, Reversibility, Lumpability.  
 

Introduction 

In this paper we study finite state space non-homogeneous Markov chains in the context of 

collapsibility. This is an old problem first addressed by Burke and Rosenblatt in [2]. The problem can 

be described as follows: let X(n) be a non-homogeneous Markov chain with state space S = 

{1,2,...,m}. Let S1, S2,..., Sr be r, 1 ≤ r ≤ m pairwise disjoint subsets of S each containing more than one 

state so that S = S1∪S2∪...∪Sr ∪A, where . 

Then the partition of S, given by S1, S2,..., Sr and the singletons in A defines a collapsed chain  

Y (n) given by: 

                             Y (n) = i if and only if X(n) ∈ Si and Y (n) = u if and only if X(n) = u, 

where n ≥ 0, 1 ≤ i ≤ r, and u ∈ A. In this article we explore conditions under which the collapsed 

chain Y (n) will be Markov again, see [3] for further discussion on the problem. In [9], one can find 

motivating examples in this regard. 

Here we would like to state some definitions: 
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Definition 1. The initial distribution vector    for each 

i, P(X(0) = i) = pi, where X(n) is a NHMC, is called left invariant if for each n ≥ 1, pPn = p.  

Note that for 1 ≤ i ≤ m and 1 ≤ j ≤ m, 

(Pn)ij = (P(X(n) = j|X(n − 1) = i) n ≥ 1. 

Let us consider an m × m diagonal matrix D such that Dii = pi, pi > 0, 1 ≤ i ≤ m. 

       Definition 2. The NHMC X(n) is called reversible if and only if DPn=Pn
TD for each n ≥ 1. Note that if 

NHMC X(n) is reversible, then its initial distribution vector p must be left invariant (see [3]).  

Definition 3. We shall say that a Markov chain is strongly lumpable with respect to a partition 

{A1,A2,...,Ar} of the chain’s state space if for every initial vector p, the collapsed chain corresponding 

to this partition is a Markov chain and the transition probabilities do 

not depend upon the choice of p.  

Definition 4. A Markov chain is weakly lumpable with respect to a certain partition whenever the 

markovian property of the corresponding collapsed chain depends upon the choice of the initial 

vector p. That is in this case, the collapsed chain will be Markov only when some particular initial 

vectors (it may be just one initial vector) are chosen.  

The paper is arranged as follows: In the following section, we will present an alternative 

(inductive) proof of the main result in [3]. In [7], Kemeny and Snell came up with certain results 

regarding weak lumpability of homogeneous Markov chains. In the last section, we shall explore 

similar results in the non-homogeneous context. 

1 Alternative Proof of the Main result in [3] 

Here we are going to present an alternative proof of the main result in [3] and in the process we will 

address the case when there are only two sets that collapse more than one state of the original 
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Markov chain (this is interesting enough in its own right). To make this paper more readable we 

would like to restate the main result in [3] here (in a slightly different 

form): 

Let X(n) be a non-homogeneous Markov chain (NHMC) with a finite state space S. Suppose there 

are r pairwise disjoint subsets S1, S2,...,Sr of S such that they are the only 

subsets of S collapsing more than one state. Consider the following conditions: 

 

 

where ; 

(2) For k not in Si, n ≥ 1, Pn(k,Si) = 0, i = 1,2,...,r. Then when Y (n) is Markov, for each quadruple 

(k,n,i,u), where k not in ∪rj=1Sj, n ≥ 1, 1 ≤ i ≤ r, and u not in ∪rj=1Sj, either condition (1) or condition 

(2) holds. Conversely, if condition (2) holds, or if for all k and for , condition (1) holds, then 

Y (n) is Markov. 

Here we would like to mention that the homogeneous analogs of this result for r > 1 are 

not given by Burke and Rosenblatt or elsewhere. 

First we prove the case r = 2 of the result stated above. 

Proof: We prove it in several steps. 

Step 1: Here we assume that Y (n) chain is Markov and show that for each triple (k,n,S1) and 

(k,n,S2), k not in S1 ∪ S2, n ≥ 1, we must have either Pn(k,Si) = 0 or 

 , (1) where 

. 

Let us now assume that Pn(k,S1) > 0. Then we have: for u not in S1 ∪ S2, 
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. Equation (1) follows for S1. Similarly, when 

Pn(k,S2) > 0, equation (1) follows for S2. This completes step 1. 

Step 2: We now assume that condition (2) holds. In this step, we show that then Y (n) chain must be 

Markov. Let us now consider the states i0 ,..., in of the Y (n) chain. Often, while switching from Y (n) 

to X(n), we will use X(n) ∈ {in} to mean Y (n) = in, when in may not be a single state. Suppose that ik = 

S1 only when k = 0 and for k > 0, ik  is a singleton. 

Then we have: 

 

= P(Y (n) = in|Y (n − 1) = in−1). Similar is the situation when ik = S2 only when k = 0. 

Now let us consider the possibility: m = max{k|0 ≤ k ≤ n, ik = S1 or S2} > 0. If in = S2, 

then all the states in−1, in−2,...,i0 are necessarily equal to S2, as, otherwise, we shall have, 

P(Y (n) = in|Y (n−1) = in−1,...,Y (0) = i0) = 0 = P(Y (n) = in|Y (n−1) = in−1). Also since P(Y (n) = S2,Y (n − 

1) = S2,...,Y (1) = S2,Y (0) not in S2) = 0 = P(Y (n − 1) = S2,...,Y (1) = S2,Y (0) not in S2), we have, when 

in = S2, the following: 
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P(Y (n) = in|Y (n − 1) = in−1,...,Y (0) = i0) =P(Y (n) = S2|Y (n − 1) = S2,...,Y (0) = S2) 

=P(Y (n) = S2|Y (n − 1) = S2,...,Y (1) = S2) 

=P(Y (n) = S2|Y (n − 1) = S2) = P(Y (n) = in|Y (n − 1) = in−1). 

Similar is the situation when in = S1. 

In case m = n − 1 and in−1 = S2, again, as before, i0 = i1 = ... = in−2 = S2, as, otherwise, P(Y (n − 1) = 

in−1,...,Y (0) = i0) = 0. Thus, it follows, as before, P(Y (n) = in|Y (n − 1) = in−1,...,Y (0) = i0) = P(Y (n) = 

in|Y (n − 1) = in−1). Finally let us consider the possibility 0 < m < n − 1 and im = S2. In this case, as 

before, we have necessarily i0 = i1 = ... = im−1 = S2, and in−1 is either S2 or a singleton element not in S1 

∪ S2. Thus, in this case, when im = in−1 = S2, as before, we have: 

P(Y (n) = in|Y (n − 1) = in−1,...,Y (m) = im,...,Y (0) = i0) =P(Y (n) = in|Y (n − 1) = in). 

In case im = S2 and in−1 not in  S1 ∪ S2, in−1 is a singleton, and so is each ik, m < k < n − 1, and as before, 

P(Y (n) = in|Y (n − 1) = in−1,...,Y (m) = im,...,Y (0) = i0) 

=P(Y (n) = in|Y (n − 1) = in−1,...,Y (m + 1) = im+1,Y (m) = S2,...,Y (0) = S2) 

=P(Y (n) = in|Y (n − 1) = in−1,...,Y (m + 1) = im+1) 

                 =P(X(n) ∈ {in}|X(n − 1) = in−1,...,X(m + 1) = im+1) =P(X(n) ∈ {in}|X(n − 1) = in−1) 

=P(Y (n) = in|Y (n − 1) = in−1), 

using the fact that X(n) is Markov and that each of the elements {im+1,...,in−1} is a singleton. Step 2 is 

now complete. 

Step 3: In this step we assume that condition (1) holds for all k and n, and show that then Y (n) must 

be Markov. We consider again the states i0, i1,...,in of the Y (n) chain. The state ik of Y (n) may be 

either S1 or S2, or simply a singleton element not in S1 ∪ S2. Thus, {ik} = ik, when it is a singleton, and 

{ik} denotes the set S1 or S2 otherwise. We have the 
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following possibilities: 

(i) in−1 = Sj , in ≠ Sj , j = 1,2; (ii) in = Sj, in−1 ≠ Sj, j = 1,2; (Note that in in (i) and in−1 in (ii) are both singleton 

elements as no transition is possible from S1 to S2.) (iii) in = in−1 = Sj, j = 1,2. Let us now assume (i), and 

in−1 = S1 and in, a singleton not in S1 ∪ S2. Then we have: 

P(Y (n) = in,Y (n − 1) = S1,Y (n − 2) = in−2,...,Y (0) = i0) 

=P(X(n) = in,X(n − 1) ∈ S1,X(n − 2) ∈ {in−2},...,X(0) ∈ {i0}) 

=Cn1(in)P(X(n − 1) ∈ S1,X(n − 2) ∈ {in−2},...,X(0) ∈ {i0}) (using condition (1) and simplifying). 

Thus, it is clear that 

P(Y (n) = in|Y (n − 1) = in−1,...,Y (0) = i0) =Cn1(in) = P(X(n) = in|X(n − 1) ∈ S1) 

=P(Y (n) = in|Y (n − 1) = in−1). 

Now let us observe that case (ii) is simple, and here we do not have to use condition (1) to prove the 

Markov property of Y (n). 

The last case is similar to case (i). Using condition (1), as in case (i), we can show here that 

P(Y (n) = S1|Y (n − 1) = S1,Y (n − 2) = in−2,...,Y (0) = i0) 

=P(Y (n) = S1|Y (n − 1) = S1). Step 3 is thus taken care of. This concludes the proof. 

Now we shall prove the result stated in the introduction of this paper using induction. 

Proof: Let r be a positive integer and {X(n) : n ≥ 0} be a NHMC with finite state space S. Let S1, 

S2,...,Sr be r pairwise disjoint subsets of S such that each of these contains more than one state. 

Define the chain Z(n) such that, 

Z(n) = i if and only if X(n) ∈ Si, 1 ≤ i ≤ r; 

Z(n) = x if and only X(n) = x, when . 
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Note that the main result holds for r = 2. We assume r > 2 and that the main result holds for all 

chains Y (n) which collapse p(≤ r) pairwise disjoint subsets of S , each containing more than one 

state. To prove the result by induction, we need to prove it for a chain Y (n) 

such that 

Y (n) = i if and only if X(n) ∈ Si, 1 ≤ i ≤ r + 1; 

Y (n) = x if and only if X(n) = x when , 

where S1, S2,...,Sr+1 are pairwise disjoint subsets of S. To this end, let us assume first that the Y (n) 

chain is Markov. We must prove that either condition (2) or condition (1) must then hold, for all k 

and . Let  . If for this k and for some n ≥ 1, Pn(k,Si) > 0 for some i, 1 ≤ i ≤ r 

+ 1, then just like in step 1 of the above result, we can show that condition (1) holds for each 

quadruple (k,n,i,u) as required. We do not need to use induction for this part. 

Conversely, let us assume that condition (2) holds. We need to show that the Y (n) chain is Markov. 

Let i0, i1,...,in be (n + 1) states of the Y (n) chain. We assume that i0 = Sr+1, and for 0 < j ≤ n, {ij} ∩ Sr+1 

= ∅. By induction hypothesis, the Z(n) chain (defined earlier) is 

Markov. Thus, we can write: 

P(Y (n) = in,Y (n − 1) = in−1,...,Y (0) = i0) 

=P(Y (n) = in|Y (n − 1) = in−1)P(Y (n − 1) = in−1 = in−1,...,Y (0) = i0) 

Now let m = max{j|0 ≤ j ≤ n, ij = Sr+1} > 0. If in = Sr+1, and {in−1}∩Sr+1 = ∅, then we have, P(Y (n) = 

in|Y(n − 1) = in−1,...,Y (0) = i0) = P(Y (n) = in|Y (n − 1) = in−1) = 0). If in = in+1 = Sr+1, then we must have 

by condition (2), i0 = i1 = ... = in−1 = Sr+1; otherwise, 

P(Y (n − 1) = in−1,...,Y (0) = i0) = 0. Thus, when in = in−1 = Sr+1, 

P(Y (n) = Sr+1,Y (n − 1) = Sr+1,...,Y (0) = Sr+1) 
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=P(Y (n) = Sr+1,Y (n − 1) = Sr+1,...,Y (1) = Sr+1) 

=P(Y (n) = Sr+1,Y (n − 1) = Sr+1,...,Y (2) = Sr+1) = P(Y (n) = Sr+1), since P(Y (n) = Sr+1,Y (n − 1) = Sr+1,...,Y 

(n − s) = Sr+1) 

=P(Y (n) = Sr+1,Y (n − 1) = Sr+1,...,Y (n − s) = Sr+1) + P(Y (n) = Sr+1,Y (n − 1) =Sr+1,...,Y (n − s) not in 

Sr+1) 

=P(Y (n) = Sr+1,...,Y (n − s + 1) = Sr+1) = P(Y (n) = Sr+1). Now suppose n − 1 = m so that in−1 = Sr+1, and 

{in} ∩ Sr+1 = ∅. Then, as before, as no transition is possible from Si to Sj (i ≠ j), we must have i0 = i1 = ... 

= in−1 = Sr+1, and as before, P(Y (n) = in|Y (n − 1) = Sr+1,...,Y (0) = Sr+1) = P(Y (n) = in|Y (n − 1) = in−1). 

Finally, we assume that 0 < m < n − 1. Then again we must have: i0 = i1 = ... = im = Sr+1. It is also clear, 

as we showed earlier, 

P(Y (n) = in|Y (n − 1) = in−1,...,Y (m + 1) = im+1,Y (m) = Sr+1,...,Y (0) = Sr+1) 

=P(Y (n) = in|Y (n − 1) = in,...,Y (m + 1) = im+1), where im+1 can only be either Sr+1 or a singleton not in 

, then continuing the same reasoning, we must 

have in−1 equal to either Sr+1 or a singleton not in . Thus, it is no loss of generality to consider 

each ij, 0 ≤ j ≤ n, as a singleton not in . Then the Markov property follows immediately if we 

replace Y (j) by Z(j), o ≤ j ≤ n, and observe that the Z(n) chain is Markov, by induction hypothesis. 

Finally, we assume that condition (1) holds for the Y (n) chain, and then we need to show that  

Y (n) chain is Markov. By induction hypothesis, the Z(n) chain is Markov. Let io, i1,...,in be (n+1) states 

of the Y (n) chain. Then each ij is either the set Si, 1 ≤ i ≤ r+1, or just a singleton element not in 

. There are five possibilities: (i) in−1 = St, in = Sj, t ≠ j, 1 ≤ t ≤ r + 1, 1 ≤ j ≤ r + 1; (ii) 

; (iii) in−1=in=Sj, 1≤j≤r+1; (iv) 

; (v) , . Note that we must prove: 

P(Y (n) = in|Y (n − 1) = in−1,...,Y (0) = i0) = P(Y (n) = in|Y (n − 1) = in−1). When (v) occurs since then in 

both sides of the above equation Y (m) can be replaced by Z(n), 0 ≤ m ≤ n, and Z(n) is Markov by 
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induction hypothesis. Also, both sides are equal to zero when (i) occurs, since, by hypothesis in the 

statement of the main result, transition from Si to Sj is not possible when i ≠ j. 

We now assume (ii). In this case, in−1 is a singleton and in = Sj, for some j, 1 ≤ j ≤ r + 1. Thus we can 

write: 

 

=P(Y (n) = in|Y (n − 1) = in−1).  

Let us now assume that (iii). Let in−1 = in = Sj, 1 ≤ j ≤ r + 1. If 1 ≤ j ≤ r, then replacing each Y (m) by 

Z(m) and noting that the Z(n) chain is Markov, it is easy to see that 

P(Z(n) = in,Z(n − 1) = in−1,...,Z(0) = i0) 

=P(Z(n) = j|Z(n − 1) = j)P(Z(n − 1) = in−1,...,Z(0) = i0) and this implies that the Markov property holds. 

Let us now assume that in−1 = in = Sr+1. In this case, using condition (1) we can show that Y (n) is 

Markov. The case (iv) can be taken care of in the same way as (iii). 

New Results 
Theorem 1: Let X(n), n ≥ 0, be a reversible NHMC with state space S = {1,2,...,m} having Pn = Pn+1 for 

each odd n. Let S1, S2,...,Sr be a partition of S, r ≤ m. We de ne Y (n) = i if and only if X(n) ∈ Si, i = 

1,2,...,r. Then weak lumpability of X(n) with respect to uniform initial probability vector  

 P(X(0)=i)=1/m implies strong lumpability.  

Proof: We de ne the m × r matrix B and the r × m matrix A as they are done in [3]. 

Since X(n) is weakly lumpable with respect to uniform initial probability vector, we claim QnQn+1 = 

APnPn+1B [where Qn is the transition probability matrix of the lumped chain Y (n)].  

Proof of the claim (for any left invariant initial probability vector p, proof for uniform initial 

probability  vector  is very similar): 
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Hence the claim follows. 

Thus from Theorem 2 in [3] we have : PnB = BAPnB. Now, 

(PnB)ij = Pk Pn(i,k)Bkj = Pk∈Sj Pn(i,k). 

And, 

 

Thus from Theorem 1 in [3], we have the sufficient condition for X(n) to be strongly lumpable.  
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In the following we shall use the notion of reversibility developed in [7] which coincides with our 

definition here if initial probability vector of the original chain is uniform (this can 

be verified pretty easily). 

Theorem 2: Let X(n) be a reversible NHMC with state space S = {1,2,...,m} and uniform initial 

probability vector. Let {S1,S2,...,Sr} be a partition of S, r ≤ m. Then the collapsed chain with respect to 

this partition is also reversible given that the collapsed chain 

is Markov. 

Proof: Since the collapsed chain is Markov, from Theorem 2 in [3] we have: Qn = APnB. 

Since X(n) is reversible, we obtain: Qn=APnB=ADPn
TD-1B, where Dii=1/m.  

We define  . Now using the same A,B matrices we get: 

  

Thus we have DBT  = AD. Similarly, 

 

and 

        

This gives us AT D−1 = D−1B. Hence we have  

, that is the collapsed chain is also reversible.  

Reverse Markov chains: A Markov chain observed in the reversed order is also Markov 

because of the following: 
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We shall use this property to establish our last result: 

Theorem 3: If a given NHMC is weakly lumpable with respect to partition A = {A1,A2,...,An}, 

then so is the reverse chain. 

Proof: Let X(n) be a non homogeneous Markov chain which is weakly lumpable with respect to 
the partition A = {A1,...,An}. We need to show that all probabilities of the form Pβ(X(1) ∈ Ai|X(2) 
∈ Aj,...,X(n) ∈ At) depend only upon Ai and Aj where β is the initial vector with respect to which 
the collapsed chain is Markov. 
 
P(Y (1) = i|Y (2) = j,...,Y (n) = t) 

=P(Y (1) = i|Y (2) = j) from the above discussion on reverse Markov chains 

=Pβ(X(1) ∈ Ai|X(2) ∈ Aj).  

Conclusion 
In this article we have dealt with Markov chains with finite state space only. Along with the results in 

[3], now we have a sound understanding about markovian property of collapsed Markov chains with 

finitely many states. But this particular problem is still open when the original Markov chain has 

countable or uncountably many states. 
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