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Abstract 
 In this paper numerical solutions for solving Fuzzy ordinary differential equations based on Seikala 

derivative of fuzzy process are considered.  We propose a novel numerical method based on the Runge-

Kutta-Fehlberg method of order five and is followed by a complete error analysis. 
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1.  Introduction 
 Consider the numerical solution of the initial value problem for the system of ordinary differential 

equation.   

  y(x)  = f (x, y(x)), x  [x0, b], 

  y(x0)  = y0 

 One of the most common methods for solving numerically [3] is Runge-Kutta method.  Most efforts 

to increase the order of accuracy of the Runge-Kutta method have been accomplished by increasing the 

number of terms used in the Taylor‟s series and thus the number of functional evaluations.  In Runge-Kutta-

Fehlberg method of order, six number of function evaluations is required per step.  Many authors have 

attempted to increase the efficiency of Runge-Kutta methods with a lower number of function evaluations 

required. 

2.  Preliminaries 
Consider the initial value problem 

   )(, tytfty  , t0  t  b  

y(t0) = y0      (2.1) 

We assume that  

1. f(t, y(t)) is defined and continuous in the strip with t0  t  b, - < y <  with t0 and b are finite. 

2. There exists a constant L such that for any t in [t0, b] and any two numbers y and y
*
  

    **,, yyLytfytf   

These conditions are sufficient to prove that  on [t0, b] a unique continuous differentiable solution 

y(t) satisfying (2.1) which is continuous and differentiable. 

The basis of all Runge-Kutta methods is to express the difference between the value of y at tn+1 and tn 

as  




 
m

i

iinn kwyy
0

1      (2.2)  

where wi are constants, i = 1, 2, 3, . . . m  
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ki = hf(tn+aih, yn + 




1

1

i

j

jij kc )    (2.3) 

Equation (2.2) is to be exact for powers of h through h
m

, because it is to be coincident with Taylor 

series of order m.  Therefore, the truncation error Tm, can be written as  

  Tm = mh
m+1

 + O(h
m+2

) 

  The true magnitude of m will generally be much less than the bound of theorem-2.1.  Thus, if the 

O(h
m+2

) term is small compared with mh
m+1

, as we expect to be so if h is small, then the bound on mh
m+1

, 

will usually be a bound on the error as a whole. 

The method proposed in [7] introduces new terms involving higher order derivatives of „f‟ in the 

Runge-Kutta ki terms (i > 1) to obtain a higher order of accuracy without a corresponding increase in 

evaluations of f, but with the addition of evaluations of „f‟ by Fifth order Runge-Kutta-Fehlberg method for 

autonomous system proposed in [15].  Consider,  

y(tn+1) = y(tn) + w1k1 + w2k2 + w3k3 + w4k4 + w5k5 + w6k6 

where 

k1 = hf(tn, y(tn)) 

k2 = hf(tn+c2h, y(tn)+a21k1) 

k3 = hf(tn+c3h, y(tn)+a31k1+a32k2) 

k4 = hf(tn+c4h, y(tn)+a41k1+a42k2+a43k3)   (2.4) 
k5   = hf(tn+c5h,y(tn)+a51k1+a52k2+a53k3+a54k4) 

k6   = hf(tn+c6h,y(tn)+a61k1+a62k2+a63k3+a64k4+ a65k5) 
Utilizing the Taylor‟s series expansion techniques, Runge-Kutta-Fehlberg method of order fifth is 

given by, 

yn+1 = yn + 65431
55

1

50

9

56430

28561

12825

6656

135

16
kkkkk   

k1 = hf(tn, y(tn)) 

k2 = hf(tn+
3

h
, y(tn)+

4

1
k1) 

k3 = hf(tn+
8

3h
, y(tn)+ 21

32

9

32

3
kk  ) 

k4 = hf(tn+
13

12h
, y(tn)+ 321

2197

7296

2197

7200

2197

1932
kkk  ) (2.5) 

k5 = hf(tn+h, y(tn)+ 4321
4104

845

513

3680
8

216

439
kkkk  ) 

k6 = hf(tn+
2

h
, y(tn)- 54321

40

11

4104

1859

2565

3544
2

27

8
kkkkk  ) 

where  

 a = t0  t1  t2  . . .  tN = b and    

h = 
N

ab 
 = tn+1 – tn        (2.6) 

Theorem – 2.1 

 Let f(t,y) belong to C
4
[a,b] and let it‟s partial derivatives are bounded and assume there exists, P, Q 

positive numbers such that 

 

                                           i + j  m, then in the Runge-Kutta method of order five,  

)(
12960

11987 756

1 hOQPhyy nn   

 

 

Definition – 2.1 

 A fuzzy number u as a fuzzy subset of R ie) u : R  [0, 1] satisfying the following conditions. 

,
1







j

ji

ji

ji

Q

P
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i). u is normal, ie  x0R  u(x0) = 1 

ii). u is a convex fuzzy set ie) u(tx + (1-t)y)  min{u(x), u(y)},  t  [0, 1] and x, y  R 

iii). u is upper semi continuous on R 

iv).   0,  xuRx  is compact 

The set E is the family of fuzzy numbers and arbitrary fuzzy number is represented by an ordered 

pair of functions     ruru , , 0  r  1 that satisfies the following requirements 

1.  ru  is a bounded left continuous non-decreasing function over [0, 1] w.r.to any „r‟. 

2.  ru  is a bounded right continuous non-increasing function over [0, 1] w.r.to any „r‟. 

3.  ru    ru , 0 r  1, r-level cut is [u]r = {x/u(x)  r}, 0  r  1 is a closed & bounded interval 

denoted by [u]r =     ruru ,  and [u]0 = {x/u(x) > 0} is compact. 

Definition – 2.2 

 A triangular fuzzy number u is a fuzzy set in E that is characterised by an ordered triple (ul, uc, 

ur)R
3
 with ul <uc <ur such that [u]0 = [ul : ur] and [u]1 = [uc].  The membership function of the triangular 

fuzzy number u is given by 

 




























rc

cr

r

c

cl

lc

l

uxu
uu

xu

ux 

uxu
uu

ux

xu

 ,

             1

  ,

  

and we will have 

u > 0 if ul > 0; u  0 if ul  0;  u < 0 if ur < 0;  u  0 if ur  0 

Let I be a real interval.  A mapping y : I  E is called a fuzzy process and its  - level set is denoted 

by        ytyytyty ,,, , t  I, 0 <   I.   

The Seikkala derivative y(t) of a fuzzy process is defined by        ytyytyty ,,, 111  ,   t  I, 0 <   

I provided the equation defines fuzzy number as in [11].   

For u, v  E and     , the addition u + v and the product u can be defined by                  

[u + v] = [u] + [v] 

[u] = [u]  

where   [0, 1] and [u] + [v] means the addition of two intervals of  and [u] means the product 

between a scalar and a subset of .  Arithmetic operation of arbitrary fuzzy numbers  

u =     ruru ,  and v =     rvrv ,  and    can be defined as  

i). u = v if    rvru   and    rvru   

ii). u + v =         rvrurvru  ,  

iii).  u - v =         rvrururu  ,  

iv).  u . v =  
                 
                 rvrurvrurvrurvru

rvrurvrurvrurvru

.,.,.,.max

,.,.,.,.min
 

v). u =     ruru  ,  if   0 

  =     ruru  ,  if  < 0 

3. A Fuzzy Cauchy Problem 

 Consider the fuzzy initial value problem 

   )(, tytfty  , 0  t  T  

 y(0) = y0     (3.1) 
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where f is a continuous mapping from R+ x R  R and y0  E with r-level sets            [y0]r = 

    ryry ;0,;0 ,  r  [0, 1].   

The extension principle of Zadeh leads to the following definition of f(t, y) when         y = y(t) is a 

fuzzy number. 

f(t,y)(s)=sup{y()\s=f(t, )}, s  R 

It follows that   

        rytfrytfytf r ;,,;,,  , r  [0, 1] 

where 

         ryryuutfrytf ,\,min;, 
 

       (3.2) 

         ryryuutfrytf ,\,max;,   

Theorem: 

Let f satisfy      vvtgvtfvtf  ,,, , t  0 and v,v  R, where g : R+ x R+  R+ is a continuous 

mapping such that r  g(t, r) is non-decreasing.  An initial value problem  

u

(t) = g(t, u(t)), u(0) = u0,   (3.3)  

has a solution on R+ for u0 > 0 and that u(t) = 0 is the only solution of (3.3) for u0 = 0.  Then the 

fuzzy initial value problem (3.1) has a unique fuzzy solution. 

 u
1
(t) = g(t, u(t)), u(0) = u0 

4. Fifth Order fuzzy Runge–Kutta-Fehlberg Method 

Let the exact solution of the given differential equation [Y(t)]r = [ (   )  ̅(   )] is approximated by 

some [y(t)]r = [ (   )  ̅(   )] .  From (2.2) and (2.3) we define  

  

          . . . (4.1) 

    


 
6

1

1 ::
i

iinn kwrtyrty  

where wi‟s are constants and  

          rtytkrtytkrtytk iiri ,,,,,,,  where i = 1, 2, 3, 4, 5 and 6 

 

     rtythfrtytk nn :,:,1   

     rtythfrtytk nn :,:,1   

     







 12

4

1
:,

4
:, krty

h
thfrtytk nn  
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






 22

4

1
:,

4
:, krty

h
thfrtytk nn   

      







 213 3
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3
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8

3
:, kkrty
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thfrtytk nn  
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






 213 3

32

3
:,

8

3
:, kkrty

h
thfrtytk nn

      







 3214
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:, kkkrty
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thfrtytk nn
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     

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  . . . (4.2) 

  

  
              

55

:,2

50

:,9

56430

:,28561

12825

:,6656

135

:,16
:,

65431 rtytkrtytkrtytkrtytkrtytk
rtytF    

            . . . (4.3) 

 

The exact and approximate solution at tn, 0  n  N are denoted by  

[Y(tn)]r = [ (     )  ̅(    )] and  [y(tn)]r = [ (     )  ̅(    )] respectively.  The solution 

calculated by grid points at (2.6).  By (4.1) and (4.3) we have   

      rtytFrtyrty nnnn :,::1   

      rtytGrtyrty nnnn :,::1    . . . (4.4)
 

The following lemmas will be applied to show the convergence of these approximates 

   rtYrty
h

::lim
0




 and    rtYrty
h

::lim
0




 

Lemma-1: 

 Let the sequence of numbers  N

nW 0  satisfy 1nW   A nW  + B, 0  n  N – 1 for some given 

positive constants A and B.  Then nW   A
n 

0W +B
1

1





A

An

, 0  n  N.  

Lemma-2: 

 Let the sequences of numbers  N

nW 0  and  N

nV 0  satisfy the condition 

1nW   nW  + A max  BVW nn ,  and  

1nV   nV  + A max  BVW nn ,   

for some given positive constants A and B and denote Un = |Wn| + |Vn|, 0  n  N. 

Then, 

nU   0UA
n

+
1

1





A

A
B

n
n

, 0  n  N, where A = 1 + 2A and B = 2B 

Theorem-4.1 

 Let F(t, u, v) and G(t, u, v) belongs to C
4
(K) and let the partial derivatives of F and G be bounded 

over K.  Then, for arbitrary fixed r, 0  r  1, the approximately solutions  rty n ; ,  rty n ;
 
are converges to 

the exact solutions of  rtY n ;  and  rtY n ;  uniformly in t.[9] 

 

5.  Numerical Example 

Consider the fuzzy initial value problem,  

y
1
(t) = y(t), t  [0, 1]  

with     y(0) = (0.85 + 0.15r, 1.1  0.10r) where 0  r  1 

  
              
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:,2
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:,9

56430

:,28561

12825

:,6656

135

:,16
:, 65431 rtytkrtytkrtytkrtytkrtytk
rtytG 
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Solution:   

The exact solution is given by  

    teryrtY ;0;   and      teryrtY ;0:   
which is at t = 1,  

 ry ;1 =[(0.85+0.15r) e, (1.1-0.10r) e], 0  r  1.   

 

The exact and approximate solutions obtained by the fuzzy Runge-Kutta-Fehlberg fifth order method 

and fuzzy Runge-Kutta forth order method with h=0.1 are compared and plotted at t = 1 in Figure-5.1  

Table – 5.1 

 

r 
Exact Solution  Fifth order RKF method  Fourth order RK method 

Lower Upper Lower Upper Lower Upper 

0.0 2.3105395542 2.9901100113 2.3105392456 2.9901101589 2.3126564026 2.9928538799 

0.1 2.3513137816 2.9629271930 2.3513138294 2.9629275799 2.3534719944 2.9656441212 

0.2 2.3920880090 2.9357443747 2.3920881748 2.9357445240 2.3942780495 2.9384415150 

0.3 2.4328622365 2.9085615565 2.4328622818 2.9085612297 2.4350955486 2.9112331867 

0.4 2.4736364639 2.8813787382 2.4736363888 2.8813791275 2.4759082794 2.8840217590 

0.5 2.5144106913 2.8541959199 2.5144107342 2.8541955948 2.5167136192 2.8568160534 

0.6 2.5551849188 2.8270131016 2.5551846027 2.8270127773 2.5575318336 2.8296048641 

0.7 2.5959591462 2.7998302833 2.5959587097 2.7998304367 2.5983390808 2.8024001122 

0.8 2.6367333736 2.7726474650 2.6367337704 2.7726473808 2.6391501427 2.7751901150 

0.9 2.6775076010 2.7454646467 2.6775078773 2.7454645634 2.6799674034 2.7479805946 

1.0 2.7182818285 2.7182818285 2.7182817459 2.7182817459 2.7207753658 2.7207753658 

 

The error between the approximate solution by the method of fuzzy Runge-Kutta fourth order and 

the exact solution is computed.  Also the error between the approximate solution by fuzzy Runge-Kutta-

Fehlberg method and the exact solution of the problem are listed below. 

 

 

 

 

Table – 5.2 

 

r 
Exact and Proposed Method Exact and RK of order Four  

Lower Upper Lower Upper 

0.0 0.0000003086 0.0000001476 0.0021168484 0.0027438686 

0.1 0.0000000478 0.0000003869 0.0021582128 0.0027169282 

0.2 0.0000001658 0.0000001493 0.0021900405 0.0026971403 

0.3 0.0000000453 0.0000003268 0.0022333121 0.0026716302 

0.4 0.0000000751 0.0000003893 0.0022718155 0.0026430208 

0.5 0.0000000429 0.0000003251 0.0023029279 0.0026201335 
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0.6 0.0000003161 0.0000003243 0.0023469148 0.0025917625 

0.7 0.0000004365 0.0000001534 0.0023799346 0.0025698289 

0.8 0.0000003968 0.0000000842 0.0024167691 0.0025426500 

0.9 0.0000002763 0.0000000833 0.0024598024 0.0025159479 

1.0 0.0000000826 0.0000000826 0.0024935373 0.0024935373 

 

Figure – 5.1 

 
Green  - Fuzzy Fifth order Runge-Kutta-Felhberg Method   

Yellow  - Fuzzy Fourth order Runge-Kutta Method 

Red  - Exact Solution 

 

 

6.  Conclusion 
 In this work, we have proposed fifth order fuzzy Runge-Kutta-Fehlberg method to find the numerical 

solutions of fuzzy differential equations.  Taking into account that the convergence order of the Euler 

method is O(h), a higher order of convergence is obtained for the proposed method as O(h
3
). Comparison of 

the solutions of example shows that the proposed method gives a better solution than  the fuzzy Runge-Kutta 

fourth order method.  
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