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The main objective of this paper is to investigate a new fractional mathematical model that includes 

a nonsingular derivative factor. The basic properties of the new model including non-negative, 

finite solution, numerical simulations are shown, and some discussions from mathematical 

perspectives are given. Then, the optimal control problem for the new model is determined by 

introducing several variables. Solving fractional order differential equations in an accurate, reliable, 

and efficient manner is more difficult than in the case of standard integer order; In addition, most 

computational tools do not provide built-in functionality for this type of problem. In this paper, we 

review two of the most effective numerical methods for solving fractional-order problems, Static 

and solving nonlinear systems included in the implicit. Methods. We, therefore, present a set of 

MATLAB procedures specifically designed to solve three families of partial order problems: partial 

differential equations (FDEs), Some examples are provided to illustrate the use of the procedures. 

KEYWORDS: Fractional Derivative, Fractional Differentiation, Fractional Calculus, Numerical Schemes, Conversion to 

Single-Order Systems. 

1. INTRODUCTION 

This paper is about problems arising in the field of fractional 

calculus - branch Mathematics that is, in a sense, as old as 

classical calculus as we know it. The origins [1] can be traced 

back to the end of the seventeenth century, the time when 

Newton and Leibniz developed the foundations of 

differentiation and Integrated account. Leibniz introduced the 

symbol 

𝑑𝑛𝑓(𝑥)

𝑑𝑥𝑛
 

to denote the 𝑛𝑡ℎ derivative of a function  𝑓. When he 

reported this in a letter to 

de 𝑙’𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 (apparently with the implicit assumption that 

𝑛 ∈ 𝑁), de 𝑙’𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 replied: What does 
𝑑𝑛

𝑑𝑥𝑛
 𝑓 (𝑥) mean if 

𝑛 =
1

2
 . This letter from, written in 1695, is accepted as the 

first occurrence of what we today call a fractional derivative, 

and the fact that specifically for 𝑛 =
1

2
 . A fraction (rational 

number) actually gave rise to the name of this part of 

mathematics. This name has remained in use ever since, even 

though it is well known by now that there is no reason to 

restrict n to the set of rational numbers. Indeed, any real 

number – rational or irrational – will do just as well, at least 

for the analytical considerations that we shall concentrate on. 

Using ideas of ordinary calculus, we can differentiate a 

function, say, to the 1𝑡ℎ or 2𝑡ℎ order. We can also establish 

a meaning or some potential applications of the results. 

However, can we differentiate the same function to, say, the 

order better still, can we establish a meaning or some 

potential applications of the results, we may not achieve that 

through ordinary calculus, but we may through Numerical 

fractional calculus a more generalized form of calculus [2] . 

As a matter of fact, even complex numbers may be allowed, 

but this is well beyond the scope of this paper. Numbers of 

very interesting and applications of fractional differential 

equations in physics, chemistry, engineering, finance, and 

other sciences that have been developed in the last few 

decades. Some early examples are given. [3] and the classical 

papers of [4], [5], and [6, 7]. The concept of integration and 

differentiation is familiar to all who have studied elementary 

calculus. We know, for instance, that if 𝑓(𝑥) = 𝑥2  then 

integrating 𝑓(𝑥)  to the 1𝑠𝑡 order results in ∫𝑓(𝑥)  𝑑𝑥 =
1

3
 𝑥3 + 𝑐1 and integrating the same function to the 2𝑛𝑑 order 

results in ∫[∫ 𝑓(𝑥)𝑑𝑥]𝑑𝑥 =
1

12
𝑥4 + 𝑐1 + 𝑐2. Similarly, 

𝑑𝑓(𝑥)

𝑑𝑥
= 2𝑥 and 

𝑑2𝑓(𝑥)

𝑑𝑥2
= 2 However, what if we wanted to 
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integrate our function 𝑓(𝑥) to the  
1

2𝑡ℎ
 order, or find its   

1

2𝑡ℎ
  

order derivative,  How could we define our operations? Better 

still, would our results have a meaning or an application 

comparable to that of the familiar integer order operations? 

 

2. FRACTIONAL CALCULUS AND APPLICATIONS 

The Numerical Solution of Fractional Differential Equations: 

A Survey and a Software Tutorial [8] aims to provide a 

tutorial for the numerical solution of fractional differential 

equations (FDEs). Solving differential equations of fractional  

As the starting point for introducing fractional-order 

operators, we consider the 

Riemann–Liouville (RL) integral; for a function 𝑦(𝑡)  ∈

𝐿1[𝑡0, 𝑇] (as usual, 𝐿1 is the set of Lebesgue integrable 

functions), the fractional integral of order 𝛼 > 0 and origin at 

𝑡0 is defined as: 

𝐽𝑡0
𝛼 𝑦(𝑡) =

1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1
𝑡

𝑡0
𝑦(𝜏)𝑑𝜏.                                           (1) 

It provides a generalization of the standard integral, which, 

indeed, can be considered a particular case of the integral (1) 

when 𝛼 = 1. The left inverse of 𝐽𝑡0
𝛼  is the fractional 

derivative: 

�̂�𝑡0
𝛼 𝑦(𝑡) = 𝐷𝑚𝐽𝑡0

𝑚−𝛼𝑦(𝑡) =
1

Γ(𝑚−𝛼)

𝑑𝑚

𝑑𝑡𝑚
∫ (𝑡 −
𝑡

𝑡0

𝜏)𝑚−𝛼−1 𝑦(𝜏)𝑑𝜏                      (2) 

where 𝑚 = 𝑑𝛼𝑒 is the smallest integer greater or equal to 𝛼 

and 𝐷𝑚, 𝑦(𝑚). An alternative definition of the fractional 

derivative, obtained after interchanging differentiation and 

integration in Equation (2), is the so-called Caputo derivative, 

which, for a sufficiently differentiable function, namely for: 

 𝑦 ∈  𝐴𝑚[𝑡0, 𝑇] ( 𝑦(𝑚 − 1) continuous, is given by: 

𝐷𝑡0
𝛼 𝑦(𝑡) = 𝐽𝑡0

𝑚−1𝐷𝑚𝑦(𝑡) =
1

Γ(𝑚−𝛼)
 ∫ (𝑡 −
𝑡

𝑡0

𝜏)𝑚−𝛼−1 𝑦(𝑚)(𝜏)𝑑𝜏               (3) 

We observe that also 𝐷𝑡0
𝛼 𝑦(𝑡) is a left inverse of the integral, 

namely 

𝐷𝑡0
𝛼  𝐽𝛼0

𝑡 𝑦 =  𝑦 , 𝐽𝑡0
𝛼𝐷𝑡0

𝛼 = 𝑦(𝑡) − 𝑇𝑚−1(𝑦, 𝑡0)(𝑡),                                                                 

(4) 

Where 𝑇𝑚−1(𝑦, 𝑡0)(𝑡) is the Taylor polynomial of degree 

𝑚 − 1 for the function 𝑦(𝑡) centered at 𝑡0 that is:  

∑
(𝑡−𝑡0)

𝑘

𝑘!
𝑦(𝑘)(𝑡0)

𝑚−1
𝑘=0 .                                                                           

(5) 

In general, from the content of the combination of [9] we can 

also note that for any 𝛽 > 𝛼, it holds: 

𝐽𝑡0
𝛽
𝐷𝑡0
𝛼 𝑦(𝑡) = 𝐽𝑡0

𝛽
�̂�𝑡0
𝛼 [𝑦(𝑡) − 𝑇𝑚−1(𝑦, 𝑡0)(𝑡)] = 𝐽𝑡0

𝛽−𝛼[𝑦(𝑡) −

𝑇𝑚−1(𝑦, 𝑡0)(𝑡)]     (6) 

Numerical methods for solving systems of FDEs, as well as 

of multi-order type and multi-term FDEs, are presented. 

Some aspects related to the efficient implementation of the 

methods are discussed and the corresponding MATLAB 

routines are made available. Numerical Solution of Multiterm 

Fractional Differential Equations Using the Matrix Mittag–

Leffler Functions, by [10] focuses on a numerical approach 

to solve Multiterm Fractional Differential Equations 

(MTFDEs), that is, equations involving derivatives of 

different orders. They are very common to model many 

important processes, particularly for multi rate systems.  

2.1 An Algorithm for Single-Term Equations 

The method can be called indirect because, rather than 

discretizing the differential 

Equation: 

𝐷𝑡0
𝛼 𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡))                                                                          (7) 

with appropriate initial conditions    

𝐷𝛼𝑦(0) = 𝑦0
𝛼 ,         𝛼 = 0,1, … , (𝑛) − 1                                    (8) 

it requires some preliminary analytical manipulation, namely 

an application to convert the initial value problem for the 

differential equation into an equivalent Volterra integral 

equation, 

𝑦(𝑥) = ∑
𝑥𝑘

𝑘!
 𝐷𝑘𝑚−1

𝑘=0 𝑦(0) +
1

Γ(𝑛)
∫ (𝑥 − 𝑡)𝑛−1
𝑥

0
𝑓(𝑡, 𝑦(𝑡))𝑑𝑡                       

(9) 

where m = n. We shall therefore now look at a method for the 

numerical solution 

of (9). The algorithm that we shall consider can be interpreted 

as a fractional variant of the classical second-order Adams–

Bashforth–Moulton method. It has been introduced and 

briefly, more information is given in [11]. Some additional 

results for a specific initial value problem are contained in 

[12], a detailed mathematical analysis is provided in [13], and 

additional practical remarks can be found in [14]. Numerical 

experiments and comparisons with other methods are 

reported in [15, 16] Here we shall give an even more detailed 

analysis under quite general assumptions. We use the nodes 

𝑡 𝑗, ( 𝑗 =  0,1, . . . , 𝑘 + 1) and interpret the function (𝑡𝑘+1 −

𝑧)𝑛−1 as a weight function for the integral. In other words, we 

apply the approximation 

∫ (𝑡𝑘+1 − 𝑧)
𝑛−1𝑡𝑘+1

0
𝑔(𝑧)𝑑𝑧 ≈ ∫ (𝑡𝑘+1 −

𝑡𝑘+1
0

𝑧)𝑛−1 𝑔𝑘+1(𝑧)𝑑𝑧                      (10) 

where  𝑔𝑘+1 is the piecewise linear interpolant for g with 

nodes and knots chosen at the 𝑡𝑗 , 𝑗 = 0,1,2, . . . , 𝑘 + 1. The 

function values of the integrand 𝑔, 

taken at the points 𝑡𝑗 [17, 18] . Specifically, we find that we 

can write the integral on the 

right-hand side of (10) as 
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∫ (𝑡𝑘+1 − 𝑧)
𝑛−1𝑡𝑘+1

0
𝑔𝑘+1(𝑧)𝑑𝑧 = ∑ 𝑎𝑗,𝑘+1

𝑘+1
𝑗=0 𝑔(𝑡𝑗)                                   (11) 

𝑎𝑗,𝑘+1 = ∫ (𝑡𝑘+1 − 𝑧)
𝑛−1𝑡𝑘+1

0
∅𝑗,𝑘+1(𝑧)𝑑𝑧                                                   (12) 

∅𝑗,𝑘+1(𝑧) =

{
 
 

 
 
(𝑧 − 𝑡𝑗−1)

(𝑡𝑗 − 𝑡𝑗−1)
⁄    𝑖𝑓𝑡𝑗−1 < 𝑧 ≤ 𝑡𝑗

 
(𝑡𝑗+1 − 𝑧)

(𝑡𝑗+1 − 𝑡𝑗) 𝑖𝑓 𝑡𝑗 < 𝑧 ≤ 𝑡𝑗+1
⁄

0                                                              

                             (13) 

This is clear because the functions ∅𝑗,𝑘+1 satisfy 

∅𝑗,𝑘+1(𝑡𝜇) = {
0    𝑖𝑓 𝑗 ≠ 𝜇
1   𝑖𝑓 𝑗 = 𝜇

 

and that they are continuous and piecewise linear with breakpoints at the nodes 𝑡, so that they must be integrated exactly by our 

formula. for an arbitrary choice of the 𝑡𝑗, (12) and (13) produce 

𝑎0,𝑘+1 =
(𝑡𝑘+1−𝑡1)

𝑛+1+𝑡𝑘+1
𝑛 (𝑛𝑡1+𝑡1−𝑡𝑘+1)

𝑡1𝑛(𝑛+1)
                                    (15) 

𝑎𝑗,𝑘+1 =
(𝑡𝑘+1 − 𝑡𝑗−1)

𝑛+1
+ (𝑡𝑘+1 − 𝑡𝑗)

𝑛
(𝑛(𝑡𝑗−1 − 𝑡𝑗) + 𝑡𝑗−1 − 𝑡𝑘+1)

(𝑡𝑘+1 − 𝑡𝑗)𝑛(𝑛 + 1)
 

+
(𝑡𝑘+1−𝑡𝑗+1)

𝑛+1
−(𝑡𝑘+1−𝑡𝑗)

𝑛
(𝑛(𝑡𝑗−𝑡𝑗+1)−𝑡𝑗+1+𝑡𝑘+1)

(𝑡𝑘+1−𝑡𝑗)𝑛(𝑛+1)
                                        (16) 

If 1 ≤ 𝑗 ≤ 𝑘 and  

𝑎𝑘+1,𝑘+1 =
(𝑡𝑘+1−𝑡𝑘)

𝑛

𝑛(𝑛+1)
                                                                      (17) 

In the case of equi -spaced nodes (𝑡𝑗 = ℎ𝑗 with some fixed ℎ), these relations reduce to 

𝑎𝑗,𝑘+1 =

{
  
 

  
 

ℎ𝑛

𝑛(𝑛 + 1)
(𝑘𝑛+1 − (𝑘 − 𝑛)(𝑘 + 1)𝑛)           𝑖𝑓 𝑗 = 0                                   

ℎ𝑛

𝑛(𝑛 + 1)
(
(𝑘 − 𝑗 + 2)𝑛+1 + (𝑘 − 𝑗)𝑛+1

−2(𝑘 − 𝑗 + 1)𝑛+1
)   𝑖𝑓 1 ≤ 𝑗 ≤ 𝑘              (18)

ℎ𝑛

𝑛(𝑛 + 1)
                                                                  𝑖𝑓 𝑗 = 𝑘 + 1            

 

This then gives us our corrector formula (the fractional variant of the one-step Adams–Moulton method), which is 

𝑦𝑘+1 = ∑
𝑡𝑘+1
𝑗

𝑗!
 𝑦0
(𝑗)
+

1

Γ(𝑛)
(∑𝑎𝑗,𝑘+1𝑓(𝑡𝑗, 𝑦𝑗) + 𝑎𝑘+1,𝑘+1𝑓(𝑡𝑘+1, 𝑦𝑘+1

𝑃 )

𝑘

𝑗=0

) (19)

𝑚−1

𝑗=0

 

The idea we use to generalize the one-step Adams–Bash forth method is the same as the one described above for the Adams– 

Moulton technique: We replace the integral on the right-hand side of (9) by the product rectangle rule 

∫ (𝑡𝑘+1 − 𝑧)
𝑛−1𝑔(𝑧)𝑑𝑧 ≈∑𝑏𝑗,𝑘+1𝑔(𝑡𝑗)

𝑘

𝑗=0

    
𝑡𝑘+1

0

                 (20) 

Where  

𝑏𝑗,𝑘+1 = ∫ (𝑡𝑘+1 − 𝑧)
𝑛−1𝑑𝑧 =

(𝑡𝑘+1 − 𝑡𝑗)
𝑛
− (𝑡𝑘+1 − 𝑡𝑗+1)

𝑛

𝑛
 

𝑡𝑘+1

𝑡𝑗

 (21) 

We can be derived in a way like the method used in the derivation of (16). However, here we are dealing with a piecewise 

constant approximation and not a piecewise linear one, and hence we must replace the 

(hat-shaped) functions 𝑏𝑗,𝑘+1 by functions being of constant value 1 on [𝑡𝑗 , 𝑡𝑗+1] and 0. On the remaining parts of the interval 

[0, 𝑡𝑘+1] [17, 18] in the equispaced case, we have the simpler expression 

𝑏𝑗,𝑘+1 =
ℎ𝑛

𝑛
((𝑘 + 1 − 𝑗)𝑛 − (𝑘 − 𝑗)𝑛)                            (22) 

Thus, the predictor 𝑦𝑘+1
𝑃 is determined by the fractional Adams–Bash forth method: 

𝑦𝑘+1
𝑃 = ∑

𝑡𝑘+1
𝑗

𝑗!

𝑚−1

𝑗=0

𝑦0
(𝑗)
+

1

Γ(𝑛)
∑𝑏𝑗,𝑘+1

𝑘

𝑗=0

𝑓(𝑡𝑗, 𝑦𝑗).                          (23) 

Our basic algorithm, the fractional Adams–Bash forth–Moulton method, is therefore completely described now by (23) and (18) 

with the weights 𝑎𝑗,𝑘+1 and 𝑏𝑗,𝑘+1 being defined according to (16) and (20), respectively [19,20]. 
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Lemma 2.1. Assume that the solution y of the initial value problem is such that: 

| ∫ (𝑡𝑘+1 − 𝑡)
𝑛−1𝐷0

𝑛

𝑡𝑘+1

0

𝑦(𝑡)𝑑𝑡 −∑𝑏𝑗,𝑘+1𝐷0
𝑛𝑦(𝑡𝑗)

𝑘

𝑗=0

| ≤ 𝐶1𝑡𝑘+1
𝛾1 ℎ𝛿1 

𝑎𝑛𝑑 

| ∫ (𝑡𝑘+1 − 𝑡)
𝑛−1𝐷0

𝑛

𝑡𝑘+1

0

𝑦(𝑡)𝑑𝑡 −∑𝑎𝑗,𝑘+1𝐷0
𝑛𝑦(𝑡𝑗)

𝑘

𝑗=0

| ≤ 𝐶2𝑡𝑘+1
𝛾2 ℎ𝛿2 

With some 𝛾1, 𝛾2 ≥ 0 and 𝛿1, 𝛿2 > 0. Then, for some suitably, chosen 𝑇 > 0, we have:  

max
0≤𝑗≤𝑁

|𝑦(𝑡𝑗) − 𝑦𝑗| = 𝑂(ℎ
𝑞) 

Where 𝑞 = 𝑚𝑖𝑛{𝛿1 + 𝑛, 𝛿2} 𝑎𝑛𝑑 𝑁 = (
𝑇

ℎ
) 

Proof: 

We will show that, for sufficiently small ℎ, 

|𝑦(𝑡𝑗) − 𝑦𝑗| ≤ 𝐶ℎ𝑞                                                                                (24) 

for all 𝑗 ∈ {0,1, . . . , 𝑁}, where C is a suitable constant. The proof will be based on mathematical induction. In view of the given 

initial condition, the induction basis ( 𝑗 = 0) is presupposed [21,22] . Now assume that (24) is true for 𝑗 = 0,1, . . . , 𝑘 for some 

𝑘 ≤ 𝑁 − 1. We must then prove that the inequality also holds for 𝑗 =  𝑘 + 1. To do this, we first look at the error of the predictor 

𝑦𝑘+1
𝑃 . By construction of the predictor we find that: 

|𝑦(𝑡𝑘+1) − 𝑦𝑘+1
𝑝
| =

1

Γ(𝑛)
|∫ (𝑡𝑘+1 − 𝑡)

𝑛−1𝑓(𝑡, 𝑦(𝑡))

𝑡𝑘+1

0

𝑑𝑡 −∑𝑏𝑗,𝑘+1𝑓(𝑡, 𝑦(𝑡))

𝑘

𝑗=0

| 

≤
1

Γ(𝑛)
|∫ (𝑡𝑘+1 − 𝑡)

𝑛−1𝐷0
𝑛

𝑡𝑘+1

0

𝑦(𝑡)𝑑𝑡 −∑𝑏𝑗,𝑘+1𝐷0
𝑛𝑦(𝑡𝑗)

𝑘

𝑗=0

| +
1

Γ(𝑛)
∑𝑏𝑗,𝑘+1  |𝑓 (𝑡𝑗, 𝑦(𝑡𝑗) − 𝑓(𝑡𝑗, 𝑦𝑗))|

𝑘

𝑗=0

 

≤
𝐶1𝑡𝑘+1

𝛾1 ℎ𝛿1

Γ(𝑛)
+

1

Γ(𝑛)
∑𝑏𝑗,𝑘+1𝐿𝐶ℎ

𝑞

𝑘

𝑗=0

 

≤
𝐶1𝑡𝑘+1

𝛾1 ℎ𝛿1

Γ(𝑛)
+

𝐶𝐿𝑇𝑛

Γ(𝑛 + 1)
ℎ𝑞                                                       (25) 

Here we have used the Lipschitz property of 𝑓 , the assumption on the error of the rectangle formula, and the facts that, by 

construction of the quadrature formula underlying the predictor, 𝑏𝑗,𝑘+1 > 0   for all  𝑗 and 𝑘 and: 

∑𝑏𝑗,𝑘+1 =

𝑘

𝑗=0

∫ (𝑡𝑘+1 − 𝑡)
𝑛−1𝑑𝑡

𝑡𝑘+1

0

=
1

𝑛
𝑡𝑘+1
𝑛 ≤

1

𝑛
𝑇𝑛. 

Based on the bound (25) for the predictor error we begin the analysis of the corrector error [23,24]. We recall the relation (17) which 

we shall use for𝑗 = 𝑘 + 1 and find, arguing in a similar way to above, that: 

|𝑦(𝑡𝑘+1) − 𝑦𝑘+1| =
1

Γ(𝑛)
|∫ (𝑡𝑘+1 − 𝑡)

𝑛−1𝑓(𝑡, 𝑦)𝑑𝑡 −∑𝑎𝑗,𝑘+1𝑓(𝑡𝑗 , 𝑦𝑗) − 𝑎𝑘+1,𝑘+1𝑓(𝑡𝑘+1, 𝑦𝑘+1
𝑃 )

𝑘

𝑗=0

𝑡𝑘+1

0

| 

≤
1

Γ(𝑛)
|∫ (𝑡𝑘+1 − 𝑡)

𝑛−1𝐷0
𝑛

𝑡𝑘+1

0

𝑦(𝑡)𝑑𝑡 −∑𝑎𝑗,𝑘+1𝐷0
𝑛𝑦(𝑡𝑗)

𝑘+1

𝑗=0

| 

+
1

Γ(𝑛)
∑𝑎𝑗,𝑘+1

𝑘+1

𝑗=0

|𝑓 (𝑡𝑗, 𝑦(𝑡𝑗)) − 𝑓(𝑡𝑗, 𝑦𝑗)| 

+
1

Γ(𝑛)
𝑎𝑘+1,𝑘+1|𝑓(𝑡𝑘+1,𝑦(𝑡𝑘+1))−𝑓(𝑡𝑘+1,𝑦𝑘+1

𝑝
)| 

≤
𝐶2𝑡𝑘+1

𝛾2 ℎ𝛿2

Γ(𝑛)
+
𝐶𝐿

Γ(𝑛)
ℎ𝑞∑𝑎𝑘+1,𝑘+1

𝑘

𝑗=0

𝐿

Γ(𝑛)
(
𝐶1𝑇

𝛾1

Γ(𝑛)
ℎ𝛿1 +

𝐶𝐿𝑇𝑛

Γ(𝑛 + 1)
ℎ𝑞) 

(
𝐶2𝑇

𝛾2

Γ(𝑛)
+

𝐶𝐿𝑇𝑛

Γ(𝑛 + 1)
+

𝐶1𝐿𝑇
𝛾1

Γ(𝑛)Γ(𝑛 + 1)
+

𝐶𝐿2𝑇𝑛

Γ(𝑛)Γ(𝑛 + 1)
ℎ𝑛) ℎ𝑞 

in view of the nonnegativity of 𝛾1 and 𝛾22 and the relations 𝛿2 ≤ 𝑞 and  
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𝛿1 + 𝑛 ≤  𝑞. By choosing 𝑇 sufficiently small, we can make sure that the second summand in the parentheses is bounded by 𝐶/2. 

Having fixed this value for 𝑇 , we can then makethe sum of the remaining expressions in the parentheses smaller than 𝐶/2 too 

(forsufficiently small ℎ) simply by choosing 𝐶 sufficiently large[ 25]. It that the entire upper bound does not exceed 𝐶ℎ𝑞  [26,27].  

As a first application of this Lemma, we assume that the given data is such that the solution y itself is sufficiently differentiable. As 

mentioned above, the result depends on whether 

 𝑛 > 1 𝑜𝑟 𝑛 < 1. 

Lemma2.2 An interesting observation here is that by choosing a larger number of corrector iterations, we essentially leave the 

computational complexity unchanged: A corrector iteration is of the form: 

𝑦𝑗+1
(ℓ) =∑

𝑟𝑘+1
𝑟

𝑟!

𝑛−1

𝑟=0

𝑦0
(𝑟) +

ℎ𝑛

Γ(𝑛 + 2)
𝑓(𝑡𝑗+1, 𝑦𝑗+1

(ℓ+1)) +
ℎ𝑛

Γ(𝑛 + 2)
∑𝑎𝑟,𝑗+1

𝑗

𝑟=0

𝑓(𝑡𝑟 , 𝑦𝑟) 

Here 𝑦𝑗+1
(ℓ)

 denotes the approximation after corrector steps, 𝑦𝑗+1
(ℓ)  =  𝑦𝑗+1

𝑃  is the predictor, and  𝑦𝑗+1  =  𝑦0
(𝑟)

 is the final approximation 

after μ corrector steps that we use. We can rewrite this as: 

𝑦𝑗+1
(ℓ) = 𝛽𝑗+1 +

ℎ𝑛

Γ(𝑛 + 2)
𝑓(𝑡𝑗+1, 𝑦𝑗+1

(ℓ−1)) 

where 

𝛽𝑗+1 =∑
𝑟𝑘+1
𝑟

𝑟!

𝑛−1

𝑟=0

𝑦0
(𝑟) +

ℎ𝑛

Γ(𝑛 + 2)
∑𝑎𝑟,𝑗+1

𝑗

𝑟=0

𝑓(𝑡𝑟 , 𝑦𝑟) 

is independent of. Thus, the total arithmetic complexity of the corrector part of the 

( 𝑗 + 1)𝑠𝑡   step (taking us from 𝑡𝑗 to 𝑡𝑗+1) is 𝑂( 𝑗) for the calculation of 𝛽𝑗+1  plus 𝑂(ℓ) for the μ corrector steps, which (since μ is 

constant) is asymptotically the same as the complexity in the case ℓ = 1.  

Lemma 2.3. Let 𝑛 > 0 and assume that 𝑑𝑗ℎ ∈  𝐶
𝑘[0, 𝑇] for some 𝑘 ≥ 3 and some suitable 𝑇 . Then: 

𝑦(𝑇) − 𝑦𝑇
ℎ⁄
=∑𝑑𝑗ℎ

2𝑗

𝑘1

𝑗=1

+∑𝑑𝑗ℎ
𝑗

𝑘2

𝑗=1

+ 𝑂(ℎ𝑘3) 

where 𝑘1,  𝑘2 and 𝑘3 are certain constants depending only on k and satisfying 

 𝑘3 > 𝑚𝑎𝑥(2𝑘1, 𝑘2  +  𝑛). 

2.2 Numerical Schemes for Multi-Term Equations 

We extension the numerical methods to multi-term equations. The most important theoretical properties of these multi-term 

equations we restrict our attention to equations of the form 

𝐷0
𝑛𝑘𝑦(𝑥) = 𝑓(𝑥, 𝑦(𝑥)), 𝐷0

𝑛1𝑦(𝑥), 𝐷0
𝑛2𝑦(𝑥), … . , 𝐷0

𝑛𝑘−1𝑦(𝑥)           (26) 

(Where 0 < 𝑛1 < 𝑛2 < . . . < 𝑛𝑘) with a suitable function  𝑓(𝑥, 𝑦(𝑥))  and initial conditions: 

𝑦(𝑗)(0) = 𝑦0
(𝑗)
,    𝑗 = 0,1, … , [𝑛𝑘] − 1                             (27) 

3. Conversion to Single-Order Systems 

 In this way we transform the given initial value problem into a system of equations of the form: 

𝐷0
𝛾
𝑦0(𝑥) = 𝑦1(𝑥), 

𝐷0
𝛾
𝑦1(𝑥) = 𝑦2(𝑥), 

.

.

.
 

𝐷0
𝛾
𝑦𝑁−2(𝑥) = 𝑦𝑁−1(𝑥), 

𝐷0
𝛾
𝑦𝑁−1(𝑥) = 𝑓 (𝑥, 𝑦0(𝑥),

𝑦𝑛1
𝛾(𝑥)
⁄ ,… ,

𝑦𝑛𝑘−1
𝛾(𝑥)⁄ ),                           (28) 

Together with the initial conditions: 

𝑦𝑗(0) = {
𝑦0
(𝑗𝛾)

          𝑖𝑓 𝑗𝛾 ∈ ℕ0
0                         𝑒𝑙𝑠𝑒

                                          (29)) 

with the precise choice of the new parameters 𝛾 and 𝑁  as appropriate. We have thus formally obtained an equation of the type: 

𝐷0
𝛾
𝑌(𝑥) = 𝐹(𝑥, 𝑌(𝑥)),                𝑖𝑓     𝑌(0) = 𝑌0                       (30) 

with certain vector-valued functions 𝐹 (known) and 𝑌 (unknown) and an initial condition vector 𝑌0, a single-term equation of order 

𝛾 with vector-valued data. Thus we calculate an approximate solution for this system, for the sake of simplicity, we shall restrict 

ourselves to the Adams–Bash forth–Moulton scheme developed above [25]. The first component of the solution vector is then the 

required approximate solution for the original equation. We illustrate the procedure taken from [12]. 
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Example 3.1. Solve the nonlinear three-term equation 

𝐷0
1.355𝑦(𝑥) = −𝑥0.1

𝑄1.454(−𝑥)

𝑄1.554(−𝑥)
𝑒𝑥𝑦(𝑥)𝐷0

0.555𝑦(𝑥) + 𝑒−2𝑥 − [𝐷0
1𝑦(𝑥)]2 

for 0 ≤ 𝑥 ≤ 1, equipped with the initial conditions 𝑦(0) = 1 and 𝑦 (0) = −1, with 

the same algorithm. The exact solution of this problem is 𝑦(𝑥)  = 𝑒−𝑥  . When applying our idea to this equation, we first need to 

calculate the order 𝛾 of the new system. In our case the result is  𝛾 = 1/300, and hence the dimension of the resulting system is 

𝑁 =  1.355/𝛾  rather large number. In a first attempt we have tried to solve the system with the Adams–Bash forth–Moulton scheme 

as: 

Table 3.1The equation solved with Numerical Adams method  

Size  solution Error  Order convergence  

0.5 5.1513147531 −0.151314  

0.25 5.0468410217 −0.046841 1.61 

0.125 5.0160284121 −0.016129 1.56 

0.0625 5.0056277043 −0.0056277 1.52 

 

Example 3.2 

𝐷0
𝑛𝑦(𝑥) =

40310

Γ(9 − 𝑛)
𝑥7−𝑛 − 2

Γ(5 + 𝑛 3⁄ )

Γ(5 − 𝑛 3⁄ )
𝑥4−

𝑛
2⁄ +

9

4
Γ(𝑛 + 1) 

+(
3

2
𝑥
𝑛
2 − 𝑥4)

3

− (𝑦(𝑥))
3
2⁄  

for 𝑥 ∈ [0,1] with homogeneous initial conditions (𝑦(0) = 0,    𝑦′(0) = 0), the latter only in case 𝑛 > 1. 

The exact solution of this initial value problem is: 

𝑦(𝑥) = 𝑥7 − 2𝑥4+
𝑛
2⁄ +

9

4
𝑥𝑛, 

and hence: 

𝐷0
𝑛𝑦(𝑥) =

40310

Γ(9 − 𝑛)
𝑥7−𝑛 − 2

Γ(5 + 𝑛 3⁄ )

Γ(5 − 𝑛 3⁄ )
𝑥4−

𝑛
2⁄ +

9

4
Γ(𝑛 + 1) 

then 𝐷0
𝑛𝑦(𝑥) ∈ 𝐶2[0,1] if 𝑛 > 𝑛, and thus the conditions are fulfilled. Moreover, if Lemma 2.3 holds, the results in Tables C.1 and 

Tables C.2 where the notation −4.51(−3) stands for −4.51 × 10−3. In each case, the left most column shows the step size used, 

the following column gives the error of our results [28,29]. 

 

Table 3.2  Errors for Exampl1 3.2 with 𝒏 = 𝟎. 𝟓, taken at 𝒙 = 𝟏 

size Adam’s scheme Extrapolated value 

1
10⁄  −𝟒. 𝟓𝟏(−𝟑)  

𝟏
𝟐𝟎⁄  −𝟏. 𝟑𝟒(−𝟑) −𝟏. 𝟕𝟗(−𝟑)  

𝟏
𝟒𝟎⁄  −𝟑. 𝟑𝟐(−𝟓) −𝟑. 𝟔𝟎(−𝟒) 𝟏. 𝟔𝟏(−𝟓)  

𝟏
𝟖𝟎⁄  −𝟐. 𝟏𝟔(−𝟓) −𝟕. 𝟏𝟓(−𝟓) 𝟏. 𝟖𝟗(−𝟔) 𝟐. 𝟏𝟕(−𝟕)  

𝟏
𝟏𝟔𝟎⁄  −𝟏. 𝟓𝟔(−𝟔) −𝟏. 𝟐𝟑(−𝟔) 𝟐. 𝟑𝟐(−𝟕) 𝟐. 𝟔𝟖(−𝟖) 𝟏. 𝟒𝟓(−𝟖) 

𝟏
𝟑𝟐𝟎⁄  −𝟔. 𝟔𝟐(−𝟔) −𝟑. 𝟎𝟓(−𝟕) 𝟐. 𝟓𝟖(−𝟖) 𝟐. 𝟏𝟗(−𝟗) 𝟓. 𝟐𝟒(−𝟏𝟎) 
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𝟏
𝟔𝟒𝟎⁄  −𝟐. 𝟗𝟏(−𝟖) −𝟓. 𝟏𝟒(−𝟖) 𝟐. 𝟖𝟑(−𝟗) 𝟏. 𝟕𝟏(−𝟏𝟎) 𝟐. 𝟐𝟕(−𝟏𝟏) 

EOC 1.98 2.57 3.24 𝟑. 𝟖𝟗 8.62 

 

Table 3.3  Errors for Exampl1 3.2 with 𝒏 = 𝟎. 𝟓, taken at 𝒙 = 𝟏 

size Adams scheme Extrapolated value 

1
10⁄  𝟑. 𝟓𝟎(−𝟑)  

𝟏
𝟐𝟎⁄  𝟏. 𝟖𝟏(−𝟑) −𝟏. 𝟓𝟎(−𝟏)  

𝟏
𝟒𝟎⁄  𝟒. 𝟑𝟑(−𝟓) −𝟓. 𝟔𝟎(−𝟑) 𝟒. 𝟎𝟔(−𝟐)  

𝟏
𝟖𝟎⁄  𝟐. 𝟗𝟑(−𝟓) −𝟏. 𝟏𝟏(−𝟒) 𝟐. 𝟏𝟕(−𝟑) −𝟕. 𝟏𝟒(−𝟑)  

𝟏
𝟏𝟔𝟎⁄  𝟐. 𝟓𝟑(−𝟔) 𝟕. 𝟏𝟖(−𝟓) 𝟏. 𝟒𝟔(−𝟒) −𝟑. 𝟕𝟑(−𝟒) 𝟏. 𝟑𝟑(−𝟒) 

𝟏
𝟑𝟐𝟎⁄  𝟕. 𝟔𝟐(−𝟔) 𝟐. 𝟒𝟖(−𝟓) 𝟏. 𝟖𝟖(−𝟓) −𝟏. 𝟒𝟐(−𝟓) 𝟏. 𝟎𝟒(−𝟓) 

𝟏
𝟔𝟒𝟎⁄  𝟐. 𝟗𝟏(−𝟖) 𝟏. 𝟏𝟑(−𝟓) 𝟐. 𝟑𝟏(−𝟔) −𝟖. 𝟔𝟎(−𝟕) 𝟓. 𝟎𝟏(−𝟕) 

EOC 1.92 1.61 2.53 𝟒. 𝟎𝟖 7.34 

 

Scheme at 𝑥 = 1, and the columns after that give the 

extrapolated values. The bottom 

line states the experimentally determined order of 

convergence for each of the columns on the right of the table. 

According to our theoretical considerations, these values 

should be 1 + 𝑛, 2, 2 + 𝑛, 3 + 𝑛, 4, 4 + 𝑛, . .. in the case 0 <

𝑛 < 1 and 2, 1 + 𝑛, 2 + 𝑛, 4, 3 + 𝑛, 4 + 𝑛, . .. for 1 < 𝑛 < 2. 

The numerical data in the following tables show that these 

values are reproduced approximately at least for 𝑛 > 1. In the 

case  0 < 𝑛 < 1, displayed in Table 3.3, the situation seems 

to be less obvious. Apparently, we need to use much smaller 

values for ℎ than in the case 𝑛 > 1 before we can see that the 

asymptotic behavior really sets in. Our belief in the truth of 

Lemma 2.2 is not only supported by the numerical results but 

also by the results of de Hoog and Weiss [30] who show that 

asymptotic expansions of this form hold if we use the 

fractional Adams–Moulton method  and that a similar 

expansion can be derived for the fractional [18].  

 

4. CONCLUSION 

From this paper we extracted the investigation of a new 

fractal mathematical model that includes a non-singular 

derivative factor. The basic characteristics of the new model 

including non-negative and finite solutions and numerical 

simulation were presented, and some discussions of the 

mathematical aspect were presented. And the problem of 

optimal control of the new model was identified by 

introducing several new variables. And solving fractional 

order differential equations in an accurate, reliable and 

efficient manner than was more difficult than in the case of 

order of standard integers. We also review two of the most 

effective numerical methods for solving fractional order 

problems, namely the constant system and the solution of 

nonlinear systems included in the implicit. Methods. We have 

therefore presented a set of MATLAB procedures designed 

specifically to solve three sets of partial order problems: 

Partial Differential Equations (FDEs), and a number of 

examples are given to illustrate the use of the procedures. 
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