Numerical Solution of Fuzzy Differential Equation by Fifth Order Runge-Kutta-Fehlberg Method

S. Rubanraj, P. Rajkumar
Head, Dept of Mathematics
St.Joseph's College(Autonomous)
Trichy, India
Email: ruban946@gmail.com
Research Scholar, St. Joseph's College (Autonomous)
Trichy, India.
Email: rajisperfect@gmail.com

Abstract

In this paper numerical solutions for solving Fuzzy ordinary differential equations based on Seikala derivative of fuzzy process are considered. We propose a novel numerical method based on the Runge-Kutta-Fehlberg method of order five and is followed by a complete error analysis.

Keywords

Fuzzy Differential Equations-Fifth Order fuzzy Runge-Kutta-Fehlberg Method-Error Analysis

1. Introduction

Consider the numerical solution of the initial value problem for the system of ordinary differential equation.

$$
\begin{aligned}
& \mathrm{y}^{\prime}(\mathrm{x})=f(\mathrm{x}, \mathrm{y}(\mathrm{x})), \quad \mathrm{x} \in\left[\mathrm{x}_{0}, \mathrm{~b}\right], \\
& \mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}
\end{aligned}
$$

One of the most common methods for solving numerically [3] is Runge-Kutta method. Most efforts to increase the order of accuracy of the Runge-Kutta method have been accomplished by increasing the number of terms used in the Taylor's series and thus the number of functional evaluations. In Runge-KuttaFehlberg method of order, six number of function evaluations is required per step. Many authors have attempted to increase the efficiency of Runge-Kutta methods with a lower number of function evaluations required.

2. Preliminaries

Consider the initial value problem

$$
y^{\prime}(t)=\left\{\begin{array}{l}
f(t, y(t)), \mathrm{t}_{0} \leq \mathrm{t} \leq \mathrm{b} \tag{2.1}\\
\mathrm{y}\left(\mathrm{t}_{0}\right)=\mathrm{y}_{0}
\end{array}\right.
$$

We assume that

1. $f(\mathrm{t}, \mathrm{y}(\mathrm{t}))$ is defined and continuous in the strip with $\mathrm{t}_{0} \leq \mathrm{t} \leq \mathrm{b},-\infty<\mathrm{y}<\infty$ with t_{0} and b are finite.
2. There exists a constant L such that for any t in $\left[\mathrm{t}_{0}, \mathrm{~b}\right]$ and any two numbers y and y^{*}
$\left|f(t, y)-f\left(t, y^{*}\right) \leq L\right| y-y^{*} \mid$
These conditions are sufficient to prove that \exists on $\left[\mathrm{t}_{0}, \mathrm{~b}\right]$ a unique continuous differentiable solution $\mathrm{y}(\mathrm{t})$ satisfying (2.1) which is continuous and differentiable.

The basis of all Runge-Kutta methods is to express the difference between the value of y at t_{n+1} and t_{n} as

$$
\begin{equation*}
y_{n+1}-y_{n}=\sum_{i=0}^{m} w_{i} k_{i} \tag{2.2}
\end{equation*}
$$

where w_{i} are constants, $\mathrm{i}=1,2,3, \ldots \mathrm{~m}$

$$
\begin{equation*}
\mathrm{k}_{\mathrm{i}}=\mathrm{hf}\left(\mathrm{t}_{\mathrm{n}}+\mathrm{a}_{\mathrm{i}} \mathrm{~h}, \mathrm{y}_{\mathrm{n}}+\sum_{j=1}^{i-1} c_{i j} k_{j}\right) \tag{2.3}
\end{equation*}
$$

Equation (2.2) is to be exact for powers of h through h^{m}, because it is to be coincident with Taylor series of order m . Therefore, the truncation error T_{m}, can be written as

$$
\mathrm{T}_{\mathrm{m}}=\gamma_{\mathrm{m}} \mathrm{~h}^{\mathrm{m}+1}+\mathrm{O}\left(\mathrm{~h}^{\mathrm{m}+2}\right)
$$

The true magnitude of γ_{m} will generally be much less than the bound of theorem-2.1. Thus, if the $\mathrm{O}\left(\mathrm{h}^{\mathrm{m}+2}\right)$ term is small compared with $\gamma_{\mathrm{m}} \mathrm{h}^{\mathrm{m}+1}$, as we expect to be so if h is small, then the bound on $\gamma_{\mathrm{m}} \mathrm{h}^{\mathrm{m}+1}$, will usually be a bound on the error as a whole.

The method proposed in [7] introduces new terms involving higher order derivatives of ' f ' in the Runge-Kutta k_{i} terms ($\mathrm{i}>1$) to obtain a higher order of accuracy without a corresponding increase in evaluations of f , but with the addition of evaluations of ' f ' by Fifth order Runge-Kutta-Fehlberg method for autonomous system proposed in [15]. Consider,
$y\left(t_{n+1}\right)=y\left(t_{n}\right)+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+w_{4} k_{4}+w_{5} k_{5}+w_{6} k_{6}$
where
$\mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{t}_{\mathrm{n}}, \mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)\right)$
$\mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{t}_{\mathrm{n}}+\mathrm{c}_{2} \mathrm{~h}, \mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)+\mathrm{a}_{21} \mathrm{k}_{1}\right)$
$\mathrm{k}_{3}=\mathrm{hf}\left(\mathrm{t}_{\mathrm{n}}+\mathrm{c}_{3} \mathrm{~h}, \mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)+\mathrm{a}_{31} \mathrm{k}_{1}+\mathrm{a}_{32} \mathrm{k}_{2}\right)$
$\mathrm{k}_{4}=\mathrm{hf}\left(\mathrm{t}_{\mathrm{n}}+\mathrm{c}_{4} \mathrm{~h}, \mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)+\mathrm{a}_{41} \mathrm{k}_{1}+\mathrm{a}_{42} \mathrm{k}_{2}+\mathrm{a}_{43} \mathrm{k}_{3}\right)$
$\mathrm{k}_{5}=\mathrm{hf}\left(\mathrm{t}_{\mathrm{n}}+\mathrm{c}_{5} \mathrm{~h}, \mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)+\mathrm{a}_{51} \mathrm{k}_{1}+\mathrm{a}_{52} \mathrm{k}_{2}+\mathrm{a}_{53} \mathrm{k}_{3}+\mathrm{a}_{54} \mathrm{k}_{4}\right)$
$\mathrm{k}_{6}=\mathrm{hf}\left(\mathrm{t}_{\mathrm{n}}+\mathrm{c}_{6} \mathrm{~h}, \mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)+\mathrm{a}_{61} \mathrm{k}_{1}+\mathrm{a}_{62} \mathrm{k}_{2}+\mathrm{a}_{63} \mathrm{k}_{3}+\mathrm{a}_{64} \mathrm{k}_{4}+\mathrm{a}_{65} \mathrm{k}_{5}\right)$
Utilizing the Taylor's series expansion techniques, Runge-Kutta-Fehlberg method of order fifth is given by,
$\mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+\frac{16}{135} k_{1}+\frac{6656}{12825} k_{3}+\frac{28561}{56430} k_{4}-\frac{9}{50} k_{5}+\frac{1}{55} k_{6}$
$\mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{t}_{\mathrm{n}}, \mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)\right)$
$\mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{t}_{\mathrm{n}}+\frac{h}{3}, \mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)+\frac{1}{4} \mathrm{k}_{1}\right)$
$\mathrm{k}_{3}=\operatorname{hf}\left(\mathrm{t}_{\mathrm{n}}+\frac{3 h}{8}, \mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)+\frac{3}{32} k_{1}+\frac{9}{32} k_{2}\right)$
$\mathrm{k}_{4}=\operatorname{hf}\left(\mathrm{t}_{\mathrm{n}}+\frac{12 h}{13}, \mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)+\frac{1932}{2197} k_{1}-\frac{7200}{2197} k_{2}+\frac{7296}{2197} k_{3}\right)$
$\mathrm{k}_{5}=\mathrm{hf}\left(\mathrm{t}_{\mathrm{n}}+\mathrm{h}, \mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)+\frac{439}{216} k_{1}-8 k_{2}+\frac{3680}{513} k_{3}-\frac{845}{4104} k_{4}\right)$
$\mathrm{k}_{6}=\operatorname{hf}\left(\mathrm{t}_{\mathrm{n}}+\frac{h}{2}, \mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)-\frac{8}{27} k_{1}+2 k_{2}-\frac{3544}{2565} k_{3}+\frac{1859}{4104} k_{4}-\frac{11}{40} k_{5}\right)$
where
$\mathrm{a}=\mathrm{t}_{0} \leq \mathrm{t}_{1} \leq \mathrm{t}_{2} \leq \ldots \leq \mathrm{t}_{\mathrm{N}}=\mathrm{b}$ and
$\mathrm{h}=\frac{b-a}{N}=\mathrm{t}_{\mathrm{n}+1}-\mathrm{t}_{\mathrm{n}}$
Theorem-2.1
Let $\mathrm{f}(\mathrm{t}, \mathrm{y})$ belong to $\mathrm{C}^{4}[\mathrm{a}, \mathrm{b}]$ and let it's partial derivatives are bounded and assume there exists, P, Q positive numbers such that
$|f(t, y)|<P, \quad\left|\frac{\partial^{i+j} f}{\partial t^{i} \partial y^{j}}\right|<\frac{P^{i+j}}{Q^{j-1}}, \quad \mathrm{i}+\mathrm{j} \leq \mathrm{m}$, then in the Runge-Kutta method of order five,
$y_{n+1}-y_{n} \approx \frac{11987}{12960} h^{6} Q P^{5}+O\left(h^{7}\right)$

Definition - 2.1

A fuzzy number u as a fuzzy subset of R ie) $\mathrm{u}: \mathrm{R} \rightarrow[0,1]$ satisfying the following conditions.
i). u is normal, ie $\exists x_{0} \in R \ni u\left(x_{0}\right)=1$
ii). u is a convex fuzzy set ie) $u(t x+(1-t) y) \geq \min \{u(x), u(y)\}, \forall t \in[0,1]$ and $x, y \in R$
iii). u is upper semi continuous on R
iv). $\{x \in R, u(x)>0\}$ is compact

The set E is the family of fuzzy numbers and arbitrary fuzzy number is represented by an ordered pair of functions $(\underline{u}(r), \bar{u}(r)), 0 \leq \mathrm{r} \leq 1$ that satisfies the following requirements

1. $\underline{u}(r)$ is a bounded left continuous non-decreasing function over $[0,1]$ w.r.to any ' r '.
2. $\bar{u}(r)$ is a bounded right continuous non-increasing function over $[0,1]$ w.r.to any ' r '.
3. $\underline{u}(r) \leq \bar{u}(r), 0 \leq \mathrm{r} \leq 1$, r-level cut is $[\mathrm{u}]_{\mathrm{r}}=\{\mathrm{x} / \mathrm{u}(\mathrm{x}) \geq \mathrm{r}\}, 0 \leq \mathrm{r} \leq 1$ is a closed \& bounded interval denoted by $[\mathrm{u}]_{\mathrm{r}}=[\underline{u}(r), \bar{u}(r)]$ and $[\mathrm{u}]_{0}=\{\mathrm{x} / \mathrm{u}(\mathrm{x})>0\}$ is compact.

Definition - 2.2

A triangular fuzzy number u is a fuzzy set in E that is characterised by an ordered triple $\left(u_{1}, u_{c}\right.$, $\left.\mathrm{u}_{\mathrm{r}}\right) \in \mathrm{R}^{3}$ with $\mathrm{u}_{1}<\mathrm{u}_{\mathrm{c}}<\mathrm{u}_{\mathrm{r}}$ such that $[\mathrm{u}]_{0}=\left[\mathrm{u}_{1}: \mathrm{u}_{\mathrm{r}}\right]$ and $[\mathrm{u}]_{1}=\left[\mathrm{u}_{\mathrm{c}}\right]$. The membership function of the triangular fuzzy number u is given by

$$
u(x)= \begin{cases}\frac{x-u_{l}}{u_{c}-u_{l}}, & u_{l} \leq x \leq u_{c} \\ 1 & x=u_{c} \\ \frac{u_{r}-x}{u_{r}-u_{c}}, & u_{c} \leq x \leq u_{r}\end{cases}
$$

and we will have

$$
\mathrm{u}>0 \text { if } \mathrm{u}_{l}>0 ; \quad \mathrm{u} \geq 0 \text { if } \mathrm{u}_{l} \geq 0 ; \quad \mathrm{u}<0 \text { if } \mathrm{u}_{\mathrm{r}}<0 ; \quad \mathrm{u} \leq 0 \text { if } \mathrm{u}_{\mathrm{r}} \leq 0
$$

Let I be a real interval. A mapping y $\mathrm{I} \rightarrow \mathrm{E}$ is called a fuzzy process and its α-level set is denoted by $[y(t)]_{\alpha}=[\underline{y}(t, y), \bar{y}(t, y)], \mathrm{t} \in \mathrm{I}, 0<\alpha \leq \mathrm{I}$.

The Seikkala derivative $\mathrm{y}(\mathrm{t})$ of a fuzzy process is defined by $\left[y^{1}(t)\right]_{\alpha}=\left[\underline{y}^{1}(t, y), \bar{y}^{-1}(t, y)\right], \quad \mathrm{t} \in \mathrm{I}, 0<\alpha \leq$ I provided the equation defines fuzzy number as in [11].

For $u, v \in E$ and $\lambda \in \mathfrak{R}$, the addition $u+v$ and the product λu can be defined by

$$
\begin{aligned}
& {[u+v]_{\alpha}=[u]_{\alpha}+[v]_{\alpha}} \\
& {[\lambda u]_{\alpha}=\lambda[u]_{\alpha}}
\end{aligned}
$$

where $\alpha \in[0,1]$ and $[u]_{\alpha}+[\mathrm{v}]_{\alpha}$ means the addition of two intervals of \mathfrak{R} and $[\mathrm{u}]_{\alpha}$ means the product between a scalar and a subset of \mathfrak{R}. Arithmetic operation of arbitrary fuzzy numbers
$\mathrm{u}=(\underline{u}(r), \bar{u}(r))$ and $\mathrm{v}=(\underline{v}(r), \bar{v}(r))$ and $\lambda \in \mathfrak{R}$ can be defined as
i). $\mathrm{u}=\mathrm{v}$ if $\underline{u}(r)=\underline{v}(r)$ and $\bar{u}(r)=\bar{v}(r)$
ii). $\mathrm{u}+\mathrm{v}=(\underline{u}(r)+\underline{v}(r), \bar{u}(r)+\bar{v}(r))$
iii). $\mathrm{u}-\mathrm{v}=(\underline{u}(r)-\bar{u}(r), \bar{u}(r)-\bar{v}(r))$
$\min \{(\underline{u}(r) \cdot \underline{v}(r), \underline{u}(r) \cdot \bar{v}(r), \bar{u}(r) \cdot \underline{v}(r), \bar{u}(r) \cdot \bar{v}(r))\}$,
$\max \{(\underline{u}(r) \cdot \underline{v}(r), \underline{u}(r) \cdot \bar{v}(r), \bar{u}(r) \cdot \underline{v}(r), \bar{u}(r) \cdot \bar{v}(r))\}$
iv). $u \cdot v=$
v). $\lambda \mathrm{u}=(\lambda \underline{u}(r), \lambda \bar{u}(r))$ if $\lambda \geq 0$

$$
=(\lambda \bar{u}(r), \lambda \underline{u}(r)) \text { if } \lambda<0
$$

3. A Fuzzy Cauchy Problem

Consider the fuzzy initial value problem
$y^{\prime}(t)=\left\{\begin{array}{l}f(t, y(t)), 0 \leq \mathrm{t} \leq \mathrm{T} \\ \mathrm{y}(0)=\mathrm{y}_{0}\end{array}\right.$
where f is a continuous mapping from $\mathrm{R}_{+} \mathrm{x} \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{y}_{0} \in \mathrm{E}$ with r -level sets $[\underline{y}(0 ; r), \bar{y}(0 ; r)], \mathrm{r} \in[0,1]$.

The extension principle of Zadeh leads to the following definition of $f(t, y)$ when
$y=y(t)$ is a fuzzy number.
$f(t, y)(s)=\sup \{y(\tau) \mid s=f(t, \tau)\}, s \in R$
It follows that

$$
[f(t, y)]_{r}=[\underline{f}(t, y ; r), \bar{f}(t, y ; r)], \mathrm{r} \in[0,1]
$$

where

$$
\begin{align*}
& \underline{f}(t, y ; r)=\min \{f(t, u) \backslash u \in \underline{y}(r), \bar{y}(r)]\} \\
& \bar{f}(t, y ; r)=\max \{f(t, u) \backslash u \in \underline{\underline{y}}(r), \bar{y}(r)\} \tag{3.2}
\end{align*}
$$

Theorem:
Let f satisfy $\mid f(t, v)-f(t, \bar{v}) \leq g(t,|v-\bar{v}|), \mathrm{t} \geq 0$ and $\mathrm{v}, \overline{\mathrm{v}} \in \mathrm{R}$, where $\mathrm{g}: \mathrm{R}_{+} \mathrm{x} \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$is a continuous mapping such that $\mathrm{r} \rightarrow \mathrm{g}(\mathrm{t}, \mathrm{r})$ is non-decreasing. An initial value problem

$$
\begin{equation*}
\mathrm{u}^{\prime}(\mathrm{t})=\mathrm{g}(\mathrm{t}, \mathrm{u}(\mathrm{t})), \mathrm{u}(0)=\mathrm{u}_{0}, \tag{3.3}
\end{equation*}
$$

has a solution on R_{+}for $u_{0}>0$ and that $u(t)=0$ is the only solution of (3.3) for $u_{0}=0$. Then the fuzzy initial value problem (3.1) has a unique fuzzy solution.
$\mathrm{u}^{1}(\mathrm{t})=\mathrm{g}(\mathrm{t}, \mathrm{u}(\mathrm{t})), \mathrm{u}(0)=\mathrm{u}_{0}$

4. Fifth Order fuzzy Runge-Kutta-Fehlberg Method

Let the exact solution of the given differential equation $[\mathrm{Y}(\mathrm{t})]_{\mathrm{r}}=[\underline{Y}(t ; r), \bar{Y}(t ; r)]$ is approximated by some $[y(t)]_{\mathrm{r}}=[\underline{y}(t ; r), \bar{y}(t ; r)]$. From (2.2) and (2.3) we define

$$
\begin{align*}
& \underline{y}\left(t_{n+1}: r\right)-\underline{y}\left(t_{n}: r\right)=\sum_{i=1}^{6} w_{i} \underline{k_{i}} \tag{4.1}\\
& \bar{y}\left(t_{n+1}: r\right)-\bar{y}\left(t_{n}: r\right)=\sum_{i=1}^{6} w_{i} \overline{k_{i}}
\end{align*}
$$

where w_{i} 's are constants and
$\left[k_{i}(t, y(t, r))\right]_{r}=\left[\underline{k_{i}}(t, y(t, r)), \overline{k_{i}}(t, y(t, r))\right]$ where $\mathrm{i}=1,2,3,4,5$ and 6
$\underline{k_{1}}(t, y(t: r))=h f\left(t_{n}, \underline{y}\left(t_{n}: r\right)\right)$
$\overline{k_{1}}(t, y(t: r))=h f\left(t_{n}, \bar{y}\left(t_{n}: r\right)\right)$
$\underline{k_{2}}(t, y(t: r))=h f\left(t_{n}+\frac{h}{4}, \underline{y}\left(t_{n}: r\right)+\frac{1}{4} \underline{k_{1}}\right)$
$\overline{k_{2}}(t, y(t: r))=h f\left(t_{n}+\frac{h}{4}, \bar{y}\left(t_{n}: r\right)+\frac{1}{4} \overline{k_{2}}\right)$
$\left.\underline{k_{3}}(t, y(t: r))=h f\left(t_{n}+\frac{3 h}{8}, \underline{y}\left(t_{n}: r\right)+\frac{3}{32} \underline{\left(k_{1}\right.}+3 \underline{k_{2}}\right)\right)$
$\overline{k_{3}}(t, y(t: r))=h f\left(t_{n}+\frac{3 h}{8}, \bar{y}\left(t_{n}: r\right)+\frac{3}{32}\left(\overline{k_{1}}+3 \overline{k_{2}}\right)\right)$
$\underline{k_{4}}(t, y(t: r))=h f\left(t_{n}+\frac{12 h}{13}, \underline{y}\left(t_{n}: r\right)+\frac{1932}{2197} \underline{k_{1}}-\frac{7200}{2197} \underline{k_{2}}+\frac{7296}{2197} \underline{k_{3}}\right)$

$$
\begin{align*}
& \overline{k_{4}}(t, y(t: r))=h f\left(t_{n}+\frac{12 h}{13}, \bar{y}\left(t_{n}: r\right)+\frac{1932}{2197} \overline{k_{1}}-\frac{7200}{2197} \overline{k_{2}}+\frac{7296}{2197} \overline{k_{3}}\right) \\
& \underline{k_{5}}(t, y(t: r))=h f\left(t_{n}+h, \underline{y}\left(t_{n}: r\right)+\frac{439}{216} \underline{k_{1}}-8 \underline{k_{2}}+\frac{3680}{513} \underline{k_{3}}-\frac{845}{4104} \underline{k_{4}}\right) \\
& \overline{k_{5}}(t, y(t: r))=h f\left(t_{n}+h, \bar{y}\left(t_{n}: r\right)+\frac{439}{216} \overline{k_{1}}-8 \overline{k_{2}}+\frac{3680}{513} \overline{k_{3}}-\frac{845}{4104} \overline{k_{4}}\right) \\
& \underline{k_{6}}(t, y(t: r))=h f\left(t_{n}+\frac{h}{2}, \underline{y}\left(t_{n}: r\right)-\frac{8}{27} \underline{k_{1}}+2 \underline{k_{2}}-\frac{3544}{2565} \underline{k_{3}}+\frac{1859}{4104} \underline{k_{4}}-\frac{11}{40}-k_{5}\right) \\
& \overline{k_{6}}(t, y(t: r))=h f\left(t_{n}+\frac{h}{2}, \bar{y}\left(t_{n}: r\right)-\frac{8}{27} \overline{k_{1}}+2 \overline{k_{2}}-\frac{3544}{2565} \overline{k_{3}}+\frac{1859}{4104} \overline{k_{4}}-\frac{11}{40} k_{5}\right) \tag{4.2}
\end{align*}
$$

$F(t, y(t: r))=\frac{16 k_{1}(t, y(t: r))}{135}+\frac{6656 k_{3}(t, y(t: r))}{12825}+\frac{28561 \underline{k_{4}(t, y(t: r))}}{56430}-\frac{9 k_{5}(t, y(t: r))}{50}+\frac{2 k_{6}(t, y(t: r))}{55}$

$\left[\mathrm{Y}\left(\mathrm{t}_{\mathrm{n}}\right)\right]_{\mathrm{r}}=\left[\underline{Y}\left(t_{n} ; r\right), \bar{Y}\left(t_{n} ; r\right)\right]$ and $\left[\mathrm{y}\left(\mathrm{t}_{\mathrm{n}}\right)\right]_{\mathrm{r}}=\left[\underline{y}\left(t_{n} ; r\right), \bar{y}\left(t_{n} ; r\right)\right]$ respectively. The solution calculated by grid points at (2.6). By (4.1) and (4.3) we have

$$
\begin{align*}
& \frac{y}{y}\left(t_{n+1}: r\right)=\underline{y}\left(t_{n}: r\right)+F\left[t_{n}, \underline{y}\left(t_{n}: r\right)\right] \\
& \bar{y}\left(t_{n+1}: r\right)=\bar{y}\left(t_{n}: r\right)+G\left[t_{n}, \bar{y}\left(t_{n}: r\right)\right] \tag{4.4}
\end{align*}
$$

The following lemmas will be applied to show the convergence of these approximates

$$
\lim _{h \rightarrow 0} \underline{y}(t: r)=\underline{Y}(t: r) \text { and } \lim _{h \rightarrow 0} \bar{y}(t: r)=\bar{Y}(t: r)
$$

Lemma-1:

Let the sequence of numbers $\{W\}_{n=0}^{N}$ satisfy $\left|W_{n+1}\right| \leq \mathrm{A}\left|W_{n}\right|+\mathrm{B}, 0 \leq \mathrm{n} \leq \mathrm{N}-1$ for some given positive constants A and B. Then $\left|W_{n}\right| \leq \mathrm{A}^{\mathrm{n}}\left|W_{0}\right|+\mathrm{B} \frac{A^{n}-1}{A-1}, 0 \leq \mathrm{n} \leq \mathrm{N}$.

Lemma-2:

Let the sequences of numbers $\{W\}_{n=0}^{N}$ and $\{V\}_{n=0}^{N}$ satisfy the condition

$$
\begin{aligned}
& \left|W_{n+1}\right| \leq\left|W_{n}\right|+\mathrm{A} \max \left\{\left|W_{n}\right|,\left|V_{n}\right|\right\}+B \text { and } \\
& \left|V_{n+1}\right| \leq\left|V_{n}\right|+\mathrm{A} \max \left\{\left|W_{n}\right|,\left|V_{n}\right|\right\}+B
\end{aligned}
$$

for some given positive constants A and B and denote $U_{n}=\left|W_{n}\right|+\left|V_{n}\right|, 0 \leq n \leq N$.
Then,
$\left|U_{n}\right| \leq \bar{A}^{n}\left|U_{0}\right|+\bar{B}^{n} \frac{\bar{A}^{n}-1}{\bar{A}-1}, 0 \leq \mathrm{n} \leq \mathrm{N}$, where $\overline{\mathrm{A}}=1+2 \mathrm{~A}$ and $\overline{\mathrm{B}}=2 \mathrm{~B}$

Theorem-4.1

Let $\mathrm{F}(\mathrm{t}, \mathrm{u}, \mathrm{v})$ and $\mathrm{G}(\mathrm{t}, \mathrm{u}, \mathrm{v})$ belongs to $\mathrm{C}^{4}(\mathrm{~K})$ and let the partial derivatives of F and G be bounded over K . Then, for arbitrary fixed $\mathrm{r}, 0 \leq \mathrm{r} \leq 1$, the approximately solutions $\underline{y}\left(t_{n} ; r\right), \bar{y}\left(t_{n} ; r\right)$ are converges to the exact solutions of $\underline{Y}\left(t_{n} ; r\right)$ and $\bar{Y}\left(t_{n} ; r\right)$ uniformly in t.[9]

5. Numerical Example

Consider the fuzzy initial value problem,

$$
y^{1}(t)=y(t), t \in[0,1]
$$

with $y(0)=(0.85+0.15 \mathrm{r}, 1.1-0.10 \mathrm{r})$ where $0 \leq \mathrm{r} \leq 1$

Solution:

The exact solution is given by

$$
\underline{Y}(t ; r)=\underline{y}(0 ; r) e^{t} \text { and } \bar{Y}(t: r)=\bar{y}(0 ; r) e^{t}
$$

which is at $\mathrm{t}=1$,

$$
y(1 ; r)=[(0.85+0.15 \mathrm{r}) \mathrm{e},(1.1-0.10 \mathrm{r}) \mathrm{e}], 0 \leq \mathrm{r} \leq 1 .
$$

The exact and approximate solutions obtained by the fuzzy Runge-Kutta-Fehlberg fifth order method and fuzzy Runge-Kutta forth order method with $\mathrm{h}=0.1$ are compared and plotted at $\mathrm{t}=1$ in Figure-5.1

Table - 5.1

\mathbf{r}	Exact Solution		Fifth order RKF method		Fourth order RK method	
	Lower	Upper	Lower	Upper	Lower	Upper
$\mathbf{0 . 0}$	2.3105395542	2.9901100113	2.3105392456	2.9901101589	2.3126564026	2.9928538799
$\mathbf{0 . 1}$	2.3513137816	2.9629271930	2.3513138294	2.9629275799	2.3534719944	2.9656441212
$\mathbf{0 . 2}$	2.3920880090	2.9357443747	2.3920881748	2.9357445240	2.3942780495	2.9384415150
$\mathbf{0 . 3}$	2.4328622365	2.9085615565	2.4328622818	2.9085612297	2.4350955486	2.9112331867
$\mathbf{0 . 4}$	2.4736364639	2.8813787382	2.4736363888	2.8813791275	2.4759082794	2.8840217590
$\mathbf{0 . 5}$	2.5144106913	2.8541959199	2.5144107342	2.8541955948	2.5167136192	2.8568160534
$\mathbf{0 . 6}$	2.5551849188	2.8270131016	2.5551846027	2.8270127773	2.5575318336	2.8296048641
$\mathbf{0 . 7}$	2.5959591462	2.7998302833	2.5959587097	2.7998304367	2.5983390808	2.8024001122
$\mathbf{0 . 8}$	2.6367333736	2.7726474650	2.6367337704	2.7726473808	2.6391501427	2.7751901150
$\mathbf{0 . 9}$	2.6775076010	2.7454646467	2.6775078773	2.7454645634	2.6799674034	2.7479805946
$\mathbf{1 . 0}$	2.7182818285	2.7182818285	2.7182817459	2.7182817459	2.7207753658	2.7207753658

The error between the approximate solution by the method of fuzzy Runge-Kutta fourth order and the exact solution is computed. Also the error between the approximate solution by fuzzy Runge-KuttaFehlberg method and the exact solution of the problem are listed below.

Table - 5.2

\mathbf{r}	Exact and Proposed Method		Exact and RK of order Four	
	Lower	Upper	Lower	Upper
$\mathbf{0 . 0}$	0.0000003086	0.0000001476	0.0021168484	0.0027438686
$\mathbf{0 . 1}$	0.0000000478	0.0000003869	0.0021582128	0.0027169282
$\mathbf{0 . 2}$	0.0000001658	0.0000001493	0.0021900405	0.0026971403
$\mathbf{0 . 3}$	0.0000000453	0.0000003268	0.0022333121	0.0026716302
$\mathbf{0 . 4}$	0.0000000751	0.0000003893	0.0022718155	0.0026430208
$\mathbf{0 . 5}$	0.0000000429	0.0000003251	0.0023029279	0.0026201335

$\mathbf{0 . 6}$	0.0000003161	0.0000003243	0.0023469148	0.0025917625
$\mathbf{0 . 7}$	0.0000004365	0.0000001534	0.0023799346	0.0025698289
$\mathbf{0 . 8}$	0.0000003968	0.0000000842	0.0024167691	0.0025426500
$\mathbf{0 . 9}$	0.0000002763	0.0000000833	0.0024598024	0.0025159479
$\mathbf{1 . 0}$	0.0000000826	0.0000000826	0.0024935373	0.0024935373

Figure - 5.1

Green	- Fuzzy Fifth order Runge-Kutta-Felhberg Method
Yellow	- Fuzzy Fourth order Runge-Kutta Method
Red	- Exact Solution

6. Conclusion

In this work, we have proposed fifth order fuzzy Runge-Kutta-Fehlberg method to find the numerical solutions of fuzzy differential equations. Taking into account that the convergence order of the Euler method is $\mathrm{O}(\mathrm{h})$, a higher order of convergence is obtained for the proposed method as $\mathrm{O}\left(\mathrm{h}^{3}\right)$. Comparison of the solutions of example shows that the proposed method gives a better solution than the fuzzy Runge-Kutta fourth order method.

References:

[1] Abbasbandy. S, Allah Viranloo.T (2004), "Numerical Solution of fuzzy differential equations by Runge-Kutta method", Nonlinear Studies 11(1), pp 117-129
[2] Buckley.J.J, Feuring.T (2000), "Fuzzy Differential Equations", Fuzzy Sets and Systems 110, pp 4354
[3] Butcher. J.C., "On Runge-Kutta processes of high order", J.Australian. Math. Soci. Vol.4, pp. 179194, 1964
[4] Butcher.J.C (1987), "The Numerical Analysis of Ordinary Differential Equations by Runge-Kutta and General Linear Methods", New York, Wiley
[5] Chang.S.L, Zadeh.L.A (1972), "On fuzzy mapping and Control", IEEE Transactions on System Man Cybernetics 2(1), pp 30-34
[6] Dubois.D,Prade.H(1982),"Towards Fuzzy Differential Calculus:Part3,Differentiation", Fuzzy Sets and System 8, pp 225-233
[7] Goeken.D, Johnson (2000), "Runge-Kutta with higher order derivative Approximations", Applied Numerical Mathematics vol.34, pp 207-218, 2000
[8] Goetschel.R, Voxman.W (1986), "Elementary Fuzzy Calculus", Fuzzy Sets and Systems 18, pp 3143
[9] Jayakumar.T, Maheskumar.D and Kanagarajan.K, "Numerical Solution of Fuzzy Differential Equations by Runge Kutta method of Order Five", Applied Mathematical Sciences, Vol.6, no.60, 2989-3002, 2012
[10] Kaleva.O(1987),"Fuzzy Differential Equations",Fuzzy Sets \& Systems 24, pp 301-317
[11] Kaleva.O (1990), "The Cauchy's problem for Ordinary differential equations", Fuzzy Sets and Systems 35, pp 389-396
[12] Lambert.J.D (1990), "Numerical methods for Ordinary differential systems', New York, Wiley
[13] Ma.M, Friedman.M, Kandel.A (1999), "Numerical solution of Fuzzy differential Equations", Fuzzy Sets and System 105, pp 133-138
[14] Palligkinis.S,Ch., Papageorgiou.G, Famelis.I.TH (2009), "Runge-Kutta methods for fuzzy differential equations", Applied Mathematics Computation 209, pp 97-105
[15] Puri.M.L, Ralescu.D.A (1983), "Differential of Fuzzy Functions", Journal of Mathematical Analysis and Applications 91, pp 552-558
[16] Seikkala. S (1987), "On Fuzzy initial value problem", Fuzzy Sets and Systems 24, pp 319-330

