Complementary Degree Equitable Dominating Sets in Graphs

¹L. Muthusubramanian, ²S.P. Subbiah and ³V. Swaminathan

¹Department of Mathematics, Sethu Institute of Technology, Kariapatti, Tamilnadu, India. e-mail: lmssethu@gmail.com

²Department of Mathematics, Mannar Thirumalai Naicker College, Madurai, Tamilnadu, India. e-mail: jasminemtnc@gmail.com

³Ramanujan Research Centre in Mathematics, Saraswathi Narayanan College, Madurai, Tamilnadu, India. e-mail: swaminathan.sulanesri@gmail.com

Abstract

Let G= (V,E) be a simple graph. A subset D of V(G) is said to be a dominating set of G if for every vertex $v \in V$ -D there exists a vertex $u \in D$ such that u and v are adjacent in G. A subset D of V(G) is called a complementary degree equitable dominating set (cdged-set) of G if D is a dominating set of G and V-D is a degree equitable set in G. The minimum cardinality of a minimal cdged-set of G is called the complementary degree equitable domination number of G and is denoted by γ^{cdged} (G). The maximum cardinality of a minimal cdged-set of G is called the upper complementary degree equitable domination number of G and is denoted by Γ^{cdged} (G). The maximum cardinality of a minimal cdged-set of G is called the upper complementary degree equitable domination number of G and is denoted by Γ^{cdged} (G). Complementary degree equitable domination is super hereditary. Therefore, complementary degree equitable domination is minimal if and only if it is 1-minimal. Interesting results are proved with respect to the new parameters.

Classification: 05C69

Keywords: Dominating sets, Complementary Degree Equitable Dominating Sets.

Introduction 1.0 Let $u, v \in V(G)$. u and v are said to be degree equitable if $|deg(u)-deg(v)| \le 1$. A subset S of V(G) is said to be degree equitable if any two vertices of S are degree equitable. Such sets are studied in detail by Arumugam et al [1,2]. Instead of requiring that the set is degree equitable, equitability in degree is imposed in the complement of a set. Complementary degree equitable dominating sets and complementary equitable independent sets are studied.

Definition 1.1 Let G=(V,E) be a simple graph. A subset D of V(G) is called a complementary degree equitable dominating set (cdged-set) of G if D is a dominating set of G and V-D is a degree equitable set in G.

V is always a complementary degree equitable dominating set of G and hence the existence of a complementary degree equitable dominating set is guaranteed in any graph.

Definition 1.2 The minimum cardinality of a minimal cdged-set of G is called the complementary degree equitable domination number of G and is denoted by γ^{cdged} (G). The maximum cardinality of a minimal cdged-set of G is called the upper complementary degree equitable domination number of G and is denoted by Γ^{cdged} (G).

Complementary degree equitable domination is super hereditary. Therefore, complementary degree equitable dominating set is minimal if and only if it is 1-minimal.

Remark 1.3

Let G be a simple graph. Then $\gamma(G) \leq \gamma^{cdged}(G)$.

$\gamma^{\text{cdged}}(G)$ for standard graphs

1.
$$\gamma^{cdged}(K_n) = 1$$

2. $\gamma^{cdged}(K_{1,n}) = 1$
3. $\gamma^{cdged}(K_{m,n}) = \begin{cases} 2, if |m-n| \le 1 \\ m+1, if |m-n| \ge 2 \text{ and } m \le n \end{cases}$
4. $\gamma^{cdged}(D_{r,s}) = 2$
5. $\gamma^{cdged}(P_n) = \gamma(P_n) = \left\lceil \frac{n}{3} \right\rceil$
6. $\gamma^{cdged}(C_n) = \gamma(C_n) = \left\lceil \frac{n}{3} \right\rceil, n \ge 3$
7. $\gamma^{cdged}(W_n) = 1$
8. $\gamma^{cdged}(P) = \gamma(P) = 3$ where P is the Petersen graph.

Proposition 1.4 Let G be a simple graph. Then $\gamma^{\text{cdged}}(G) = n$ if and only if $G = \overline{K_n}$.

Observation 1.5

 $\gamma^{cdged}(K_n+K_{1,m})=\min\{n+1,m\}.$

Observation 1.6

$$\gamma^{cdged}(K_n + P_m) = \begin{cases} 1, if \ m = 1, 2, 3\\ 2, if \ m = 4\\ \min\{m, n\}, if \ m \ge 5 \end{cases}$$

Observation 1.7

$$\gamma^{cdged}(K_n + C_m) = \begin{cases} 1, if \ m = 3,4\\ \min\{m, n\}, if \ m \ge 5 \end{cases}$$

Observation 1.8

 $\gamma^{cdged}(K_n+W_m) = \begin{cases} 1, if \ m \leq 5\\ m-1, if \ m \geq 6 \end{cases}$

Definition 1.9 A vertex u is a complementary equitable full degree vertex if u is a full degree vertex and V(G)-{u} is degree equitable.

Remark 1.10 $\gamma^{\text{cdged}}(G)=1$ if and only if G has a complementary equitable full degree vertex.

Theorem 1.11 A cdged-set D is minimal if and only if for any vertex $u \in D$ one of the following holds:

- (i) u is an isolate of D
- (ii) u has a private neighbour in V-D with respect to D
- (iii) there exists a vertex $v \in V$ -D such that $|deg(u)-deg(v)| \ge 2$

Proof: Routine.

Observation 1.12 Suppose G has an independent cdged-set. The minimum cardinality of a maximal independent cdged-set is defined as the independent cdged-number of G and is denoted by $i^{cdged}(G)$.

Remark 1.13 Let G be a simple graph. Then $\gamma^{cdged}(G) \leq i^{cdged}(G) \leq \beta_0(G)$.

Remark 1.14 There are graphs which admit independent cdged-sets.

For:

G has an independent cdged-set namely $\{u_3, u_4, u_5\}$.

Remark 1.15 There exist graphs in which no independent cdged-set exists.

Remark 1.16 A maximal independent set of a graph G is a minimal dominating set of G but need not be a cdged-set of G.

Remark 1.17 There are graphs in which the complement of a minimal cdged-set is not even a dominating set.

For:

 $D=\{u_2,u_4,u_6,v_1,v_2,\ldots,v_k,w_1,w_2,\ldots,w_k\}$ is a minimal cdged-set. $V-D=\{u_1,u_3,u_5\}$. V-D is not even a dominating set.

Definition 1.18 Let $u \in V(G)$. $N^{e}_{G}(u)$ stands for the set of all neighbours of u which form an equitable set in G.

 $deg^{e}_{G}(u) = |N^{e}_{G}(u)|. \ \delta^{e}(G) = min\{deg^{e}_{G}(u) : u \in V(G)\}. \ \Delta^{e}(G) = max\{deg^{e}_{G}(u) : u \in V(G)\}.$

Theorem 1.19 Let G be a simple graph. Then $\gamma^{\text{cdged}}(G) \leq n \cdot \Delta^{\text{e}}(G)$.

Proof: Let u be a vertex of G such that $\deg^{e}_{G}(u) = \Delta^{e}(G)$. Let $S=V-N^{e}_{G}(u)$. Therefore, S is a cdged-set of G. Therefore, $\gamma^{cdged}(G) \leq |S| \leq n-\Delta^{e}(G)$.

Theorem 1.20 Let G be a simple graph. Then $\frac{n}{1+\Delta^{e}(G)} \leq \gamma^{cdged}(G)$.

Proof: $\Delta^{e}(G)$ vertices can be equitably dominated by a vertex u of $\deg^{e}_{G}(u) = \Delta^{e}(G)$. Thus, $1 + \Delta^{e}(G)$ vertices are covered by u. Therefore, to cover n vertices we require at least $\frac{n}{1 + \Delta^{e}(G)}$ vertices. Therefore, $\frac{n}{1 + \Delta^{e}(G)} \leq \gamma^{cdged}(G)$.

Remark 1.21 $\frac{n}{1+\Delta^e(G)} \leq \gamma^{cdged}(G) \leq n - \Delta^e(G).$

Theorem 1.22 For any tree T, $\gamma^{cdged}(T)=n+1-\Delta^{e}(T)$ if and only if T is a wounded spider.

Proof: Let G be a wounded spider. Except for the centre of the spider, all other vertices are equitable. Therefore, $\gamma^{cdged}(T)=1+t$ where t is the number of vertices with degree two. $\Delta^{e}(T)=degree$ of the central vertex=n+1-1-t. Therefore, $\gamma^{cdged}(T)+\Delta^{e}(T)=1+t+n+1-1-t=n+1$. Conversely, Let $\gamma^{cdged}(T)+\Delta^{e}(T)=n+1$. Let v be a vertex of equitable degree Δ^{e} . If $T-N^{e}[v]=\phi$, then T is a star. Therefore, $N^{e}[v]=n+1$. Therefore, $N^{e}(v)=n$. Since T is a tree, the equitable neighbours of v are independent. Therefore, T is a star (K_{1,n}). Suppose $T-N^{e}[v]\neq\phi$.

 $n+1-|N^{e}[v]|=n+1-(\Delta^{e}(T)+1)$

$$=n+1-\Delta^{e}(T)-1$$
$$=\gamma^{cdged}(T)-1$$

Let D' be a minimum cdged-set of G. Then

$$\begin{aligned} |\mathbf{D}'| &\leq \mathbf{n} + 1 - |\mathbf{N}^{e}[\mathbf{v}]| + 1 \\ &= \gamma^{cdged}(\mathbf{T}) - 1 + 1 \\ &= \gamma^{cdged}(\mathbf{T}) \end{aligned}$$

Therefore, $|D'|=\gamma^{cdged}(T)$. Therefore, |D'| contains v and V-N^e[v]. Let $u \in D'$. Then u and v are connected. That is, there exists a path $u, u_1, u_2, ..., u_k$, v in T. If k=0, then u is adjacent with v. If k=1, then u is adjacent with u_1 and u_1 is adjacent with v. If k≥2, then $\gamma^{cdged}(T) < n+1-\Delta^e(T)$, a contradiction. Therefore, T is a wounded spider.

Theorem 1.23 Let G be a simple graph with $\gamma^{\text{cdged}}(G) \ge 2$. Then

 $m \leq \frac{1}{2} \left[\left(n - \gamma^{cdged}(G) \right) (n - \gamma^{cdged}(G) + 2) \right]$ where m is the size of G.

Proof: Let G be a simple graph with $\gamma^{\text{cdged}}(G) \ge 2$. The proof is by induction on the order n. If n=2, then G is K₂ or $\overline{K_2}$. m=1 or 0. $\gamma^{\text{cdged}}(G)=1$ or 2.

$$m \leq \frac{1}{2} \Big[\Big(n - \gamma^{cdged}(G) \Big) (n - \gamma^{cdged}(G) + 2) \Big]$$
$$= \frac{1}{2} [(2 - 1)(2 - 1 + 2)]$$
$$= \frac{3}{2}$$

which is true since K_2 has exactly one edge. If $G = \overline{K_2}$,

$$m \leq \frac{1}{2} \Big[\Big(n - \gamma^{cdged}(G) \Big) (n - \gamma^{cdged}(G) + 2) \Big]$$
$$= \frac{1}{2} [(2 - 2)(2 - 2 + 2)]$$
$$= 0$$

Therefore, m=0 which is true since $\overline{K_2}$ has no edge. Assume the result for all graphs with order less than n and $\gamma^{cdged}(G) \ge 3$. Let v be a vertex of degree $\Delta^e(G)$. $|N^e(v)| = \Delta^e(G) \le n - \gamma^{cdged}(G)$. That is, $|N^e(v)| = n - \gamma^{cdged}(G) - r$ where $0 \le r \le n - \gamma^{cdged}(G)$. Let $S = V - N^e[v]$. Therefore, $|S| = \gamma^{cdged}(G) + r - 1$. Then $S = N^e[v]$. Therefore, V-S is equitable. Let $u \in N^e(v)$. Let $T = (S - N^e(u)) \cup \{u, v\}$. Therefore, T is cdged-set.

$$\begin{split} \gamma^{cdged}(G) &\leq T \\ &= |S\text{-}N^{e}(u)|{+}2 \\ &\leq \gamma^{cdged}(G){+}r\text{-}1\text{-}|S{\cap}N^{e}(u)|{+}2 \end{split}$$

Therefore, $|S \cap N^e(u)| \le r+1$. This is true for every $u \in N^e(v)$. Therefore, number of edges between $N^e(v)$ and S denoted by m_1 is at most $\Delta^e(G)(r+1)$. That is, $m_1 \le \Delta^e(G)(r+1)$. If D is a γ^{cdged} -set of $\langle S \rangle$, then $D \cup \{v\}$ is a cdged-set of G. Therefore, $\gamma^{cdged}(G) \le |D|+1$. Therefore, $\gamma^{cdged}(\langle S \rangle) \ge \gamma^{cdged}(G)-1 \ge 2$. Therefore, by induction hypothesis the number of edges in $\langle S \rangle$ say m_2 is

$$\begin{split} m_2 &\leq \frac{1}{2} \Big[\Big(|S| - \gamma^{cdged} (\langle S \rangle) \Big) (|S| - \gamma^{cdged} (\langle S \rangle) + 2) \Big] \\ &\leq \frac{1}{2} [(\gamma^{cdged} (G) + r - 1 - (\gamma^{cdged} (G) - 1) (\gamma^{cdged} (G) + r - 1 - (\gamma^{cdged} (G) - 1) + 2))] \\ &= \frac{1}{2} [r(r+2)] \end{split}$$

Let $m_3 = |E(N^e[v])|$. Therefore, number of edges in

 $G = m_1 + m_2 + m_3$

$$\leq \frac{1}{2} \Big[\Big(n - \gamma^{cdged}(G) \Big) (n - \gamma^{cdged}(G) + 2) \Big]$$

By induction, the proof is complete when $\gamma^{cdged}(G) \ge 3$. If $\gamma^{cdged}(G) \ge 2$, by adding an isolated vertex to the graph, we get that $\gamma^{cdged}(G) \ge 3$ and order of the graph is n+1. The number of edges is not increased. Therefore,

$$|E(G)| \leq \frac{1}{2} \Big[\Big(n - \gamma^{cdged}(G) \Big) (n - \gamma^{cdged}(G) + 2) \Big].$$

Theorem 1.24 Let G be a graph of order n and size m. Let $\gamma^{\text{cdged}}(G)=t$. Then every subset of V(G) of cardinality t is a cdged-set of G if and only if G is either K_n or $\overline{K_n}$ or $\overline{(\frac{n}{2})K_2}$.

Proof: Let G be a graph of order n, size m and $\gamma^{\text{cdged}}(G)$ =t. Suppose every subset of V(G) of cardinality t is a cdged-set of G. If t=n, then $G = \overline{K_n}$. Let t<n. Let $u \in V(G)$. If $deg_{\bar{G}}(u) \ge t$, then u is not adjacent in G to at least t vertices say $v_1, v_2, ..., v_t$. Therefore, the set $\{v_1, v_2, ..., v_t\}$ is not a dominating set of G, a contradiction since any t element set is a cdged-set of G. Therefore, $deg_{\bar{G}}(u) < t$ for every $u \in V(G)$. Therefore, $deg_G(u) \ge n$ -t. Therefore,

 $2m = \sum deg_G(u) \ge n(n-t).$

When t>2, $m \leq \frac{1}{2} \left[\left(n - \gamma^{cdged}(G) \right) \left(n - \gamma^{cdged}(G) + 2 \right) \right]$, a contradiction to (1). Therefore, t ≤ 2 . Suppose t=1. Then G=K_n(since every vertex of G is a dominating vertex and hence G=K_n). Suppose t=2. Then $\gamma^{cdged}(G)=2$. $\Delta^{e}(G)\leq n-\gamma^{cdged}(G)=n-2$. $\deg_{G}(u)\geq n-2$ for every $u \in V(G)$. Therefore, $\delta(G)\geq n-2$. If $\Delta^{e}(G)=n-1$, then $\Delta^{e}(u)=n-1$. Therefore, $\gamma^{cdged}(G)=1$, a contradiction. Therefore, $\Delta^{e}(G)\leq n-2$. Suppose $\delta(G)=n-1$ and $\Delta^{e}(G)=n-2$. Suppose there exists a vertex $u \in V(G)$ such that $\delta(u)=n-1$ and $\Delta^{e}(u)=n-2$. Then $\{u\}$ is not a cdged-set. Let v be not degree equitable with u. If n=3, then $\deg_{G}(u)=2$ and $\deg_{G}(v)=2$ for every $v \in V(G)$. Therefore, $\Delta^{e}(G)=2$, a contradiction. Therefore, $n\geq 4$. Let $S=\{u,u_1\}$ where $u_1\neq v$. Then S is a γ^{cdged} -set of G

but V-S is not degree equitable since $v \in V$ -S. Therefore, $\Delta(G)=n-2$ and $\delta(G)=n-2$. Therefore, G is regular and every vertex has degree n-2. Therefore, $2m = \sum deg_G(u) = n(n-2)$. Therefore, $m = \frac{n(n-2)}{2}$. Therefore, n is even. Therefore, $G = \overline{\binom{n}{2}K_2}$.

Conversely, If $G = K_n \text{ or } \overline{K_n} \text{ or } (\frac{n}{2})K_2$, then any subset of V(G) of cardinality $\gamma^{\text{cdged}}(G)$ is a minimum cdged-set of G. Hence the theorem.

Theorem 1.25 Let G be a graph of order n and $\gamma^{cdged}(G)=t$. Then the following are equivalent:

(i) every t-subset of V(G) is a cdged set

(ii)
$$G = K_n \text{ or } \overline{K_n} \text{ or } (\frac{n}{2})K_2$$

(iii) $t=n-\kappa(G)$

Proof: From the above theorem, (i) and (ii) are equivalent. It has been proved that (ii) and (iii) are equivalent in [5]. Hence the theorem.

References

[1] A. Anitha, S. Arumugam, S. B. Rao and E. Sampathkumar, *Degree Equitable Chromatic Number of a Graph*, J. Combin. Math. Combin. Comput., **75** (2010), 187-199.

[2] A. Anitha, S. Arumugam and E. Sampathkumar, *Degree Equitable Sets in a Graph*, International J. Math. Combin., **Vol. 3** (2009), 32-47.

[3] F. Harary, Graph Theory, Addison Wesley, Reading Mass (1972).

[4] Terasa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker Inc. (1998).

[5] H.B. Walikar, B.D. Acharya and E. Sampathkumar, *Recent Developments in the Theory of Domination in Graphs and its Applications*, MRI Lecture Notes in Mathematics (1979).