Few Applications of (**r*****g***)* **Closed Sets in Topological Spaces**

N.Meenakumari¹ and T.Indira²

^{1,2}PG and Research Department of Mathematics, Seethalakshmi Ramaswamy College (Autonomous),

Trichirapalli-620002

¹email:meenamega25@gmail.com; ²email:drtindirachandru@gmail.com

ABSTRACT: In this paper we introduce new types of spaces , $(r^*g^*)^*$ closure and $(r^*g^*)^*$ interior and study some

of its properties.

Key words : $(r^*g^*)^*$ closed set $(r^*g^*)^*$ open set. $(r^*g^*)^*$ closure and $(r^*g^*)^*$ interior.

Mathematics Subject Classification : 54A05

1.INTRODUCTION

N Levine [7] introduced the class of g closed sets. Many authors introduced several generalized closed sets. The Authors [10] have already introduced $(r^*g^*)^*$ closed sets and investigated some of their properties. Applying these sets, some New Spaces Like $(r^*g^*)^*T_{1/2}$, $(r^*g^*)^*T_c$ and $(r^*g^*)^*T_{1/2}^{\#}$ spaces are introduced and some of their properties are investigated. Also $(r^*g^*)^*$ closure and $(r^*g^*)^*$ interior and their basic properties are investigated.

2. PRELIMINARIES:

2.1: A subset A of a space X is called

- (1) a preopen set if A \subseteq int (cl(A)) and a pre-closed set if cl(int(A)) \subseteq A.
- (2) a semi-open set if $A \subseteq cl(int(A))$ and a semi-closed set if $(int(cl(A) \subseteq A))$.
- (3) A semi-preopen set (β open) if $A \subseteq cl(int(cl(A)))$ and a semi- preclosed set (β closed) if int (cl(int(A))) \subseteq A.

Definition:2.2: A subset A of a space X is called

- 1. A generalized closed (g closed) [7] set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- 2. A semi generalized closed (briefly sg closed) [5] if $scl(A) \subseteq U$ whenever (A) $\subseteq U$ and U is semiopen in X.
- 3. A generalized semi closed (briefly gs closed) [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 4. A g* closed [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open.
- 5. A g# closed [12] if cl(A) \subseteq U whenever A \subseteq U and U is α g open.
- 6. A r*g*closed set [9] if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g- open.

Definition 2.3: A Topologiccal space (x, τ) is said to be

- 1. A $T_{1/2}$ space [11] if every g closed set in it is closed.
- 2. A semi $T_{1/2}$ [5] if every sg closed set in it is semi closed.
- 3. A semi pre $T_{1/2}[1]$ pace if every gsp closed set in it is semi pre closed.

- **4.** A $T_{1/2}^*$ space[11] if every g* closed set in it is closed.
- 5. A * $T_{1/2}$ space[11] if every g closed set in it is g* closed.
- 6. T_b space [2] if every gs closed set in it is closed.
- 7. T_c [11] space if every gs closed set in it is g* closed.
- 8. $T_{1/2}$ # [12] space if every #g closed set in it is closed.
- **9.** ${}^{\#}T_{1/2}$ [13] space if every g closed set in it is ${}^{\#}g$ closed.

Definition 2.4: A Space (X,τ) is called $(r^*g^*)^*T_{1/2}$ space if every $(r^*g^*)^*$ closed set in it is closed.

Example 2.5: Let $X = \{a,b,c\}$ $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$

Here $(r^*g^*)^* C (X, \tau) = C (X, \tau)$

Hence (X, τ) is a $(r^*g^*)^* \; T_{1/2}$ space.

Example 2.6 :Let $X = \{a,b,c\} \quad \tau_1 = \{\phi, X, \{a\}, \{a,c\}\}$

Here $\{a\}$ is $\{r^*g^*\}^*$ closed set but not closed.

Hence (X, τ_1) is not a $(r^*g^*)^* T_{1/2}$ space.

Theorem 2.7: If (X, τ) is a $(r^*g^*)^* T_{1/2}$ space then every singleton set of X is either r^*g^* closed or open.

Proof: Let $x \in X$ and suppose that $\{x\}$ is not a r^*g^* closed set of (X, τ) . Then $X - \{x\}$ is not a r^*g^* open set of (X, τ) . Therefore

X is the only r^*g^* open set of (X, τ) containing $X - \{x\}$ and hence $X - \{x\}$ is $(r^*g^*)^*$ closed set of (X, τ) . Since (X, τ) is a $(r^*g^*)^*$ T_{1/2} Space every $(r^*g^*)^*$ closed set is closed. Hence $X - \{x\}$ is closed hence $\{x\}$ is open.

Theorem 2.8: Every $(r^*g^*)^* T_{1/2}$ Space is $T_{1/2}^*$.

Let X be $(r^*g^*)^* T_{1/2}$. Let A $\in (X, \tau)$ be g*closed. By 3.5 [10] every g* closed set is $(r^*g^*)^*$ closed. But in (X, τ) , Every $(r^*g^*)^*$ closed set is closed. Which implies A is closed. Hence (X, τ) is $T_{1/2}^*$.

The Converse need not be true. Every $T_{1/2}$ * space need not be $(r*g*)*T_{1/2}$.

Example 2.9: Let $X = \{a,b,c\}$ and $\tau = \{\phi,X,\{a\}\}$

Closed sets are φ , X, {b,c}. (r*g*)*closed sets are φ , X, {b}, {c}, {b, c}, {a,c}, {a,b}

g*closed sets are φ ,X,{b,c}. Here every g*closed set closed. Therefore (X, τ) is a T1/2* space. But {a,c} is (r*g*)*closed but not closed. Therefore (X, τ) is not a (r*g*)*T1/2 space.

Theorem 2.10 : If (X, τ) is both * $T_{1/2}$ and $(r^*g^*)^* T_{1/2}$ then (X, τ) is a $T_{1/2}$ space.

Proof: Let A be a g closed set. Since (X, τ) is $*T_{1/2}$, A is a g* closed set. But by 3.5[10]

A is a (r*g*)* closed set. Since in a (r*g*)* $T_{1/2}$ Space Every (r*g*)* closed set is closed, hence A is closed. Hence (X, τ) is a $T_{1/2}$ space.

Now we show that $(r^*g^*)^*T_{1/2}$ ness is independent of semi $T_{1/2}$ ness.

Result 2.11 : $(r^*g^*)T_{1/2}$ ness is independent of semi $T_{1/2}$ ness as it can be seen from the next examples.

Example 2.12: $X = \{a,b,c\}\tau = \{\phi,X,\{a,b\},\{b\}\}$ closed sets are $\{\phi,X,\{c\},\{a,c\}\}$

Semi open sets are φ , X, {b}, {a,b}, {b,c}. Semi closed φ , X, {a,c}, {c}, {c}, {a}

 $(r^{*}g^{*})^{*}$ closed sets $\varphi, X, \{c\}, \{b, c\}, \{a, c\}$ Sg closed sets $\{\phi, X, \{a\}, \{c\}, \{a, c\}\}$

Here (X, τ) is not a (r^*g^*) $T_{1/2}$ space. But Every sg closed set is semi closed. Hence (X, τ) is semi $T_{1/2}$ space.

Example 2.13 : $X = \{a,b,c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{b,c\}\}$

Closed sets are { φ ,X, {a},{c},{a,c},{b,c}. Semi closed sets are φ , X,{a},{b},{b,c}

Sg closed sets are ϕ , X,{a},{b},{c},{a,b},{b,c}. (r*g*)* closed sets are ϕ , X,{a},{c},{a,c},{b,c}. Here(X, τ) is (r*g*)T_{1/2} but not semiT_{1/2}.

Hence $(r^*g^*)^*T_{1/2}$ ness is independent of semi $T_{1/2}$ ness.

Definition 2.14 : A space is called $(r^*g^*)^* T_c$ space if every $(r^*g^*)^*$ closed set in it is g^* closed.

Example: $X = \{a,b,c\}$ $\tau = \{\phi,X,\{a,b\},\{b\}\}$

Here $(r^*g^*)^* C (X, \tau) = g^* C(X, \tau)$

(X , τ) is (r*g*)* T_c space.

Theorem 2.15 : Every $(r^*g^*)^* T_{1/2}$ space is $(r^*g^*)^*T_c$ space.

Proof: Let X be $(r^*g^*)^* T_{1/2}$ space. Let A be a $(r^*g^*)^*$ closed set then it is closed.

But every closed set is g^* closed. Hence X is $(r^*g^*)^*T_c$ space.

Theorem 2.16: If X is both $T_{1/2}$ and $(r^*g^*)^*$ Tc then (X, τ) ia $^*T_{1/2}$

Proof: Let (X, τ) be both $T_{1/2}$ and $(r^*g^*)^*$ Tc. Let $A \subset (X, \tau)$ be g closed. Since X is $T_{1/2}$ A is closed, A is $(r^*g^*)^*$ closed. Since

X is also $(r^*g^*)^*$ Tc, A is g^* closed => (X, τ) is $^*T_{1/2}$.

Theorem2.17 : If (X, τ) is $(r^*g^*)^* T_{1/2}$ and Tc then the Space then (X, τ) is $(r^*g^*)^* T_c$

Let A be $(r^*g^*)^*$ closed in X. Then A is closed. But every closed set is gs closed and since the space is $T_c A$ is g^* closed. Hence X is

 $(r^*g^*)^* T_c$

Theorem 2.18: If X is $(r^*g^*)^* T_c$ and T_b then X is $(r^*g^*)^*T_{1/2}$.

Let A be $(r^*g^*)^*$ closed. Then A is g^* closed But every g^* closed set is gs closed

Since X is T_{b} , A is closed. Hence X is $(r^*g^*)^*T_{1/2}$.

Definition 2.19: A space (X, τ) is called $(r^*g^*)^* T_{1/2}^{\dagger \dagger}$ space if every $(r^*g^*)^*$ closed set in it is g^{\sharp} closed.

Theorem 2.20: If X is $T_{1/2}^{\#}$ and $(r^*g^*)^* T_{1/2}^{\#}$ Then X is $(r^*g^*)^* T_{1/2}$.

Proof: Let A be $(r^*g^*)^*$ closed. Since X is $(r^*g^*)^* T_{1/2}^{\#}$. A is $g^{\#}$ closed. But every $g^{\#}$ closed set is ${}^{\#}g$ closed. Since X is $T_{1/2}^{\#}$ A is closed. Hence X is $(r^*g^*)^* T_{1/2}$

3. (R*G*)* CLOSURE AND (R*G*)* INTERIOR.

Definition 3.1: Let X be a Topological space. Let A be a subset of X. $(r^*g^*)^*$ closure of A is defined as the intersection of all $(r^*g^*)^*$ closed sets containing A. That is

 $(r^*g^*)^*$ cl (A) = $\cap \{ F / F \text{ is } (r^*g^*)^* \text{ closed } A \subseteq F \}$

Theorem:3.2

If A and B are subsets of X, then

- 1) (i) $(r^*g^*)^* cl(X) = X$, (ii) $(r^*g^*)^* cl(\phi) = \phi$
- **2**) A \subset (r*g*)* cl (A)
- 3) If B is any $(r^*g^*)^*$ closed set containing A then $(r^*g^*)^*$ cl $(A) \subset B$
- 4) If A \subset B then $(r^*g^*)^*$ cl (A) $\subset (r^*g^*)^*$ cl (B)
- 5) $(r^*g^*)^* \operatorname{cl} ((r^*g^*)^*) \operatorname{cl} (A)) = (r^*g^*)^* \operatorname{cl} (A)$

Proof:

- 1) (i) X is the only $(r^*g^*)^*$ closed set containing $X \Rightarrow (r^*g^*)^*$ cl (X) = X. (ii) $(r^*g^*)^*$ cl (ϕ) = intersection of all $(r^*g^*)^*$ sets containing $\phi = \phi \cap (r^*g^*)^*$ closed sets containing $\phi = \phi$
- 2) Follows from the definition of $(r^*g^*)^*$ closure of A.
- Let B be any (r*g*)* closed set containing A. Since (r*g*)* cl (A) is the intersection of all (r*g*)* closed sets containing A
 - $(r^*g^*)^*$ cl (A) is contained in every $(r^*g^*)^*$ closed set containing A. Hence $(r^*g^*)^*$ cl (A) \subset B
- 4) Let $A \subset B$. Now $(r^*g^*)^* cl(B) = \bigcap \{F: F is(r^*g^*)^* closed and B \subset F\}$. If $B \subset F$ then by (3) $(r^*g^*)^* cl(B) \subset F$, Where F is $(r^*g^*)^* closed$. But $A \subset B \subset F \Rightarrow (r^*g^*)^* cl(A) \subset F$. Now $(r^*g^*)^* cl(A) \subset \bigcap \{F: F is(r^*g^*)^* closed B \subset F\} = (r^*g^*)cl(B)$.

Hence $(r^*g^*)^* \operatorname{cl} (A) \subset (r^*g^*)^* \operatorname{cl} (B)$.

5) Let $A \subset X$ By definition, $(r^*g^*)^* \operatorname{cl} (A) = \cap \{F : F \text{ is } (r^*g^*)^* \operatorname{closed} \text{ and } A \subset F\}$

We know that $(r^*g^*)^* \operatorname{cl}(A) \subseteq F$ when $A \subset F$

Since F is $(r^*g^*)^*$ closed containing $(r^*g^*)^*$ cl (A), $(r^*g^*)^*$ cl $((r^*g^*)^*$ cl(A)) \subset F Hence $(r^*g^*)^*$ cl $((r^*g^*)^*$ cl (A)) \subset \cap {F:F is $(r^*g^*)^*$ closed A \subset F}= $(r^*g^*)^*$ cl (A).

Theorem 3.3: Let $A \subset X$. If A is $(r^*g^*)^*$ closed then $(r^*g^*)^*$ cl (A) = A

Proof: Let A be $(r^*g^*)^*$ closed. Since A is $(r^*g^*)^*$ closed by (3), $(r^*g^*)^*$ cl (A) \subset A. But always A \subset $(r^*g^*)^*$ cl (A)

Hence $(r^*g^*)^* \operatorname{cl}(A) = A$

Theorem 3.4 : If A and B are subsets of X then

 $(r^{*}g^{*})^{*} cl(A \bigcup B) = (r^{*}g^{*})^{*}cl(A) \bigcup (r^{*}g^{*})^{*}cl(B)$

Proof: A \subset A \bigcup B and B \subset A \bigcup B == > (rs*g*)* cl (A) \subset (r*g*)* cl (A \bigcup B) and

 $(r^*g^*)^* \operatorname{cl}(B) \subset (r^*g^*)^* \operatorname{cl}(A \bigcup B)$

:. $((r^*g^*)^* cl (A) \bigcup (r^*g^*)^* cl (B)) \subset (r^*g^*)^* cl (A \bigcup B)$ ------(1)

Further $A \subset (r^*g^*)^* \operatorname{cl}(A), B \subset (r^*g^*)^* \operatorname{cl}(B)$

 $A \bigcup B \subset (r^*g^*)^* cl (A) \bigcup (r^*g^*)^* cl (B)$. The right hand side being a union of two $(r^*g^*)^* closed$ sets is $(r^*g^*)^* closed$ and contains $A \bigcup B$.

But $(r^*g^*)^*$ cl $(A \bigcup B)$ is the smallest $(r^*g^*)^*$ closed set containing $A \bigcup B$

 $(r^*g^*)^* cl (A \bigcup B) \subset (r^*g^*)^* cl (A) \bigcup (r^*g^*)^* cl (B)$ ------(2)

From (1) & (2)

 $(r^*g^*)^* cl (A \bigcup B) = (r^*g^*)^* cl (A) \bigcup (r^*g^*)^* cl (B)$

Theorem 3.5:

If A and B are subsets of X then $(r^*g^*)^* cl (A \cap B) \subset (r^*g^*)^* cl (A) \cap (r^*g^*)^* cl (B)$

Proof: A \cap B \subset A, A \cap B \subset B

 $(r^*g^*)^* \operatorname{cl} (A \cap B) \ \subset (r^*g^*)^* \operatorname{cl} (A)$

 $(r^*g^*)^* \operatorname{cl} (A \cap B) \ \subset \ (r^*g^*)^* \operatorname{cl} (B)$

 $\Rightarrow \quad (r^*g^*)^* \operatorname{cl} (A \cap B) \ \subset (r^*g^*)^* \operatorname{cl} (A) \cap \ (r^*g^*)^* \operatorname{cl} (B)$

Theorem 3.6: Let $x \in X$. $x \in (r^*g^*)^* cl (A)$ iff every $(r^*g^*)^*$ open set containing intersects A.

Proof: Let $x \in (r^*g^*)^*$ cl (A). Let V be a $(r^*g^*)^*$ open set containing x.

 $TPT \ V \cap A \neq \phi$

If $V \cap A = \phi$ then $A \subset X - V$

Since V is $(r^*g^*)^*$ open X – V $(r^*g^*)^*$ closed. Since x $\in (r^*g^*)^*$ cl (A)

 $x \in X$ - $V ==> x \notin V$ which is a contradiction.

Conversely suppose V $\cap A \neq \phi$

TST x \in (r*g*)* cl (A). If not there exists a (r*g*)* closed set F containing A such that

 $x \notin F$. Now X - F is $(r^*g^*)^*$ open and $(X - F) \cap A = \phi$ Which is a contradiction. Therefore $x \in (r^*g^*)^*$ cl (A).

Theorem 3.7: If $A \subset X$ then $(r^*g^*)^* \operatorname{cl}(A) \subset \operatorname{cl}(A)$.

Proof: cl (A) = \cap { F / F is closed A \subset F}

But every closed set is $(r^*g^*)^*$ closed . \therefore F is $(r^*g^*)^*$ closed => $(r^*g^*)^*$ cl (A) \subset F

 $:: (r^*g^*)^* \operatorname{cl} (A) \subset \cap \{ F / F \text{ is closed } A \subset F \} = \operatorname{cl} (A).$

 $(r^*g^*)^* \operatorname{cl}(A) \subset \operatorname{cl}(A).$

Definition 3.8: Let X be a Topological space. Let A be a subset of X. $(r^*g^*)^*$ interior of A is defined as the union of all $(r^*g^*)^*$ open sets contained in A.

Theorem 3.9: Let A and B be subsets of X.

Then 1) $(r^*g^*)^*$ int $(\phi) = \phi$, $(r^*g^*)^*$ int(X) = X

2) If B is any $(r^*g^*)^*$ open set contained in A then B \subset $(r^*g^*)^*$ int (A)

3) If A \subset B then $(r^*g^*)^*$ int (A) $\subset (r^*g^*)^*$ int (B)

4) $(r^*g^*)^*$ int $((r^*g^*)^*$ int(A)) = $(r^*g^*)^*$ int (A)

Theorem 3.11: If a subset A of X is $(r^*g^*)^*$ open then $(r^*g^*)^*$ int (A) = A

Theorem 3.12: If A and B are subsets of X then

 $(r^*g^*)^*$ int (A) \bigcup $(r^*g^*)^*$ int (B) \subset $(r^*g^*)^*$ int (A \bigcup B)

Theorem 3.11 If A & B are subsets of X

Then $(r^*g^*)^*$ int $(A \cap B) \subset (r^*g^*)^*$ int $(A) \cap (r^*g^*)^*$ int (B)

REFERENCES

[1] D.Andrijevic, Semi-pre open sets, Mat. Vesnik, 38(1)1986, 24-32.

[2]S.P.Arya and T Nour, Characterization of S-normal spaces, Indian J.Pure. Appl. Math, 21(8)(1990), 717-719.

[3] K.Balachandran ,P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem.Fac.Kochi univ.ser.A.Maths.,12(1991)5-13.

[4].P.Bhatacharya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J.Math, 29(3)(1987),375-382.

[5]. R.Devi, H.Maki and K.Balachandran, semi generalized closed maps and generalized closed maps , Mem.Fac.Sci.kochi univ.ser.a, math.,14(1993),41-54.

[6] J.Dontchev.On Genralizing semi pre open sets, Mem.Fac.Sci.Kochiser.a.Math., 16(1995), 35-48

[7].N.Levine, Generalized closed sets in topology, Rend.Circ.Math.Palermo, 19(2)(1970), 89-96.

[8]H.Maki,J.Umehara and T.Noiri, Every topological space is pre-T_{1/2} Mem.Fac.Sci.kochi univ.ser.a, math.,17(1996),33-42

[9] N.Meenakumari and T.Indira, r*g* closed sets in topological spaces, Annals of Pure and Applied Mathematics vol.6, No. 2,2014,

125-132.

[10] N.Meenakumari and T.Indira , On(r*g*)* closed sets in topological spaces , International Journal of Science and Research
(IJSR) ISSN (Online): 2319-7064, Volume 4 Issue 12, December 2015

[11].M.K.R.S.Veerakumar, Between closed sets and g closed sets, Mem.Fac.Sci.Koch Univ.Ser.A. Math., 21 (2000) 1-19.

[12]. M.K.R.S.Veerakumar, g[#]-closed sets in topological spaces, Mem.Fac.Sci.Kochi Univ Ser.A., Math., 24(2003), 1-13.

[13]M.K.R.S.Veerakumar, #g-closed sets in topological spaces, Antartica j.Math., 2(2)(2005) 239-258.