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Abstract
In this paper numerical solutions for solving Fuzzy ordinary differential equations based on Seikala
derivative of fuzzy process are considered. We propose a novel numerical method based on the Runge-
Kutta-Fehlberg method of order five and is followed by a complete error analysis.
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1. Introduction
Consider the numerical solution of the initial value problem for the system of ordinary differential
equation.
y(x) =f(xy(x), xe[xb],
y(Xo) =Yo
One of the most common methods for solving numerically [3] is Runge-Kutta method. Most efforts
to increase the order of accuracy of the Runge-Kutta method have been accomplished by increasing the
number of terms used in the Taylor’s series and thus the number of functional evaluations. In Runge-Kutta-
Fehlberg method of order, six number of function evaluations is required per step. Many authors have
attempted to increase the efficiency of Runge-Kutta methods with a lower number of function evaluations
required.

2. Preliminaries
Consider the initial value problem
y'(t):{f (t,y@®), th<t<b
y(to) = Yo (2.1)
We assume that
1. f(t, y(t)) is defined and continuous in the strip with to <t < b, -0 <y < o0 with tg ang b are finite.
2. There exists a constant L such that for any t in [to, b] and any two numbers y and y

fty)-fly)<Uy-v]
These conditions are sufficient to prove that 3 on [to, b] a unique continuous differentiable solution
y(t) satisfying (2.1) which is continuous and differentiable.

The basis of all Runge-Kutta methods is to express the difference between the value of y at t,.; and t,
as

Yo = ¥Yn = Zwi ki (22)

i=0
where w; are constants, i=1,2,3,...m
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= hf(t,+ah, y, + ZC” J (2.3)

Equation (2.2) is to be exact for powers of h through h™, because it is to be coincident with Taylor

series of order m. Therefore, the truncation error Tp,, can be written as
— Ymhm+1 + O(hm+2)

The true magnitude of vy, will generally be much less than the bound of theorem-2.1. Thus, if the
O(h™?) term is small compared with y,h™"*, as we expect to be so if h is small, then the bound on y,h™?,
will usually be a bound on the error as a whole.

The method proposed in [7] introduces new terms involving higher order derivatives of ‘f” in the
Runge-Kutta k; terms (i > 1) to obtain a higher order of accuracy without a corresponding increase in
evaluations of f, but with the addition of evaluations of ‘f* by Fifth order Runge-Kutta-Fehlberg method for
autonomous system proposed in [15]. Consider,

Y(th+1) = Y(tn) + Wiks + Woka + Waka + Waky + Wsks + Weks

where

ka = hf(ty, y(tn))

k, = hf(tn+C2h, y(tn)+3.21k1)

ks = hf(ty+csh, y(t,)+asiki+as:kz)

kqg = hf(tn+C4h, y(tn)+a41k1+a42k2+a43k3) (24)

Ks = hf(t,+csh,y(t,)+asiKi+as Ko +asskst+assKs)

ke = hf(t,+Csh,y(t,)+a61K1+a62KoTa63K3+864Ka+ 65Ks)

Utilizing the Taylor’s series expansion techniques, Runge-Kutta-Fehlberg method of order fifth is
given by,

16 6656 K 28561 9 1

A =Ynt K, + + ——k; +—Kk
Y =¥n® 135" T 12825 56430 ¢ 50 ° ' 55 ¢
ky = hi(ta, V(t))

h
ko = hf(ta+ ,y00+ k1)
=i Sy ko ko)
8 32 32
1032, 7200, 7296
ks = hf(t,+ t K, + 25
= il Yl 2197 " 2197 <2 T o1g7 ) (25)
439 3680 845

ks = hf(t,+h, t+—k -8k, + k, — k

5 (tath, y(tn) 6 1 2T e13 "3 T 1104 2)

3544 1859 11

ks = hf(t,+—, t-—— +2k, — k., + k, — =k

o = hfltut y(”) > " 2565 * 4108 ¢ 20"

where

a:toﬁtlﬁtzﬁ...StN:band
AL (2.6)

- N =+l — n .

Theorem—-2.1

Let f(t,y) belong to C*[a,b] and let it’s partial derivatives are bounded and assume there exists, P, Q
positive numbers such that

ai+j f Pi+j
fty) <P, &A1 < ot i + j <m, then in the Runge-Kutta method of order five,
oo~ 00 oy
"7 T 12960

Definition — 2.1
A fuzzy number u as a fuzzy subset of R ie) u : R = [0, 1] satisfying the following conditions.
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1). uisnormal,ie 3 XoeR > u(Xp) =1
il). uis a convex fuzzy set ie) u(tx + (1-t)y) > min{u(x), u(y)}, vt e [0,1]and X,y € R
iii).u is upper semi continuous on R

iv). {x € R,u(x)> 0} is compact
The set E is the family of fuzzy numbers and arbitrary fuzzy number is represented by an ordered
pair of functions (g(r), u(r)), 0 < r < 1 that satisfies the following requirements

1. g(r) is a bounded left continuous non-decreasing function over [0, 1] w.r.to any ‘r’.

2. u(r) is a bounded right continuous non-increasing function over [0, 1] w.r.to any ‘r’.
3. u(r) < u(r), 0<r <1, r-level cut is [u], = {x/u(x) > r}, 0 <r < 1isa closed & bounded interval

denoted by [u], = [l_J(r), G(r)] and [u]o = {X/u(x) > 0} is compact.
Definition — 2.2

A triangular fuzzy number u is a fuzzy set in E that is characterised by an ordered triple (uj, uc,
u)eR® with u; <uc <u, such that [u]o = [us : u] and [u]; = [uc]. The membership function of the triangular
fuzzy number u is given by
X—U,

y U SX=Sug
u. —u,

u(x)=41 X =U,
u, — X
u —u,
and we will have
u>0ifu>0; u=0ifu=>0; u<O0ifu<O0; u<O0ifu<o0
Let | be a real interval. A mappingy : | - E is called a fuzzy process and its o. - level set is denoted

oy [y(0, =yt ) viey)

The Seikkala derivative y(t) of a fuzzy process is defined by [yl(t)]a = [yl(t’ Y), yl(t, Y)J tel,0<ac<

I provided the equation defines fuzzy number as in [11].
Foru,v e Eand A e R, the addition u + v and the product Au can be defined by
[u+V]a = [u]a + [V]a
[Aule = Mul.
where a € [0, 1] and [u], + [v]. means the addition of two intervals of R and [u], means the product
between a scalar and a subset of R. Arithmetic operation of arbitrary fuzzy numbers

us= (g(r), G(r)) and v = (\_/(r), v(r)) and A € R can be defined as

u.<x<u

c r

tel,0<a<l.

i). u=vifu(r)=v(r) and G([)z\_/(r)
ii). u+v= (l_,l(l’)+\:/(r), li(l’)+\1(r))
). u-v = (g(_r)_u(r),u(r)_v(r))

V). u.v= max{( i

V). AU = (ﬂg_(r),/i
= (Au(r), Au(r)) it 2 <0

3. A Fuzzy Cauchy Problem
Consider the fuzzy initial value problem

y'(t) ={f (t,y@),0<t<T
y(0) = Yo (3.1)
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where f is a continuous mapping from R x R 2 R and y, € E with r-level sets [Yolr =

y(©:r),y(©O;r)), re 0,1
The extension principle of Zadeh leads to the following definition of f(t, y) when y = y(t) is a
fuzzy number.

f(t,y)(s)=sup{y(v)\s=f(t, 1)}, s € R
It follows that B
[F6y)] =[f @ y:r) T y:r)) v e o, 13

where

f(ty;r)= min{f (t,u)\ue [X(r), y(r)J}

F(t,yir)=max{f (tu)\ue|y(r).y(r)]

Theorem:

Let f satisfy ‘f(t,v)— f(t,\_/) < g(t,‘v—\_/
mapping such that r - g(t, r) is non-decreasing. An initial value problem

u (t) = g(t, u(t), u(0) = uo, (3.3)

has a solution on R. for up > 0 and that u(t) = 0 is the only solution of (3.3) for up = 0. Then the
fuzzy initial value problem (3.1) has a unique fuzzy solution.

u'(t) = g(t, u(t)), u(0) = o
4. Fifth Order fuzzy Runge-Kutta-Fehlberg Method

Let the exact solution of the given differential equation [Y(t)], = [X(t; ), Y(t; r)] is approximated by

some [y(t)]r = [X(t‘ ), y(t; r)] . From (2.2) and (2.3) we define

(3.2)

), t>0andv, v e R, where g : R+ Xx Ry =2 R, is a continuous

y(t,.,:r)-y(t, :r)= ZBZWi k.

i=1

RN

_ _ 6 _
y(tn+l : r)_ y(tn : r): Zwi ki
i=1
where w;’s are constants and

[k, (&, y(t. )], =k (& vt 1))k (& vt 1) where i =1, 2, 3, 4, 5and 6

k(¢ y(t:r)=nhf(t,, y(t, :r))

Kt y(t:r)=hf(t,, y(t, )
k_z(t,y(t:r)):hf(tn+2,z(tn r)+%k_j
oyt =pe[+ .36, 1)+ S

ko(t, it r))=hf(tn+%,z(tn r)+%(ﬁ+3k2)j
eyt =1+ 25,000 2 e+ 30

12h 1932 7200 7296
=y, )+ k, — k, + k,
13 = 2197 — 2197 — 2197 —
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2197 2197 2 " 2197 @
439, 3680, _ 845 j

k, (t, y(t:r))=hf (tn +@,9(tn )+ 1932~ 7200, 7296 k_j

+—Kk, -8k, +—k;, ——
216+ -2 513 > 4104-%

1) B9 g, 3080 845 Ej
216 513 ° 4104

h 8 3544 1859 11
Ko(t,y(t:r))=hf|t +=, y(t, :r)——k, +2k, ———k, +—— k, - ==k
ks(ty(t:r) (”+2 yt:r) 27 e T g5 S a0 < 40—5j
— h - 8 — — 3544— 1859 — 11
Kk r)=hflt +—, yt r)——k, +2k, — ok, +— k, -k ... (42
ot y(t:r)) (tn+27y(tn r) 77 114K, 2565 3+4104 4 40_5j (4.2)

16k, (t, y(t:r)) 6656k, (t, y(t:r)) 28561k_4(t,y(t:r))_9k_5(t,y(t:r)) 2k, (t, y(t:T))

F(t,ylt:r))=
( y( r)) 135 i 12825 i 56430 50 i 55
_ _ _ _ ...(4.3
Gt y(t:r)= 16k, (t, y(t:r)) N 6656k, (t, y(t:r)) . 28561K,(t, y(t:r)) 9ks(t, y(t:r)) N ZR(;(t, g/(t 1))
" The exact aAd2pproximate d@BRRn at t,, 0 < n E643&e denoted by50 55

IY ()] = [Y(t57), ¥ (6] and [y(t)]e = [y(ta ;7), 3(t; )| respectively. The solution
calculated by grid points at (2.6). By (4.1) and (4.3) we have
Ylty. :1)=ylt, ;1) + Flt, yt, :r)]

y(tn+1 . r)zy(tn . r)+G|:tn’§/(tn . r)] . (4.4)
The following lemmas will be applied to show the convergence of these approximates
limy(t:r)=Y(t:r) and Llrrgy(t r)=Y(t:r)
Lemma-1:
Let the sequence of numbers W}, satisfy W,,,| < AW,| + B, 0 <n <N - 1 for some given

positive constants A and B. Then W, | < A" W,|+B AA _11, 0<n<N.

Lemma-2:
Let the sequences of numbers W}, and {V |\, satisfy the condition

[\Nn+1| < [\Nn| + A max {[\Nn|,|\/n|}+ B and
[Vn+1| < [Vn| + A max {[\Nn|’[\/n|}+ B

for some given positive constants A and B and denote U, = |W,| + [V,|, 0 <n <N.
Then,
—n —n A" -1 - =
U.| < A'lU|+B ﬂ,OSnsN,where A=1+2Aand B=2B
Theorem-4.1
Let F(t, u, v) and G(t, u, v) belongs to C*(K) and let the partial derivatives of F and G be bounded

over K. Then, for arbitrary fixed r, 0 <r < 1, the approximately solutions )_/(tn ; r), Y/(tn ; r) are converges to

the exact solutions of Y (t,;r) and Y (t_;r) uniformly in t.[9]

5. Numerical Example
Consider the fuzzy initial value problem,
y'()=y).te01]
with  y(0) =(0.85 + 0.15r, 1.1 — 0.10r) where 0 <r<1
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Solution:
The exact solution is given by

Y(t;r)=y(0;r)e' and Y(t:r)=y(0;r)e'
whichisatt=1,
y(1; r)=[(0.85+0.15r) e, (1.1-0.10r) €], 0 < r < 1.

The exact and approximate solutions obtained by the fuzzy Runge-Kutta-Fehlberg fifth order method
and fuzzy Runge-Kutta forth order method with h=0.1 are compared and plotted at t = 1 in Figure-5.1
Table-5.1

Exact Solution Fifth order RKF method Fourth order RK method

Lower

Upper

Lower

Upper

Lower

Upper

0.0

2.3105395542

2.9901100113

2.3105392456

2.9901101589

2.3126564026

2.9928538799

0.1

2.3513137816

2.9629271930

2.3513138294

2.9629275799

2.3534719944

2.9656441212

0.2

2.3920880090

2.9357443747

2.3920881748

2.9357445240

2.3942780495

2.9384415150

0.3

2.4328622365

2.9085615565

2.4328622818

2.9085612297

2.4350955486

2.9112331867

0.4

2.4736364639

2.8813787382

2.4736363888

2.8813791275

2.4759082794

2.8840217590

05

2.5144106913

2.8541959199

2.5144107342

2.8541955948

2.5167136192

2.8568160534

0.6

2.5551849188

2.8270131016

2.5551846027

2.8270127773

2.5575318336

2.8296048641

0.7

2.5959591462

2.7998302833

2.5959587097

2.7998304367

2.5983390808

2.8024001122

0.8

2.6367333736

2.7726474650

2.6367337704

2.7726473808

2.6391501427

2.7751901150

0.9

2.6775076010

2.7454646467

2.6775078773

2.7454645634

2.6799674034

2.7479805946

1.0

2.7182818285

2.7182818285

2.7182817459

2.7182817459

2.7207753658

2.7207753658

The error between the approximate solution by the method of fuzzy Runge-Kutta fourth order and
the exact solution is computed. Also the error between the approximate solution by fuzzy Runge-Kutta-
Fehlberg method and the exact solution of the problem are listed below.

Table -5.2

Exact and Proposed Method | Exact and RK of order Four

Lower

Upper

Lower

Upper

0.0

0.0000003086

0.0000001476

0.0021168484

0.0027438686

0.1

0.0000000478

0.0000003869

0.0021582128

0.0027169282

0.2

0.0000001658

0.0000001493

0.0021900405

0.0026971403

0.3

0.0000000453

0.0000003268

0.0022333121

0.0026716302

0.4

0.0000000751

0.0000003893

0.0022718155

0.0026430208

0.5

0.0000000429

0.0000003251

0.0023029279

0.0026201335
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0.6 | 0.0000003161 | 0.0000003243 | 0.0023469148 | 0.0025917625
0.7 | 0.0000004365 | 0.0000001534 | 0.0023799346 | 0.0025698289
0.8 | 0.0000003968 | 0.0000000842 | 0.0024167691 | 0.0025426500
0.9 | 0.0000002763 | 0.0000000833 | 0.0024598024 | 0.0025159479
1.0 | 0.0000000826 | 0.0000000826 | 0.0024935373 | 0.0024935373
Figure - 5.1
1 C r 0 T R L .
0.9 //@'/” \‘;;‘: |
0.8~ ’/(;7;'/'/ ‘t;: 4
0.7} '/@)' 2 \‘;“‘. i
0.6/~ //,@"l/ \‘.-‘\.\ i
0.5} , ,6' \:}:\ i
04l e ¥ |
031 O \2‘\. 1
7 N
0.1 ,@' ' \i{» .
% 2 2%{{ 2.r4 2.r5 2.r6 2.r7 2.r8 2.r9 \‘:'3
Green - Fuzzy Fifth order Runge-Kutta-Felhberg Method
Yellow - Fuzzy Fourth order Runge-Kutta Method
Red - Exact Solution

6. Conclusion

In this work, we have proposed fifth order fuzzy Runge-Kutta-Fehlberg method to find the numerical
solutions of fuzzy differential equations. Taking into account that the convergence order of the Euler
method is O(h), a higher order of convergence is obtained for the proposed method as O(h®). Comparison of
the solutions of example shows that the proposed method gives a better solution than the fuzzy Runge-Kutta
fourth order method.
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