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Abstract

In this paper, we give a detailed analysis for the explicit finite difference
approximation for time fractional soil moisture diffusion equation (TFSMDE).
Furthermore, the stability and convergence of the scheme in a bounded domain
are discussed. As an application of the scheme we solve some test problems and
their solutions are represented graphically by a powerful software Mathematica.
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1 INTRODUCTION

Fractional calculus is mere generalization of full integer order integral and differen-
tial calculus to real or even complex order. But, its complexity prevented it from
being used in practice until only very recently. A list of mathematicians, who
have provided important contributions up to the middle of our century, includes
P.S. Laplace(1812), J.B.J. Fourier(1822), N.H. Abel(1823-1826), J. Liouville(1832-
1873), B. Riemann(1847), H. Holmgren(1865-67), A.K. Grunwald(1867-1872), A.V.
Letnikov(1868-1872), H. Laurent(1884), P.A. Nekrassov(1888). Fractional differen-
tial equations have been used in modeling many physical phenomena in different
branches of science and engineering like biology, physics, chemistry, visco elasticity,
control systems, thermo dynamics, statistics, finance etc. The study of fractional
partial differential equations has increased in recent years. But, due to the complex
geometries of most of the fractional differential equations, they lack exact solution.
Henceforth, the numerical techniques are widely preferred because of their accuracy
and high computational efficiency. Few of them are Finite Difference Methods [7,
14, 18, 21], Adomian’s Decomposition Method, He’s Variational Iteration Method,
Homotopy Perturbation Method, Collocation Method etc. Several papers have re-
cently been published on finite difference methods for solving the anomalous diffusion
equation. The fractional diffusion equations were first studied by Wyss[22, 23] and
Schneider[22]. Liu et al considered the time fractional advection dispersion equation.
Gao and Sun [4] have presented a high order finite difference scheme for the fractional
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sub-diffusion equations. The literal interpretation of fractional derivative is that it
represents the degree of memory in the diffusing material. A generalised diffusion
equation is obtained from a fractional Fick Law[1] that describes transport processes
with long memory. In practise, we have two generic forms of fractionalisation of the
derivatives with respect to time and space. The time fractional differential equations
is a tool to tackle problems involving non-markovian random walk, generally utilised
to treat sub-diffusive flow process in which the net motion of particles happens more
slowly than the Brownian motion[1, 5].
In this paper we use an effective explicit finite difference scheme for developing the
discrete model for time fractional soil moisture diffusion equation which is suitable
for simulating random variables whose spatial probability density evolves in time ac-
cording to this fractional diffusion equation.
The solution of the linear partial differential equation of flow was first proposed by
Casagrande, through the use of the graphical flowent method [8]. The method is
based on the assumptions that water flows region must be defined in terms of head or
non-head flow. The flowent solutions proposed by Casagrande were for simple uncon-
fined flow cases without flux boundary conditions. First experimental study on the
movement of water in the soil was done by Henry Darcy (1856). Edgar Buckinghm
(1907) described the water flow in unsaturated porous media modifying the equation
of Darcy. Richard’s (1931) combined the equations of Darcy and Buckingham with
the equation of continuity to establish an over all relationship. Klute (1972) described
several methods for estimating the hydraulic conductivity and diffusivity for unsat-
urated soils [2, 7, 8, 11]. To understand such phenomenon, soil scientists have made
some models for the flow of water into soil. Furthermore, many researchers developed
different types of equations that models the water flow into soil. We consider the
general diffusion equation of unsaturated flow of soil moisture as follows

∂

∂x
(D

∂U

∂x
) +

∂

∂y
(D

∂U

∂y
) +

∂

∂z
(D

∂U

∂z
) +

∂K

∂z
=

∂U

∂t
(1.1)

where,

U(x, y, z, t) = the volumetric soil moisture content,

D = the diffusivity of soil moisture,

K = the capillary or hydraulic conductivity of soil moisture.

If for equation (1.1), the flow takes place in the Z direction, as for infiltration of water
into the soil, then the equation (1.1) becomes one-dimensional flow equation, which
is given below

∂

∂z
(D

∂U

∂z
) +

∂K

∂z
=

∂U

∂t
(1.2)

where

D = K
∂ht

∂U
ht = the tension head and

K = the capillary conductivity.
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If the flow is considered in x direction (taken horizontal) then equation (1.1) becomes

∂

∂x
(D

∂U

∂x
) =

∂U

∂t
(1.3)

Now we assume that D is a constant then the one-dimensional diffusion equation is

∂U

∂t
= D

∂2U

∂x2
(1.4)

which is exactly the diffusion heat flow equation [8] and it is well studied by Richard’s
[4] for water flow instead of heat flow. The model problem for the moisture flow in
horizontal tube is given by

∂U

∂t
= D

∂2U

∂x2
, t > 0, x ≥ 0 (1.5)

To solve a particular model problem of moisture flow into a horizontal tube, we have
to impose proper initial and boundary conditions. So, we consider an initial uniform
moisture percentage of U as U0 (U0 is constant) at time t = 0, which becomes the
initial condition and is mathematically expressed as

U(x, t) = U0, t = 0, x ≥ 0 (1.6)

Now for left boundary condition, there is source of water applied and placed at x = 0
so as to maintain at all times after t=0 as UL, and which is mathematically expressed
as

U(x, t) = UL, x = 0, t ≥ 0 (1.7)

Now for right boundary condition, there is source of water applied and placed at semi-
infinite plane so as to maintain at all times after t = 0 is UR, which is mathematically
expressed as

Ux(x, t) = UR, x → ∞, t ≥ 0 (1.8)

Therefore, the model initial boundary value problem (IBVP) for soil moisture flow is
given as follows

∂U

∂t
= D

∂2U

∂x2
, t > 0, x ≥ 0 (1.9)

subject to the initial and boundary conditions

U(x, t) = U0, t = 0, x ≥ 0 (1.10)

U(x, t) = UL, x = 0, t ≥ 0, Ux(x, t) = UR, x → ∞, t ≥ 0 (1.11)

for U(x, t) is volumetric water content and D is the diffusivity constant of soil mois-
ture.
We consider the following definitions for further developments.
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Definition 1.1 The Caputo time fractional derivative of order α, (0 < α ≤ 1) is
defined as follows

∂αU(x, t)

∂tα
=

{
1

Γ1−α

∫ t

0
∂U(x,t)

∂ξ
dξ

(t−ξ)α
, 0 < α < 1

∂U(x,t)
∂t

, α = 1

where Γ(.) is a Gamma function.

Definition 1.2 The symmetric second order difference quotient in space at time level
t = tk is given as follows

∂2U(x, t)

∂x2
=

U(xi−1, tk)− 2U(xi, tk) + U(xi+1, tk)

h2

We organize the paper as follows: In section 2 , we develop the explicit fractional
order finite difference scheme for time fractional soil moisture diffusion equation. The
stability of the solution is proved in section 3 and section 4 deals with convergence of
the scheme. The numerical solution of time fractional soil moisture diffusion equation
is obtained using Mathematica software in the last section.

2 APPROXIMATE FINITE DIFFERENCE SCHEME

We consider the following time fractional soil moisture diffusion equation (TFSMDE)
with initial and boundary conditions

∂αU(x, t)

∂tα
= D

∂2U(x, t)

∂x2
; (x, t) ∈ Ω : [0, L] ∗ [0, T ] (2.1)

Initial condition : U(x, 0) = U0, 0 ≤ x ≤ L (2.2)

Boundary conditions : U(0, t) = UL, Ux(L, t) = 0, x → ∞, t ≥ 0 (2.3)

where 0 < α ≤ 1 and D: diffusivity constant.
Note that for α = 1, we recover in the limit the well known diffusion equation of
Markovian process

∂U(x, t)

∂t
= D

∂2U(x, t)

∂x2
; xϵR; t ≥ 0

For the explicit numerical approximation scheme, we define h = (xR−xL)
N

= L
N

and
τ = T

N
the space and time steps respectively, such that tk = kτ ; k = 0,1,...,N be the

integration time 0 ≤ tk ≤ T and xi = xL+ ih for i = 0,1, ..., N. Define Uk
i = U(xi, tk)

and let Uk
i denote the numerical approximation to the exact solution U(xi, tk).

In the differential equation (2.1), the time fractional derivative term is approximated
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by the following scheme

∂αU(xi, tk+1)

∂tα
≈ 1

Γ(1− α)

∫ tk+1

0

1

(tk+1 − ξ)α
∂U(xi, ξ)

∂ξ
dξ

=
1

Γ(1− α)

k∑
j=0

U(xi, tj+1)− U(xi, tj)

∆t

(j+1)τ∫
jτ

dξ

(tk+1 − ξ)α

=
1

Γ(1− α)

k∑
j=0

U(xi, tj+1)− U(xi, tj)

τ

(k+1−j)τ∫
(k−j)τ

dη

ηα

=
1

Γ(1− α)

k∑
j=0

U(xi, tk+1−j)− U(xi, tk−j)

τ

(j+1)τ∫
(j)τ

dη

ηα

=
τ 1−α

Γ(2− α)

k∑
j=0

U(xi, tk+1−j)− U(xi, tk−j)

τ
×

[(j + 1)1−α − j1−α]

∂αU(xi, tk+1)

∂tα
=

τ−α

Γ(2− α)
[U(xi, tk+1)− U(xi, tk)]+

τ−α

Γ(2− α)

k∑
j=1

bj[U(xi, tk+1−j)− U(xi, tk−j)]

where bj = (j + 1)1−α − j1−α, j = 0, 1, 2, ..., k.
For approximating the second order space derivative, we adopt a symmetric second
order difference quotient in space at time level t = tk

∂2U(x, t)

∂x2
=

U(xi−1, tk)− 2U(xi, tk) + U(xi+1, tk)

h2

Therefore, the fractional approximated equation is

τ−α

Γ(2− α)
[Uk+1

i −Uk
i ]+

τ−α

Γ(2− α)

k∑
j=1

bj[U
k−j+1
i −Uk−j

i )] = D
[U(xi−1, tk)− 2U(xi, tk) + U(xi+1, tk)]

h2

(2.4)
After simplification , we get

Uk+1
i = rUk

i−1+(1−2r−b1)U
k
i +rUk

i+1+
k−1∑
j=1

(bj−bj+1)U
k−j
i +bkU

0
i , i = 0, 1, ..., N, k = 0, 1, ...

(2.5)

where r = D ταΓ(2−α)
h2 and bj = (j + 1)1−α − j1−α
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The initial condition is approximated as U0
i = U0, i = 1, 2, ... , N.

The left boundary condition is approximated as Uk
0 = UL, k = 0, 1, 2, ..., N.

Now, using central difference the right boundary condition is approximated as follows

Uk
N+1 − Uk

N−1

2h
= 0, k = 0, 1, 2, ..., N

Therefore, the complete fractional approximated IBVP is

U1
i = rU0

i−1 + (1− 2r)U0
i + rU0

i+1 for k = 0 (2.6)

Uk+1
i = rUk

i−1 + (1− 2r − b1)U
k
i + rUk

i+1 +

k−1∑
j=1

(bj − bj+1)U
k−j
i + bkU

0
i , for k ≥ 1 (2.7)

Initial condition : U0
i = U0, i = 0, 1, 2, ..., N. (2.8)

Boundary conditions : Uk
0 = UL and Uk

N+1 = Uk
N−1 (2.9)

where r = D ταΓ(2−α)
h2 and bj = (j + 1)1−α − j1−α, j = 0, 1, 2, ..., k.

Therefore, the fractional approximated IBVP (2.6) − (2.9) can be written in the
following matrix equation form

U1 = BU0 + S, for k = 0 (2.10)

Uk+1 = AUk +
k−1∑
j=1

(bj − bj+1)U
k−j + bkU

0 + S for k ≥ 1 (2.11)

where Uk = (Uk
1 , U

k
2 , ..., U

k
N)

T , k = 0, 1, 2..., N
A and B are tri-diagonal matrices of order N given by

A =



(1− 2r − b1) r 0 0 · · · 0 0 0
r (1− 2r − b1) r 0 · · · 0 0 0
0 r (1− 2r − b1) r · · · 0 0 0
...

...
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

...
0 0 · · · 0 · · · r (1− 2r − b1) r
0 0 · · · 0 · · · 0 2r (1− 2r − b1)



B =



(1− 2r) r 0 0 · · · 0 0 0
r (1− 2r) r 0 · · · 0 0 0
0 r (1− 2r) r · · · 0 0 0
...

...
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

...
0 0 · · · 0 · · · r (1− 2r) r
0 0 · · · 0 · · · 0 2r (1− 2r)


and S is a constant column matrix of order N given by

S = (rUL, 0, 0 · · · , 0, 0)T .
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The above system of algebraic equations is solved by using Mathematica software in
section 5.
In the next section we discuss the stability of the solution of fractional explicit finite
difference scheme (2.6)− (2.9) for the time fractional soil moisture diffusion equation
(TFSMDE) (2.1)− (2.3)

3 STABILITY

Lemma: The eigenvalues of the NXN tri-diagonal matrix

a b
c a b

c a b
· · · · · ·

· · · · · ·
c a b

c a


are given as

λs = a+ 2
√
bc cos

sπ

N + 1
, s = 1, 2, · · ·N

where a,b and c may be real or complex.

Theorem 3.1 The solution of the explicit finite difference scheme (2.6) − (2.9) for
the time fractional soil moisture diffusion equation (2.1)− (2.3) is stable, when

r ≤ min
{

1
2
, 2−b1

4
, b1
2(
√
2−1)

, 2−b1
2(1+

√
2)

}
Proof: We shall use the mathematical induction to analyse the stability.
For k = 0 and 1 ≤ i ≤ N − 1 the eigen values of B are given by

λs = 1− 2r + 2rcos
sπ

N
; s = 1, 2, · · · , N − 1

≤ 1

λs = 1− 2r + 2rcos
sπ

N
; s = 1, 2, · · · , N − 1

≥ 1− 2r − 2r = 1− 4r

≥ −1 when 1− 4r ≥ −1 ⇒ r ≤ 1

2

⇒ |λs| ≤ 1 when r ≤ 1

2
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For k = 0 and i = N

λs = 1− 2r + 2
√
2rcos

sπ

N + 1
; s = 1, 2, · · · , N

≤ 1− 2r + 2
√
2r = 1− 2r(1−

√
2)

≤ 1

λs = 1− 2r + 2
√
2rcos

sπ

N + 1
; s = 1, 2, · · · , N

≥ 1− 2r − 2
√
2r = 1− 2r(1 +

√
2)

≥ −1 when 1− 2r(1 +
√
2) ≥ −1 ⇒ r ≤ 1

1 +
√
2

⇒ |λs| ≤ 1 when r ≤ 1

1 +
√
2

Hence, for k = 0 and 1 ≤ i ≤ N we have |λs| ≤ 1 when r ≤ min{1
2
, 1
1+

√
2
}

⇒ |λs| ≤ 1 when r ≤ 1

2

Therefore,

∥B∥2 = max
1≤i≤N

|λs| ≤ 1

⇒ ∥B∥2 ≤ 1

∥U1∥2 = ∥BU0∥2
≤ ∥B∥2∥U0∥2
≤ ∥U0∥2

That is
∥U1∥2 ≤ ∥U0∥2 truefor n = 1

We assume ∥Uk∥2 ≤ ∥U0∥2 for n ≤ k is true
We prove that ∥Uk+1∥2 ≤ ∥U0∥2 for n = k + 1
For ∥A∥2 we have, for 1 ≤ i ≤ N − 1, the eigen values of A are given by

λs = 1− 2r − b1 + 2rcos
sπ

N
; s = 1, 2, · · · , N − 1

≤ 1− 2r − b1 + 2r

≤ 1− b1 for b1 > 0

λs = 1− 2r − b1 + 2rcos
sπ

N
; s = 1, 2, · · · , N − 1

≥ 1− 2r − b1 − 2r = 1− 4r − b1

≥ −1 when 1− 4r − b1 ≥ −1 ⇒ r ≤ 2− b1
4

⇒ |λs| ≤ 1 when r ≤ 2− b1
4

for 1 ≤ i ≤ N − 1
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For i = N

λs = 1− 2r − b1 + 2
√
2rcos

sπ

N + 1
; s = 1, 2, · · · , N

≤ 1− 2r − b1 + 2
√
2r = 1− b1 − 2r(1−

√
2)

≤ 1 when 1− b1 − 2r(1−
√
2) ≤ 1 ⇒ r ≤ b1

2(
√
2− 1)

λs = 1− 2r − b1 + 2
√
2rcos

sπ

N + 1
; s = 1, 2, · · · , N

≥ 1− 2r − b1 − 2
√
2r = 1− b1 − 2r(1 +

√
2)

≥ −1 when 1− b1 − 2r(1 +
√
2) ≥ −1 ⇒ r ≤ 2− b1

2(1 +
√
2)

⇒ |λs| ≤ 1 when r ≤ min{ b1

2(
√
2− 1)

,
2− b1

2(1 +
√
2)
}

Hence, for 1 ≤ i ≤ N we have

|λs| ≤ 1 when r ≤ min{2− b1
4

,
b1

2(
√
2− 1)

,
2− b1

2(1 +
√
2)
}

Therefore, ∥A∥2 ≤ 1
Hence

∥Uk+1∥2 = ∥AUk +
k−1∑
j=1

(bj − bj+1)U
k−j + bkU

0 + S∥2

≤ ∥A∥2∥Uk∥2 + (b1 − b2 + b2 − b3 + · · ·+ bk−1 − bk)∥Uk−j∥2 + bk∥U0∥2
≤ (1− b1)∥U0∥2 + (b1 − bk)∥U0∥2 + bk∥U0∥2
≤ (1− b1 + b1 − bk + bk)∥U0∥2

⇒ ∥Uk+1∥2 ≤ ∥U0∥2
That is, result true for n = k + 1
Hence, by induction

∥Uk∥2 ≤ ∥U0∥2

Therefore, this shows that the scheme is stable when

r ≤ min
{

1
2
, 2−b1

4
, b1
2(
√
2−1)

, 2−b1
2(1+

√
2)

}
The next section is devoted for convergence of the finite difference scheme.

4 CONVERGENCE

Theorem 4.1 Let Ūk be the vector of exact solution and Uk be the vector of ap-
proximate solution of the time fractional soil moisture diffusion equation TFSMDE
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(2.1)− (2.3) then Uk converges to Ūk as (h, τ) → (0, 0) when,

r ≤ min
{

1
2
, 2−b1

4
, b1
2(
√
2−1)

, 2−b1
2(1+

√
2)

}
Proof: Let

Uk = [u1, u2, · · · , uN ]
T

Ūk = [ū1, ū2, · · · , ūN ]
T

Then,
Ek = Ūk − Uk

Let us assume that

|ekl | = max
1≤i≤N

|eki | = ∥Ek∥∞, for l = 1, 2, ...

and
T k
l = max

1≤i≤N
|T k

i | = h2O(τ + h2), for l = 1, 2, ...

For k = 0, from equation (2.6) we have

|e1l | = |re0i−1 + (1− 2r)e0i + re0i+1|+ r|T 1
i |

≤ |re0i−1|+ |(1− 2r)e0i |+ |re0i+1|+ |rT 1
i |

≤ r|e0l |+ (1− 2r)|e0l |+ r|e0l |+ r|T 1
l |

≤ (r + 1− 2r + r)|e0l |+ r|T 1
l |

≤ |e0l |+ r|T 1
l | = |e0l |+ rh2O(τ + h2)

⇒ ∥E1∥∞ ≤ ∥E0∥∞ + ταΓ[2− α]O(τ + h2)

That is, the result holds for n = 1.
For n = k, we assume

∥Ek∥∞ ≤ ∥E0∥∞ + kταΓ[2− α]O(τ + h2)

For n = k + 1, we prove that

∥Ek+1∥∞ ≤ ∥E0∥∞ + (k + 1)ταΓ[2− α]O(τ + h2)

Now, from equation (2.7) we have

|Ek+1
l | = |reki−1 + (1− 2r − b1)e

k
i + reki+1 +

k−1∑
j=1

(bj − bj+1)e
k−j
i + bke

0
i |+ r|T k

l |

≤ r|eki−1|+ (1− 2r − b1)|eki |+ r|eki+1|+
k−1∑
j=1

(bj − bj+1)|ek−j
i |+ bk|e0i |+ r|T k

l |

≤ r|ekl |+ (1− 2r − b1)|ekl |+ r|ekl |+ (b1 − b2 + b2 · · ·+ bk−1 − bk)|ekl |+ bk|ekl |+ r|T k
l |

≤ (r + 1− 2r − b1 + r + b1 − bk + bk)|ekl |+ r|T k
l |

≤ |ekl |+ r|T k
l |

≤ ∥Ek∥∞ + r|T k
l |

≤ {∥E0∥∞ + kταΓ[2− α]O(τ + h2)}+ ταΓ[2− α]O(τ + h2)

≤ ∥E0∥∞ + (k + 1)ταΓ[2− α]O(τ + h2)
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Therefore, we conclude that if we assume r ≤ min
{

1
2
, 2−b1

4
, b1
2(
√
2−1)

, 2−b1
2(1+

√
2)

}
then

∥Ek∥∞ → 0 as h → 0 and τ → 0 which results in the convergence of Uk
i to U(xi, tk).

Hence, the proof is completed.

5 NUMERICAL SOLUTIONS

In this section, we obtain the approximated solution of time fractional soil moisture
diffusion equation with initial and boundary conditions. To obtain the numerical so-
lution of the time fractional soil moisture diffusion equation (TFSMDE) by the finite
difference scheme, it is important to use some analytical model. Therefore, we present
an example to demonstrate that TFSMDE can be applied to simulate behavior of a
fractional diffusion equation by using Mathematica Software.
We consider the following one-dimensional time fractional soil moisture diffusion equa-
tion with initial and boundary conditions

∂αU(x, t)

∂tα
=

∂2U(x, t)

∂x2
0 < x < 1, 0 < α ≤ 1, t > 0

initial condition : U(x, 0) = 0, 0 ≤ x ≤ 1

boundary conditions : U(0, t) = 1,

Ux(x, t) = 0, as x → ∞, , t > 0

with the diffusion coefficient D = 1.
The numerical solutions are obtained at t = 0.004 by considering the parameters
τ = 0.0004, h = 0.1, α = 0.7, α = 0.8, and α = 0.9, is simulated in the following
figure.

Fig.5.1 : The soil moisture diffusion profile with t = 0.05, h = 0.1,

α = 0.7 β = 1.7(red), α = 0.8, β = 1.9(blue) and α = 0.9, β = 1.8(green)
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CONCLUSIONS
The proposed explicit difference approximation for time fractional soil moisture diffu-
sion equation can be reliably applied to solve any fractional order dynamical systems
and controllers, minding the conditions for stability and convergence of the scheme.
The numerical results are also compatible with theoretical analysis, hence showing
the numerical stability of the finite difference scheme.
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